Self-Adaptive Differential Evolution with Gauss Distribution for Optimal Mechanism Design
Abstract
:1. Introduction
2. Review of Differential Evolution
Algorithm 1: DE algorithm | |
Initialization: Generate initial population within boundary. | |
While termination condition is not reached. | |
Mutation: Calculate mutation vector . | |
Crossover: Perform crossover to create vector. | |
Selection: Select the candidates for the next generation based on fitness value. | |
End. | |
Return the best solution. |
2.1. Initialization Operation
2.2. Mutation Operation
2.3. Crossover Operation
2.4. Selection Operation
3. Related Works
4. Modified Differential Evolution
Algorithm 2: G-ISADE algorithm. | ||
Initialization: Generate initial population of NP candidates and their corresponding opposition within boundary. | ||
Generate initial Gauss variables. | ||
Evaluation and rank: Ranking all 2NP population based on comparing fitness value. After that, NP particles will be selected for the next generation. | ||
While termination condition is not reached. | ||
Adaptive scaling factor: Calculating mutation adaptive scaling factor F by Equation (10). | ||
Mutation: Calculate mutation vector by Equations (15)–(17). | ||
Crossover: Perform crossover to create vector. | ||
Selection: Calculate oppositon of a certain top best number of particles. Select the NP candidates for the next generation based on fitness value. | ||
Update Gauss variables: Recalculate standard deviation of Gauss distribution and generate new Gauss variable. The details of this step can be seen in the procedure of G-ISADE in Figure 4. | ||
End. | ||
Return the best solution. |
5. Numerical Simulation
5.1. Benchmark Function
- Function group 1 is separable and unimodal: Sphere (f1), weighted sphere (f12), Sum of Different Power (f13), Bent Cigar (f17).
- Function group 2 is non-separable and unimodal: Schwefel’s Problem 1.2 (f6), Schawefel or Schwefel function 2.22 (f8), Rosenbrock (f2).
- Function group 3 is separable and multimodal: Rastrigin (f4), Levy (f7), Alpine (f10), Schwefel’s Problem 2.26 (f19).
- Function group 4 is non-separable and multimodal: Ackley (f5), Griewank (f3), Zakharov (f14), Exponential Problem (f15), Salomon Problem (f16); Schaffer function (f9), Pathological (f11), Expanded Schaffer’s F6 (f18).
5.2. Performance Comparison of Proposed Algorithm with IDE
5.3. Performance Comparison of G-ISADE with Its Previous Improvements
5.4. Modified Differential Evolution for Real-World Problem
5.4.1. Welded-Beam Design Problem
5.4.2. Design Problem of Air-Storage Tank
5.4.3. Design Problem of Compression Spring
5.4.4. Optimization Problem of Gear Reducer
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DE | Differential evolution |
EAs | Evolutionary algorithms |
ISADE | Improve Self-Adaptive Differential Evolution |
SaDE | Self-adaptive differential evolution algorithm |
SR | Success rate |
FE | Function evaluations |
Appendix A
References
- Storn, R.; Price, K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Lemarechal, C. Cauchy and the Gradient Method. Doc. Math. Extra 2012, ISMP, 251–254. [Google Scholar]
- Wallis, J. A Treatise of Algebra, Both Historical and Practical; Richard Davis: Oxford, UK, 1685. [Google Scholar]
- Qin, A.K.; Suganthan, P.N. Self-Adaptive Differential Evolution Algorithm for Numerical Optimization. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; pp. 1785–1791. [Google Scholar]
- Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Trans. Evol. Comput. 2006, 10, 646–657. [Google Scholar] [CrossRef]
- Zhang, J.; Sanderson, A.C. JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Trans. Evol. Comput. 2009, 13, 945–958. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.-X.; Huang, T.; Li, L. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl. Soft Comput. 2014, 18, 232–247. [Google Scholar] [CrossRef]
- Ali W., M.; Ali K., M. Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cybern. 2019, 10, 253–277. [Google Scholar]
- Tam, B.; Trung, N.; Hiroshi, H. Opposition-based learning for self-adaptive control parameters in differential evolution for optimal mechanism design. J. Adv. Mech. Des. Syst. Manuf. 2019, 13, 4. [Google Scholar]
- Tam, B.; Pham, H.; Hiroshi, H. Improve Self-Adaptive Control Parameters in Differential Evolution for Solving Constrained Engineering Optimization Problems. J. Comput. Sci. Technol. 2013, 7, 59–74. [Google Scholar]
- Tizhoosh H., R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Zheng, H.; Zhou, Y. A Novel Cuckoo Search Optimization Algorithm Base on Gauss Distribution. J. Comput. Inf. Syst. 2012, 8, 4193–4200. [Google Scholar]
- He, X.-S.; Ding, W.J.; Yang, X.S. Bat algorithm based on simulated annealing and Gaussian perturbations. Neural Comput. Appl. 2014, 25, 459–468. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, Q. An effective hybrid particle swarm optimization with Gaussian mutation. J. Algorithms Comput. Technol. 2017, 11, 271–280. [Google Scholar] [CrossRef]
- Jena, C.; Basu, M.; Panigrahi, C.K. Differential evolution with Gaussian mutation for combined heat and power economic dispatch. Soft Comput. 2016, 20, 681–688. [Google Scholar] [CrossRef]
- Sun, G.; Lan, Y.; Zhao, R. Differential evolution with Gaussian mutation and dynamic parameter adjustment. Soft Comput. 2019, 23, 1615–1642. [Google Scholar] [CrossRef]
- Li, X.; Yin, M. Modified differential evolution with self-adaptive parameters method. J. Comb. Optim. 2016, 31, 546–576. [Google Scholar] [CrossRef]
- Tang, L.; Dong, Y.; Liu, J. Differential Evolution with an Individual-Dependent Mechanism. IEEE Trans. Evol. Comput. 2015, 19, 560–574. [Google Scholar] [CrossRef]
- Suganthan, P.N.; Hansen, N.; Liang, J.J.; Deb, K.; Chen, Y.-P.; Auger, A.; Tiwari, S. Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization; Technical Report Number 2005005; Nanyang Technological University: Singapore; KanGAL: Kanpur, India, 2005. [Google Scholar]
- Ragsdell, K.; Phillips, D. Optimal Design of a Class of Welded Structures using Geometric Programming. ASME J. Manuf. Sci. Eng. 1976, 98, 1021–1025. [Google Scholar] [CrossRef]
- Huang, F.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math. Comput. 2007, 186, 340–356. [Google Scholar] [CrossRef]
- He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 2007, 20, 89–99. [Google Scholar] [CrossRef]
- Coello, C.A.C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127. [Google Scholar] [CrossRef]
- Sandgren, E. Nonlinear Integer and Discrete Pro-gramming in Mechanical Design Optimization. ASME J. Mech. Des. 1990, 112, 223–229. [Google Scholar] [CrossRef]
- Belegundu, A. A Study of Mathematical Programming Methods for Structural Optimization. Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 1982. [Google Scholar]
- Golinski, J. Optimal synthesis problems solved by means of nonlinear programming and random methods. J. Mech. 1970, 3, 287–309. [Google Scholar] [CrossRef]
- Bernardino, H.; Barbosa, H.; Lemonge, A.; Fonseca, L. A new hybrid AIS-GA for constrained optimization problems inmechanical engineering. In Proceedings of the IEEE Congress on Evolutionary Computation, Hong Kong, China, 1–6 June 2008; pp. 1455–1462. [Google Scholar]
- Lemonge, A.C.C.; Barbosa, H.J.C.; Borgesc, C.C.H.; Silvad, F.B.S. Constrained optimization problems in mechanical engineering design using a real-coded steady-state genetic algorithm. Mecánica Comput. 2010, 29, 9287–9303. [Google Scholar]
- Chen, T.; Zhang, Z.; Chen, D.; Li, Y. The Optimization of Two-Stage Planetary Gear Train Based on Mathmatica. In Pervasive Computing and the Networked World: Joint International Conference, ICPCA/SWS 2012, Istanbul, Turkey, 28–30 November 2012; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7719, pp. 122–136. [Google Scholar]
Function (30-D) | IDE | G-ISADE | ||
---|---|---|---|---|
Mean | Std | Mean | Std | |
F1 | 0.00 | 0.00 | 0.00 | 0.00 |
F2 | 5.00 | 2.82 | ||
F3 | ||||
F4 | 0.00 | 0.00 | 0.00 | 0.00 |
F5 | 20.9 | 0.00 | 0.00 | |
F17 | 0.00 | 0.00 | ||
F18 | 9.94 | 0.49 | 0.00 | 0.00 |
F19 | 23.4 | 31.8 | 0.00 | 0.00 |
Function | DE | ISADE | EOBLDE | G-ISADE | |||||
---|---|---|---|---|---|---|---|---|---|
SR | FE | SR | FE | SR | FE | SR | FE | IR | |
F1 | 1.00 | 35,688 | 1.00 | 34,163 | 1.00 | 16,222 | 1.00 | 8132 | 77.21% |
F2 | 0.00 | 300,000 | 0.84 | 179,307 | 1.00 | 176,237 | 1.00 | 144,568 | 51.81% |
F3 | 0.34 | 38,641 | 0.50 | 49,687 | 1.00 | 22,064 | 1.00 | 12,470 | 67.73% |
F4 | 0.00 | 300,000 | 1.00 | 144,068 | 1.00 | 85,710 | 1.00 | 81,184 | 72.94% |
F5 | 0.82 | 54,385 | 1.00 | 58,290 | 1.00 | 22,047 | 1.00 | 12,035 | 77.87% |
F6 | 1.00 | 126,046 | 0.96 | 138,338 | 1.00 | 14,995 | 1.00 | 13,762 | 89.08% |
F7 | 0.76 | 33,618 | 0.94 | 46,556 | 1.00 | 17,972 | 1.00 | 13,582 | 59.60% |
F8 | 1.00 | 57,898 | 1.00 | 95,701 | 1.00 | 25,377 | 1.00 | 14,916 | 74.24% |
F9 | 0.00 | 300,000 | 0.00 | 300,000 | 1.00 | 85,059 | 1.00 | 84,626 | 71.79% |
F10 | 1.00 | 58,682 | 0.98 | 132,938 | 0.62 | 135,331 | 1.00 | 14,828 | 74.73% |
F11 | 0.00 | 300,000 | 0.00 | 300,000 | 1.00 | 90,963 | 0.77 | 107,125 | 64.29% |
F12 | 1.00 | 33,614 | 1.00 | 46,457 | 1.00 | 15,102 | 1.00 | 7968 | 76.30% |
F13 | 1.00 | 8322 | 1.00 | 9644 | 1.00 | 4610 | 1.00 | 2469 | 70.33% |
F14 | 1.00 | 182,620 | 1.00 | 172,252 | 1.00 | 13,932 | 1.00 | 21,566 | 88.19% |
F15 | 1.00 | 24,942 | 1.00 | 42,009 | 1.00 | 12,198 | 1.00 | 6092 | 75.58% |
F16 | 0.00 | 300,000 | 0.00 | 300,000 | 1.00 | 85,172 | 0.93 | 77,163 | 74.28% |
F17 | 1.00 | 61,828 | 1.00 | 113,429 | 1.00 | 25,981 | 1.00 | 12,675 | 79.50% |
F18 | 0.00 | 300,000 | 0.00 | 300,000 | 1.00 | 88,738 | 1.00 | 52,430 | 82.52 % |
F19 | 0.00 | 300,000 | 1.00 | 94,849 | 1.00 | 84,745 | 1.00 | 72,761 | 75.75% |
Design Variables | CDE | CPSO | CGA | EOBLDE | G-ISADE |
---|---|---|---|---|---|
0.203137 | 0.202369 | 0.208800 | 0.205729 | 0.207407 | |
3.542998 | 3.544214 | 3.420500 | 3.470488 | 3.448728 | |
9.033498 | 9.048210 | 8.99750 | 9.036623 | 9.000000 | |
0.206179 | 0.205723 | 0.210000 | 0.205729 | 0.207407 | |
−44.57856 | −12.83979 | −0.337812 | |||
−44.66353 | −1.247467 | −353.9026 | |||
−0.003042 | −0.001498 | −0.001200 | 0.000000 | ||
−3.423726 | −3.429347 | −3.411865 | −3.432983 | −3.428506 | |
−0.078137 | −0.079381 | −0.083800 | −0.080729 | −0.082407 | |
−0.235557 | −0.235536 | −0.235649 | −0.235540 | −0.235481 | |
−38.02826 | −11.68135 | −363.2323 | −131.577828 | ||
1.733462 | 1.728024 | 1.748309 | 1.724852 | 1.713571 |
Methods | Best | Mean | Worst | Standard Deviation |
---|---|---|---|---|
CDE | 1.733461 | 1.768158 | 1.824105 | 0.022 |
CPSO | 1.728024 | 1.748831 | 1.782143 | 0.013 |
CGA | 1.748309 | 1.771973 | 1.785835 | 0.011 |
EOBLDE | 1.724852 | 1.724856 | 1.725001 | |
G-ISADE | 1.713571 | 1.713571 | 1.713571 | 0.00 |
Design Variables | CDE | CPSO | CGA | EOBLDE | G-ISADE |
---|---|---|---|---|---|
0.8125 | 0.8125 | 0.8125 | 0.8125 | 0.78603 | |
0.4375 | 0.4375 | 0.4375 | 0.4375 | 0.46406 | |
42.0984 | 42.0912 | 40.3239 | 42.0984 | 42.0000 | |
176.6376 | 176.7465 | 200.0000 | 176.6365 | 177.8603 | |
−0.0001 | −0.0343 | −0.0019 | |||
−0.0358 | −0.0359 | −0.0528 | −0.0358 | −0.0368 | |
−3.6830 | −116.3827 | −27.1058 | |||
−63.3623 | −63.2535 | −40.0000 | −63.3634 | −62.1396 | |
6059.7340 | 6061.0777 | 6288.7445 | 6059.7143 | 6059.60 |
Methods | Best | Mean | Worst | Standard Deviation |
---|---|---|---|---|
CDE | 6059.7340 | 6085.2303 | 6371.0455 | 43.013 |
CPSO | 6061.0777 | 6147.1332 | 6363.8041 | 86.454 |
CGA | 6288.7445 | 6293.8432 | 6308.1497 | 7.413 |
EOBLDE | 6059.7143 | 6093.8431 | 6370.7797 | 83.671 |
G-ISADE | 6059.60 | 6067.26 | 6117.06 | 19.8682 |
Design Variables | CDE | CPSO | CGA | EOBLDE | G-ISADE |
---|---|---|---|---|---|
0.051609 | 0.051728 | 0.051480 | 0.051689 | 0.051897 | |
0.354714 | 0.357644 | 0.351661 | 0.356718 | 0.361748 | |
11.410831 | 11.244543 | 11.632201 | 11.288947 | 11.000000 | |
−0.000039 | −0.000845 | −0.002080 | |||
−0.000183 | −0.000110 | 0.000000 | |||
−4.048627 | −4.051300 | −4.026318 | −4.053785 | −4.063608 | |
−0.729118 | −0.727090 | −4.026318 | −0.727728 | −0.724236 | |
0.0126702 | 0.0126747 | 0.0127048 | 0.012665 | 0.012662 |
Methods | Best | Mean | Worst | Standard Deviation |
---|---|---|---|---|
CDE | 0.012670 | 0.012703 | 0.012790 | |
CPSO | 0.012674 | 0.012730 | 0.012924 | |
CGA | 0.012704 | 0.012769 | 0.012822 | |
EOBLDE | 0.012665 | 0.012669 | 0.012713 | |
G-ISADE | 0.012662 | 0.0126845 | 0.0128108 |
Design Variables | AIS-GA | APM | EOBLDE | G-ISADE |
---|---|---|---|---|
3.500001 | 3.500000 | 3.500000 | 3.500000 | |
0.700000 | 0.700000 | 0.700000 | 0.700000 | |
17 | 17 | 17 | 17 | |
7.300008 | 7.300000 | 7.300000 | 7.300000 | |
7.800001 | 7.800000 | 7.713888 | 7.713888 | |
3.350215 | 3.350215 | 3.350215 | 3.350214 | |
5.286684 | 5.286683 | 5.285353 | 5.285353 | |
2996.3483 | 2996.3482 | 2.993.6132 | 2993.61 |
Methods | Best | Mean | Worst | Standard Deviation |
---|---|---|---|---|
AIS-GA | 2996.3483 | 2996.3501 | 2996.3599 | |
APM | 2996.3482 | 2997.4728 | 3051.4556 | 7.87 |
EOBLDE | 2993.6132 | 2993.6165 | 2993.6296 | |
G-ISADE | 2993.61 | 2993.61 | 2993.61 | 0.00 |
Design Variables | DE | G-ISADE |
---|---|---|
13 | 20 | |
2.47044 | 4.957651 | |
60.7104 | 59.557864 | |
0.238434 | 0.5 | |
12.9891 | 5.423887 | |
13 | 24 | |
6.9805 | 4.907367 | |
110.067 | 147.951034 | |
0.2408021 | 0.5 | |
14,555,831.29 | 14,204,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, V.-T.; Tran, V.-M.; Bui, N.-T. Self-Adaptive Differential Evolution with Gauss Distribution for Optimal Mechanism Design. Appl. Sci. 2023, 13, 6284. https://doi.org/10.3390/app13106284
Nguyen V-T, Tran V-M, Bui N-T. Self-Adaptive Differential Evolution with Gauss Distribution for Optimal Mechanism Design. Applied Sciences. 2023; 13(10):6284. https://doi.org/10.3390/app13106284
Chicago/Turabian StyleNguyen, Van-Tinh, Vu-Minh Tran, and Ngoc-Tam Bui. 2023. "Self-Adaptive Differential Evolution with Gauss Distribution for Optimal Mechanism Design" Applied Sciences 13, no. 10: 6284. https://doi.org/10.3390/app13106284
APA StyleNguyen, V.-T., Tran, V.-M., & Bui, N.-T. (2023). Self-Adaptive Differential Evolution with Gauss Distribution for Optimal Mechanism Design. Applied Sciences, 13(10), 6284. https://doi.org/10.3390/app13106284