Compound Sodium Nitrophenolate Promotes Denitrification by Nitrifying Bacteria by Upregulating Nitrate Reductase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Strain and Chemical Materials
2.1.2. Mediums
2.2. Methods
2.2.1. Effect of Growth Promoter on the Growth of the Strain
2.2.2. Effect of Growth Promoters on Denitrification by Strains
2.2.3. Effect of Growth Promoters on Effluent COD
2.2.4. Study on the Promotion Mechanism of Growth Promoter
2.2.5. Effects of Promoter on the Transcriptome of the Strain Q1
- RNA extraction, library construction, and sequencing
- Bioinformatics analysis and gene expression analysis
2.2.6. Data Analysis
3. Results
3.1. Effect of Growth Promoters on Strain Q1
3.2. The Effect of the Concentration of Compound Sodium Nitrophenolate on Strain Q1
3.3. Effect of Growth Promoter on COD of Wastewater
3.4. Growth Promoter Promotion Mechanism Study
3.4.1. Transcriptome Changes in Strain Q1 under Compound Sodium Nitrophenolate Treatment
3.4.2. The Effect of the Compound Sodium Nitrophenolate on the Transcriptome of Strain Q1
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Piedrahita, R.H. Reducingthe potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 2003, 226, 35–44. [Google Scholar] [CrossRef]
- Zhou, M.H.; Ye, H.R.; Zhao, X.W. Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB for bioremediation of wastewater. Biotechnol. Bioprocess Eng. 2014, 19, 231–238. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Zhou, J.; Chen, M.X.; Wang, X.J. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresour. Technol. 2013, 148, 144–148. [Google Scholar] [CrossRef]
- Shi, X.Q.; Lefebvre, O.; Ng, K.K.; Ng, H.Y. Sequential anaerobic–aerobic treatment of pharmaceutical wastewater with high salinity. Bioresour. Technol. 2014, 153, 79–86. [Google Scholar] [CrossRef]
- Su, J.F.; Zhang, H.; Huang, T.L.; Hu, X.F.; Chen, C.L.; Liu, J.R. The performance and mechanism of simultaneous removal of fluoride, calcium, and nitrate by calcium precipitating strain Acinetobacter sp. H12. Ecotoxicol. Environ. Saf. 2020, 187, 109855. [Google Scholar] [CrossRef]
- Woolard, C.R.; Irvine, R.L. Tretatment of hypersaline wastewater in the sequencing batch reactor. Water Res. 1995, 29, 1159–1168. [Google Scholar] [CrossRef]
- Glass, C.; Silverstein, J. Denitrification of high-nitrate, high-salinity wastewater. Water Res. 1999, 33, 223–229. [Google Scholar] [CrossRef]
- Ji, L.; Liu, Y.; Zhang, Y.F.; Liu, X.D. Study on the Treatment of High Salinity Oil Waste Water by Reverse Osmosis Technology. Adv. Mater. Res. 2011, 418–420, 90–93. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhu, H.; Shutes, B.; Fu, B.; Yan, B.X.; Yu, X.F.; Wen, H.Y.; Chen, X. Identification and denitrification characteristics of a salt-tolerant denitrifying bacterium Pannonibacter phragmitetus F1. AMB Express 2019, 9, 193. [Google Scholar] [CrossRef]
- Ma, C.; Wang, L.; Lee, U.Y.; Tanabe, K.; Kang, S.; Zhang, C.X. Pre-harvest foliar application of ethephon strengthens gibberellins-induced fruit expansion in Pyrus pyrifolia. Genet. Mol. Res. GMR 2016, 15, 4. [Google Scholar] [CrossRef]
- Zhou, W.G.; Chen, F.; Zhao, S.H.; Yang, C.Q.; Meng, Y.J.; Shuai, H.W.; Luo, X.F.; Dai, Y.J.; Yin, H.; Du, J.B.; et al. DA-6 promotes germination and seedling establishment from aged soybean seeds by mediating fatty acid metabolism and glycometabolism. J. Exp. Bot. 2019, 70, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Voß, U.; Bishopp, A.; Farcot, E.; Bennett, M.J. Modelling hormonal response and development. Trends Plant Sci. 2014, 19, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.G.; Stirk, W.A.; Southway, C.; Papenfus, H.B.; Swart, P.A.; Lux, A.; Vaculík, M.; Martinka, M.; Van, S.J. Plant growth regulators enhance gold uptake in Brassica juncea. Int. J. Phytoremediat. 2013, 15, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Wang, Y.Y.; Song, G.L. Application of technique of thick-layer base material spraying technology on vegetation restoration of rock slop in semiarid area of north China:a case of Jingcheng Expressway (the third phase). Grassland Turf. 2012, 32, 58–64. [Google Scholar]
- Chen, Z.L. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 2012, 100, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Singh, A.; Laishram, N. Effects of plant growth regulators on quality flower and seed production of marigold (Tagetes erecta L.). Bangladesh J. Bot. 2020, 49, 567–577. [Google Scholar] [CrossRef]
- Wei, Z.M.; Hu, X.J.; Mo, F. Effect of exogenous gibberellin on seed germination and seedling growth of Marigold under salt stress. North. Hortic. 2022, 16, 69–75. [Google Scholar]
- Dai, T.Y.; Wang, Q.C.; Zhang, Y.Y. Effect of exogenous gibberellin on seed germination and seedling growth of tomato under salt stress. Seeds 2022, 3, 74–80. [Google Scholar]
- Geng, Y.Y.; Zhang, X.M.; Nie, Y.D. Effects of growth factors on growth and lipid accumulation of Chlorella vulgaris under nitrogen deficiency stress. Chin. Lipids 2022, 47, 95–100. [Google Scholar]
- Zou, Y.L.; Zhong, Q.P.; Ge, X.N. Effect of sodium compound nitinol on endogenous hormones and bud differentiation rate of oil tea flower bud. Econ. For. Res. 2020, 2, 69–76. [Google Scholar]
- Okoroafor, O.N.; Animoke, P.C.; Mbegbu, E.C. Prevalence of Newcastle disease virus in feces of free-range turkeys in Enugu, Nigeria. Vet World 2020, 13, 1288–1293. [Google Scholar] [CrossRef]
- Liu, W.; Qiu, X.; Song, C. Deep sequencing-based transcriptome profiling reveals avian interferon-stimulated genes and provides comprehensive insight into Newcastle disease virus-induced host responses. Viruses 2018, 10, 162. [Google Scholar] [CrossRef]
- Zhang, L.H.; Jiang, S.Z.; Guo, X. MiR-146b-5p targets IFI35 to inhibit inflammatory response and apoptosis via JAK1/STAT1 signalling in lipopolysaccharide-induced glomerular cells. Autoimmunity 2021, 54, 430–438. [Google Scholar] [CrossRef]
- Molouki, A.; Hsu, Y.T.; Jahanshiri, F. Newcastle disease virus infection promotes Bax redistribution to mitochondria and cell death in HeLa cells. Intervirology 2010, 53, 87–94. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, C.; Wang, J.; Mo, W.; Yu, M. Codon optimization, expression, purification, and functional characterization of recombinant human IL-25 in Pichia pastoris. Appl. Microbiol. Biotechnol. 2013, 97, 10349–10358. [Google Scholar] [CrossRef]
- Qu, Y.; Zhang, R.; Fang, M. Bioaugmentation with a novel alkali-tolerant Pseudomonas strain for alkaline phenol wastewater treatment in sequencing batch reactor. World J. Microbiol. Biotechnol. 2011, 27, 1919–1926. [Google Scholar] [CrossRef]
- Chen, S.H.; He, S.Y.; Wu, C.J. Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment. J. Biosci. Bioeng. 2018, 127, 201–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.L.; Liu, Y.; Ai, G.M. The characteristics of a novel heterotrophic nitrification–aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 2012, 108, 35–44. [Google Scholar] [CrossRef]
- Li, R.Q.; Zhang, X.X.; Gao, Z.L. Mechanisms of benzoic acid effect on nitrogen transformation by denitrifying bacteria. Environ. Pollut. Prev. 2023, 45, 27–34. [Google Scholar]
- Wang, C.; Chen, Y.W.; Zhou, H.Z. Adaptation mechanisms of Rhodococcus sp. CNS16 under different temperature gradients: Physiological and transcriptome. Chemosphere 2020, 238, 124571. [Google Scholar] [CrossRef]
- Yang, Z.L.; Yu, D.S.; Li, Z. Nitrogen and carbon removal efficacy of algal sugar-enhanced anaerobic ammonia oxidation coupled with denitrification process for treating high-salt wastewater. Environ. Sci. 2018, 39, 4612–4620. [Google Scholar]
- Guo, L.; Xiao, P.Y.; Li, L.S. Metabolic mechanisms of heterotrophic nitrifying- aerobic denitrifying bacterial flora under high salt stress enhanced by algal sugars. J. Biol. Eng. 2022, 12, 4536–4552. [Google Scholar]
- Zhou, Y.K. Study on the domestication culture of high efficiency denitrifying bacteria and their application performance under low temperature conditions of encapsulated fillers. Contemp. Chem. Res. 2022, 12, 1–4. [Google Scholar]
- Zheng, X.L.; Hu, F.; Liang, Y.Q. Effect of naphthalene acetic acid on the growth rate, spore germination rate and attachment cell formation rate of rubber tree gum cell anthracnose. Trop. Agric. Sci. 2016, 8, 45–48. [Google Scholar]
Sample Name | QD1 | QF1 |
---|---|---|
Raw Reads | 23,047,284 | 7,798,766 |
Raw Bases (bp) | 3,480,139,884 | 1,177,613,666 |
Raw Error Rate (%) | 0.0269 | 0.0286 |
Raw Q20 * (%) | 97.16 | 96.13 |
Raw Q30 * (%) | 92.54 | 91.46 |
Clean Reads | 22,858,484 | 7,442,962 |
Clean Bases (bp) | 3,304,136,157 | 1,093,331,025 |
Clean Error Rate (%) | 0.0259 | 0.026 |
Clean Q20 (%) | 97.67 | 97.54 |
Clean Q30 (%) | 93.23 | 93.23 |
Annotated in Databases | Number of Genes |
---|---|
Genes of NR (Percent (%)) | 5389 (98.95) |
Genes of Swiss-Prot (Percent (%)) | 5083 (93.33) |
Genes of Pfam (Percent (%)) | 3455 (63.44) |
Genes of COG (Percent (%)) | 4643 (85.26) |
Genes of GO (Percent (%)) | 3349 (61.49) |
Genes of KEGG (Percent (%)) | 3670 (67.39) |
Total Genes | 5446 (100) |
Gene Name | Gene Description | Log2FC (QF/QD) * | Regulate |
---|---|---|---|
miaA | tRNA dimethylallyl transferase | 1.333272633 | up |
gatA | Glutamyl-tRNA (Gln) amidotransferase subunit A | 0.874257195 | up |
trmB | tRNA (guanine-N(7)-)-methyltransferase | 2.181028133 | up |
ybaK | Cys-tRNA (Pro)/Cys-tRNA (Cys) deacylase YbaK | 2.662302664 | up |
tsaD | tRNA N6-adenosine threonylcarbamoyltransferase | 1.077234695 | up |
TilS | tRNA lysidine synthetase TilS, partial | 1.201721029 | up |
tadA_1 | tRNA-specific adenosine deaminase | 1.139064415 | up |
narX_1 | Nitrate reductase-like protein NarX | 0.027333981 | up |
narT | putative nitrate transporter NarT | 0.122508372 | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, N.; Zhang, L.; Tian, F.; Wang, K.; Li, Q.; Lu, J.; Lyu, M.; Wang, S. Compound Sodium Nitrophenolate Promotes Denitrification by Nitrifying Bacteria by Upregulating Nitrate Reductase. Appl. Sci. 2023, 13, 6134. https://doi.org/10.3390/app13106134
Yao N, Zhang L, Tian F, Wang K, Li Q, Lu J, Lyu M, Wang S. Compound Sodium Nitrophenolate Promotes Denitrification by Nitrifying Bacteria by Upregulating Nitrate Reductase. Applied Sciences. 2023; 13(10):6134. https://doi.org/10.3390/app13106134
Chicago/Turabian StyleYao, Na, Lei Zhang, Fengrong Tian, Kaichun Wang, Qiang Li, Jing Lu, Mingsheng Lyu, and Shujun Wang. 2023. "Compound Sodium Nitrophenolate Promotes Denitrification by Nitrifying Bacteria by Upregulating Nitrate Reductase" Applied Sciences 13, no. 10: 6134. https://doi.org/10.3390/app13106134
APA StyleYao, N., Zhang, L., Tian, F., Wang, K., Li, Q., Lu, J., Lyu, M., & Wang, S. (2023). Compound Sodium Nitrophenolate Promotes Denitrification by Nitrifying Bacteria by Upregulating Nitrate Reductase. Applied Sciences, 13(10), 6134. https://doi.org/10.3390/app13106134