Amorphous Calcium Magnesium Fluoride Phosphate—Novel Material for Mineralization in Preventive Dentistry
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Particle Synthesis
2.2. Characterization
2.3. In Vitro Mineralization and Dentin Tubule Occlusion
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qin, X.; Zi, H.; Zeng, X. Changes in the global burden of untreated dental caries from 1990 to 2019: A systematic analysis for the Global Burden of Disease study. Heliyon 2022, 8, e10714. [Google Scholar] [CrossRef]
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding dental caries as a non-communicable disease. Brit. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef]
- Tenuta, L.M.A.; Cury, J.A. Fluoride: Its role in dentistry. Braz. Oral Res. 2010, 24, 9–17. [Google Scholar] [CrossRef]
- Cate, J.M.T. Contemporary perspective on the use of fluoride products in caries prevention. Brit. Dent. J. 2013, 214, 161–167. [Google Scholar] [CrossRef]
- Featherstone, J.D.B. Prevention and reversal of dental caries: Role of low level fluoride. Community Dent. Oral 1999, 27, 31–40. [Google Scholar] [CrossRef]
- Pajor, K.; Pajchel, L.; Kolmas, J. Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review. Materials 2019, 12, 2683. [Google Scholar] [CrossRef]
- Neel, E.A.A.; Aljabo, A.; Strange, A.; Ibrahim, S.; Coathup, M.; Young, A.M.; Bozec, L.; Mudera, V. Demineralization–remineralization dynamics in teeth and bone. Int. J. Nanomed. 2016, 11, 4743–4763. [Google Scholar] [CrossRef]
- Philip, N. State of the Art Enamel Remineralization Systems: The Next Frontier in Caries Management. Caries Res. 2019, 53, 284–295. [Google Scholar] [CrossRef]
- Meyer, F.; Amaechi, B.T.; Fabritius, H.-O.; Enax, J. Overview of Calcium Phosphates used in Biomimetic Oral Care. Open. Dent. J. 2018, 12, 406–423. [Google Scholar] [CrossRef]
- Alcântara, P.M.; Barroso, N.F.F.; Botelho, A.M.; Douglas-de-Oliveira, D.W.; Gonçalves, P.F.; Flecha, O.D. Associated factors to cervical dentin hypersensitivity in adults: A transversal study. BMC Oral. Health 2018, 18, 155. [Google Scholar] [CrossRef]
- Davari, A.; Ataei, E.; Assarzadeh, H. Dentin hypersensitivity: Etiology; diagnosis; treatment; a literature review. J. Dent. Shiraz Iran. 2013, 14, 136–145. [Google Scholar]
- Bartold, P. Dentinal hypersensitivity: A review. Aust. Dent. J. 2006, 51, 212–218. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in Oral Care Products—A Review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Li, J.; Xie, X.; Wang, Y.; Yin, W.; Antoun, J.S.; Farella, M.; Mei, L. Long-term remineralizing effect of casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) on early caries lesions in vivo: A systematic review. J. Dent. 2014, 42, 769–777. [Google Scholar] [CrossRef]
- LaTorre, G.; Greenspan, D.C. The role of ionic release from NovaMin (calcium sodium phosphosilicate) in tubule occlusion: An exploratory in vitro study using radio-labeled isotopes. J. Clin. Dent. 2010, 21, 72–76. [Google Scholar]
- Berg, C.; Unosson, E.; Engqvist, H.; Xia, W. Comparative Study of Technologies for Tubule Occlusion and Treatment of Dentin Hypersensitivity. J. Funct. Biomater. 2021, 12, 27. [Google Scholar] [CrossRef]
- Berg, C.; Unosson, E.; Engqvist, H.; Xia, W. Amorphous Calcium Magnesium Phosphate Particles for Treatment of Dentin Hypersensitivity: A Mode of Action Study. Acs Biomater. Sci. Eng. 2020, 6, 3599–3607. [Google Scholar] [CrossRef]
- Berg, C.; Unosson, E.; Riekehr, L.; Xia, W.; Engqvist, H. Electron microscopy evaluation of mineralization on peritubular dentin with amorphous calcium magnesium phosphate microspheres. Ceram. Int. 2020, 46, 19469–19475. [Google Scholar] [CrossRef]
- Posner, A.S.; Betts, F. Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc. Chem. Res. 1975, 8, 273–281. [Google Scholar] [CrossRef]
- Boskey, A.L. Amorphous Calcium Phosphate: The Contention of Bone. J. Dent. Res. 1997, 76, 1433–1436. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Y.; Sun, W.; Zhang, H. Amorphous calcium phosphate and its application in dentistry. Chem. Cent. J. 2011, 5, 40. [Google Scholar] [CrossRef]
- Combes, C.; Rey, C. Amorphous calcium phosphates: Synthesis, properties and uses in biomaterials. Acta Biomater. 2010, 6, 3362–3378. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Grandfield, K.; Schwenke, A.; Engqvist, H. Synthesis and release of trace elements from hollow and porous hydroxyapatite spheres. Nanotechnology 2011, 22, 305610. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Qin, T.; Suska, F.; Engqvist, H. Bioactive Spheres: The Way of Treating Dentin Hypersensitivity. ACS Biomater. Sci. Eng. 2016, 2, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Mellgren, T.; Qin, T.; Öhman-Mägi, C.; Zhang, Y.; Wu, B.; Xia, W.; Engqvist, H. Calcium Phosphate Microspheres as a Delivery Vehicle for Tooth-Bleaching Agents. J. Dent. Res. 2018, 97, 283–288. [Google Scholar] [CrossRef]
- Featherstone, J. Dental caries: A dynamic disease process. Aust. Dent. J. 2008, 53, 286–291. [Google Scholar] [CrossRef]
- Cate, J.M.T.; Featherstone, J.D.B. Mechanistic Aspects of the Interactions between Fluoride and Dental Enamel. Crit. Rev. Oral Biol. Med. 1991, 2, 283–296. [Google Scholar] [CrossRef]
Salt | Conc. (mM) |
---|---|
NaCl | 30 |
KCl | 3 |
CaCl2∙2H2O | 1.5 |
MgCl2∙6H2O | 0.5 |
Na2HPO4∙2H2O | 2.9 |
KH2PO4 | 2.1 |
Sample | O (wt%) | Ca (wt%) | P (wt%) | Mg (wt%) | F (wt%) |
---|---|---|---|---|---|
ACMP | 54.3 ± 0.8 | 23.2 ± 1.0 | 14.6 ± 0.1 | 7.9 ± 1.8 | 0.1 ± 0.1 |
ACMFP-1 | 48.4 ± 2.0 | 25.6 ± 0.6 | 19.0 ± 1.0 | 5.9 ± 0.1 | 1.2 ± 0.2 |
ACMFP-2 | 50.2 ± 1.5 | 23.0 ± 1.5 | 17.9 ± 2.3 | 6.4 ± 0.4 | 2.6 ± 0.3 |
ACMFP-3 | 50.3 ± 3.3 | 24.7 ± 0.8 | 15.5 ± 3.3 | 6.3 ± 0.0 | 3.2 ± 0.7 |
ACMFP-4 | 48.6 ± 1.8 | 25.7 ± 1.5 | 12.8 ± 0.6 | 7.1 ± 0.8 | 5.8 ± 0.2 |
Sample | Ca (wt%) | P (wt%) | Mg (wt%) | F (wt%) | Z-Avg. Particle Size (nm) | BET Surface Area (g/m2) |
---|---|---|---|---|---|---|
ACMFP-2 | 21.5 ± 0.3 | 20.0 ± 0.5 | 6.9 ± 0.1 | 1.51 ± 0.05 | 362 ± 38 | 24.5 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unosson, E.; Feldt, D.; Xia, W.; Engqvist, H. Amorphous Calcium Magnesium Fluoride Phosphate—Novel Material for Mineralization in Preventive Dentistry. Appl. Sci. 2023, 13, 6298. https://doi.org/10.3390/app13106298
Unosson E, Feldt D, Xia W, Engqvist H. Amorphous Calcium Magnesium Fluoride Phosphate—Novel Material for Mineralization in Preventive Dentistry. Applied Sciences. 2023; 13(10):6298. https://doi.org/10.3390/app13106298
Chicago/Turabian StyleUnosson, Erik, Daniel Feldt, Wei Xia, and Håkan Engqvist. 2023. "Amorphous Calcium Magnesium Fluoride Phosphate—Novel Material for Mineralization in Preventive Dentistry" Applied Sciences 13, no. 10: 6298. https://doi.org/10.3390/app13106298
APA StyleUnosson, E., Feldt, D., Xia, W., & Engqvist, H. (2023). Amorphous Calcium Magnesium Fluoride Phosphate—Novel Material for Mineralization in Preventive Dentistry. Applied Sciences, 13(10), 6298. https://doi.org/10.3390/app13106298