Study of the Briquetting Process of Walnut Shells for Pyrolysis and Combustion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Characterization
2.2. Briquetting Process and Evaluation of the Quality of the Briquettes Obtained
3. Results and Discussion
3.1. Characterization of Initial Biomass
3.2. Biomass Briquettes
3.3. Factors Affecting the Quality of Biomass Briquettes
3.3.1. Operating Temperature
3.3.2. Moisture Content
3.3.3. Natural Binders
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ali, G.; Afraz, M.; Muhammad, F.; Nisar, J.; Shah, A.; Munir, S.; Tasleem Hussain, S. Production of Fuel Range Hydrocarbons from Pyrolysis of Lignin over Zeolite Y, Hydrogen. Energies 2022, 16, 215. [Google Scholar] [CrossRef]
- Nisar, J.; Ahmad, A.; Ali, G.; Rehman, N.U.; Shah, A.; Shah, I. Enhanced Bio-Oil Yield from Thermal Decomposition of Peanut Shells Using Termite Hill as the Catalyst. Energies 2022, 15, 1891. [Google Scholar] [CrossRef]
- Siyal, A.A.; Liu, Y.; Ali, B.; Mao, X.; Hussain, S.; Fu, J.; Ao, W.; Zhou, C.; Wang, L.; Liu, G.; et al. Pyrolysis of Pellets Prepared from Pure and Blended Biomass Feedstocks: Characterization and Analysis of Pellets Quality. J. Anal. Appl. Pyrolysis 2022, 161, 105422. [Google Scholar] [CrossRef]
- Rudolfsson, M.; Stelte, W.; Lestander, T.A. Process Optimization of Combined Biomass Torrefaction and Pelletization for Fuel Pellet Production—A Parametric Study. Appl. Energy 2015, 140, 378–384. [Google Scholar] [CrossRef]
- Rex, P.; Ganesan, V.; Sivashankar, V.; Tajudeen, S. Prospective Review for Development of Sustainable Catalyst and Absorbents from Biomass and Application on Plastic Waste Pyrolysis. Int. J. Environ. Sci. Technol. 2022, 1–16. [Google Scholar] [CrossRef]
- El Hamdouni, Y.; el Hajjaji, S.; Szabó, T.; Trif, L.; Felhősi, I.; Abbi, K.; Labjar, N.; Harmouche, L.; Shaban, A. Biomass Valorization of Walnut Shell into Biochar as a Resource for Electrochemical Simultaneous Detection of Heavy Metal Ions in Water and Soil Samples: Preparation, Characterization, and Applications. Arab. J. Chem. 2022, 15, 104252. [Google Scholar] [CrossRef]
- Shahbandeh, M. Nuts: Global Production by Type 2021/22. Statista. Available online: https://www.statista.com/statistics/1030790/tree-nut-global-production-by-type/ (accessed on 16 February 2023).
- Li, Y.; Liu, H. High-Pressure Densification of Wood Residues to Form an Upgraded Fuel. Biomass Bioenergy 2000, 19, 177–186. [Google Scholar] [CrossRef]
- Ghiasi, B.; Kumar, L.; Furubayashi, T.; Lim, C.J.; Bi, X.; Kim, C.S.; Sokhansanj, S. Densified Biocoal from Woodchips: Is It Better to Do Torrefaction before or after Densification? Appl. Energy 2014, 134, 133–142. [Google Scholar] [CrossRef]
- Manouchehrinejad, M.; Mani, S. Torrefaction after Pelletization (TAP): Analysis of Torrefied Pellet Quality and Co-Products. Biomass Bioenergy 2018, 118, 93–104. [Google Scholar] [CrossRef]
- Wang, Q.; Han, K.; Gao, J.; Li, H.; Lu, C. The Pyrolysis of Biomass Briquettes: Effect of Pyrolysis Temperature and Phosphorus Additives on the Quality and Combustion of Bio-Char Briquettes. Fuel 2017, 199, 488–496. [Google Scholar] [CrossRef]
- Font, R. Proceso Mejorado de Fabricacion de Briquetas Combustibles. Patent ES2201862. Available online: https://innoua.ua.es/es/GeneraFichaOfertaPDF?pIdOferta=33 (accessed on 22 February 2023).
- Font, R. Procedimiento Para La Fabricación de Briquetas Para La Valorización Energética de Residuos de Muebles. Patent WO2016185063A1, 24 November 2016. Available online: https://patents.google.com/patent/WO2016185063A1/es (accessed on 22 February 2023).
- UNE-EN ISO 16559:2022; Biocombustibles Sólidos. Vocabulario. Asociación Española de Normalización (AENOR): Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0070126 (accessed on 19 April 2023).
- Križan, P.; Šooš, Ľ.; Vukelić, Đ. A Study of Impact Technological Parametres on the Briquetting Process. Facta Univ. Ser. Work. Living Environ. Prot. 2009, 6, 39–47. [Google Scholar]
- Obernberger, I.; Thek, G. Physical Characterisation and Chemical Composition of Densified Biomass Fuels with Regard to Their Combustion Behaviour. Biomass Bioenergy 2004, 27, 653–669. [Google Scholar] [CrossRef]
- Garrido, M.A.; Font, R.; Conesa, J.A. Thermochemical Study of the Briquetting Process of Mattress Foams. Fuel Process. Technol. 2017, 159, 88–95. [Google Scholar] [CrossRef]
- Moreno, A.I.; Font, R.; Conesa, J.A. Physical and Chemical Evaluation of Furniture Waste Briquettes. Waste Manag. 2016, 49, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Ishii, K.; Furuichi, T. Influence of Moisture Content, Particle Size and Forming Temperature on Productivity and Quality of Rice Straw Pellets. Waste Manag. 2014, 34, 2621–2626. [Google Scholar] [CrossRef] [PubMed]
- Kaliyan, N.; Vance Morey, R. Factors Affecting Strength and Durability of Densified Biomass Products. Biomass Bioenergy 2009, 33, 337–359. [Google Scholar] [CrossRef]
- Lee, S.M.; Ahn, B.J.; Choi, D.H.; Han, G.S.; Jeong, H.S.; Ahn, S.H.; Yang, I. Effects of Densification Variables on the Durability of Wood Pellets Fabricated with Larix kaempferi C. and Liriodendron tulipifera L. Sawdust. Biomass Bioenergy 2013, 48, 1–9. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.K.; Sanadi, A.R.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U.B. A Study of Bonding and Failure Mechanisms in Fuel Pellets from Different Biomass Resources. Biomass Bioenergy 2011, 35, 910–918. [Google Scholar] [CrossRef]
- Mandal, S.; Prasanna Kumar, G.V.; Bhattacharya, T.K.; Tanna, H.R.; Jena, P.C. Briquetting of Pine Needles (Pinus roxburgii) and Their Physical, Handling and Combustion Properties. Waste Biomass Valorization 2019, 10, 2415–2424. [Google Scholar] [CrossRef]
- Križan, P.; Matúš, M.; Šooš, L.; Beniak, J. Behavior of Beech Sawdust during Densification into a Solid Biofuel. Energies 2015, 8, 6382–6398. [Google Scholar] [CrossRef]
- UNE-EN ISO 18134-1:2016; Biocombustibles Sólidos. Determinación Del Contenido de Humedad. Método de Secado En Estufa. Parte 1: Humedad Total. Método de Referencia. Asociación Española de Normalización (AENOR): Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=norma-une-en-iso-18134-1-2016-n0056325 (accessed on 19 April 2023).
- UNE-EN ISO 18122:2016; Biocombustibles Sólidos. Determinación Del Contenido de Ceniza. Asociación Española de Normalización (AENOR): Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=norma-une-en-iso-18122-2016-n0056486 (accessed on 19 April 2023).
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Biomass Proximate Analysis Using Thermogravimetry. Bioresour. Technol. 2013, 139, 1–4. [Google Scholar] [CrossRef] [PubMed]
- UNE-EN ISO 16948:2015; Biocombustibles Sólidos. Determinación Del Contenido Total de Carbono, Hidrógeno y Nitrógeno. Asociación Española de Normalización (AENOR): Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=norma-une-en-iso-16948-2015-n0055295 (accessed on 19 April 2023).
- UNE-EN ISO 17831-2:2016; Biocombustibles Sólidos. Determinación de La Durabilidad Mecánica de Pélets y Briquetas. Parte 2: Briquetas. Asociación Española de Normalización (AENOR): Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0057457 (accessed on 19 April 2023).
- UNE-EN ISO 17225-1:2021; Biocombustibles Sólidos. Especificaciones y Clases de Combustibles. Parte 1: Requisitos Generales. Asociación Española de Normalización (AENOR): Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0068685 (accessed on 19 April 2023).
- UNE-EN ISO 17225-3:2021; Biocombustibles Sólidos. Especificaciones y Clases de Combustibles. Parte 3: Clases de Briquetas de Madera. Asociación Española de Normalización (AENOR): Madrid, Spain. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma/?c=N0067971 (accessed on 19 April 2023).
- Felfli, F.F.; Luengo, C.A.; Suárez, J.A.; Beatón, P.A. Wood Briquette Torrefaction. Energy Sustain. Dev. 2005, 9, 19–22. [Google Scholar] [CrossRef]
- Irvine, G.M. The Glass Transitions of Lignin and Hemicellulose and Their Measurement by Differential Thermal Analysis. Tappi J. 1984, 67, 118–121. [Google Scholar]
- Kaliyan, N.; Morey, R.V. Natural Binders and Solid Bridge Type Binding Mechanisms in Briquettes and Pellets Made from Corn Stover and Switchgrass. Bioresour. Technol. 2010, 101, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Green, D.W.; Perry, R.H. Liquid Density, Viscosity, and Interfacial Tension. In Perry’s Chemical Engineers’ Handbook; McGraw-Hill Education: New York, NY, USA, 2008; p. 2400. ISBN 9780071422949. [Google Scholar]
- Reid, R.C.; Prausnitz, J.M.; Poiling, B.E. The Properties of Gases and Liquids, 4th ed.; McGraw-Hill, Inc.: New York, NY, USA, 1987; ISBN 978-0070517998. [Google Scholar]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, USA, 2003; ISBN 0-8493-0484-9. [Google Scholar]
- Forero Núñez, C.A. Densification Mechanisms during Solid Biofuels Production Made of Sawdust, Coal and Cocoa Husks by Pressing. Ph.D. Thesis, Universidad Nacional de Colombia, Bogota, Colombia, 2014. [Google Scholar]
- Wartelle, L.H.; Marshall, W.E. Citric Acid Modified Agricultural By-Products as Copper Ion Adsorbents. Adv. Environ. Res. 2000, 4, 1–7. [Google Scholar] [CrossRef]
- USDA National Nutrient Database for Standard Reference, Legacy Release. Available online: https://data.nal.usda.gov/dataset/usda-national-nutrient-database-standard-reference-legacy-release (accessed on 22 February 2023).
Walnut Shells with Small Fractions of Walnut (%) | Walnut Shells without Walnut (%) | |
---|---|---|
Moisture (%) | 6.83 ± 0.02 | 8.41 ± 0.04 |
Analysis on dry basis (d.b.) Proximate analysis | ||
Ash content (wt.%) | 1.2 ± 0.2 | 1.1 ± 0.1 |
Volatile matter (wt.%) | 75.2 | 73.6 |
Fixed carbon by difference (%) | 23.6 | 25.3 |
Elemental analysis (d.b.) | ||
C (%) | 50.3 ± 0.1 | 49.4 ± 0.3 |
H (%) | 5.88 ± 0.12 | 5.48 ± 0.06 |
N (%) | 0.70 ± 0.07 | 0.70 ± 0.10 |
O (%) by difference | 42.1 ± 0.3 | 43.2 ± 0.4 |
Net Calorific Value (d.b.) (MJ/kg) | 17.08 ± 0.05 | 16.85 ± 0.06 |
Net Calorific Value (with moisture) (MJ/kg) | 15.75 ± 0.04 | 15.23 ± 0.05 |
Element | Walnut Shell + Walnut (8%) (% Dry Weight) | Only Walnut Shell (% Dry Weight) |
---|---|---|
Cl | 0.016 | 0.031 |
Mg | 0.024 | 0.027 |
Al | 0.016 | 0.025 |
Si | 0.042 | 0.059 |
P | 0.014 | 0.018 |
S | 0.009 | 0.008 |
K | 0.365 | 0.364 |
Ca | 0.660 | 0.565 |
Fe | 0.013 | nd |
Cu | 0.008 | nd |
Sr | 0.005 | 0.003 |
W | 0.028 | nd |
Na | nd | nd |
nd: non-detected (lower than 0.001%) |
Biomass | Temperature (°C) | Moisture (%) | Density (kg/m3) | Durability (%) |
---|---|---|---|---|
Walnut shells with 8% walnut | 21 | 6.83 | 951 ± 6 | 41.5 ± 1.2 |
Walnut shells with 8% walnut | 42 | 6.83 | 970 ± 6 | 82.8 ± 0.7 |
Walnut shells with 8% walnut | 80 | 6.83 | 989 ± 6 | 90.3 ± 0.4 |
Walnut shells with 8% walnut | 95 | 6.83 | 1010 ± 7 | 94.5 ± 0.6 |
Walnut shells with 8% walnut | 120 | 6.83 | 1023 ± 7 | 95.9 ± 0.3 |
Walnut shells with 8% walnut | 140 | 6.83 | 1042 ± 6 | 96.6 ± 0.4 |
Walnut shells without walnut | 140 | 8.41 | 950 ± 7 | 95.6 ± 0.5 |
Walnut shells with 8% walnut | 140 | 1 | 1056 ± 4 | 99.0 ± 0.1 |
Walnut shells without walnut | 140 | 1 | 963 ± 4 | 98.3 ± 0.4 |
Thermal Decomposition Stage | Tinitial (°C) | Tfinal (°C) | Tmax (°C) | |
---|---|---|---|---|
Walnut shells with 8% of walnuts | Moisture and some light volatile loss | 29.5 | 145.7 | 65.9 |
Hemicellulose | 145.7 | 313.5 | 302.3 | |
Cellulose + lignin | 313.5 | 407.1 | 330.3 | |
Char oxidation | 407.1 | 504.4 | 469.7 | |
Walnut shells without walnuts | Moisture loss | 30.1 | 156.5 | 73.2 |
Hemicellulose | 156.5 | 254.3 | 243.3 | |
Cellulose | 254.3 | 353.9 | 321.3 | |
Lignin | 353.9 | 419.5 | 375.8 | |
Char oxidation | 419.5 | 485.1 | 442.8 |
Walnut Shells [39] | Furniture Wood Waste [18] | |
---|---|---|
Hemicellulose (wt.%) | 13.2 | 18.0 ± 3.6 |
Cellulose (wt.%) | 60.2 | 44.7 ± 2.5 |
Lignin (wt.%) | 18.6 | 33.0 ± 1.1 |
Protein (wt.%) | 1.3 | negligible |
Walnuts [40] | |
---|---|
Total lipid (fat) (wt.%) | 65.2 |
Protein (wt.%) | 15.2 |
Carbohydrate (wt.%) | 13.7 |
Fiber (wt.%) | 6.7 |
Sugars (wt.%) | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Font, R.; Villar, E.; Garrido, M.A.; Moreno, A.I.; Gómez-Rico, M.F.; Ortuño, N. Study of the Briquetting Process of Walnut Shells for Pyrolysis and Combustion. Appl. Sci. 2023, 13, 6285. https://doi.org/10.3390/app13106285
Font R, Villar E, Garrido MA, Moreno AI, Gómez-Rico MF, Ortuño N. Study of the Briquetting Process of Walnut Shells for Pyrolysis and Combustion. Applied Sciences. 2023; 13(10):6285. https://doi.org/10.3390/app13106285
Chicago/Turabian StyleFont, Rafael, Estefanía Villar, María Angeles Garrido, Ana Isabel Moreno, María Francisca Gómez-Rico, and Nuria Ortuño. 2023. "Study of the Briquetting Process of Walnut Shells for Pyrolysis and Combustion" Applied Sciences 13, no. 10: 6285. https://doi.org/10.3390/app13106285
APA StyleFont, R., Villar, E., Garrido, M. A., Moreno, A. I., Gómez-Rico, M. F., & Ortuño, N. (2023). Study of the Briquetting Process of Walnut Shells for Pyrolysis and Combustion. Applied Sciences, 13(10), 6285. https://doi.org/10.3390/app13106285