Exploring the Antioxidant, Antidiabetic, and Antimicrobial Capacity of Phenolics from Blueberries and Sweet Cherries
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Samples Collection
2.3. Phenolic Compounds Extraction
2.4. Chromatographic Analysis
2.5. Antioxidant Assays
2.6. α-Glucosidase Inhibitory Activity
2.7. Antibacterial Activity—Evaluation of the Minimum Inhibitory Concentration (MIC)
2.8. Statistical Analysis of Results
3. Results
3.1. Chromatographic Analysis
3.2. Antioxidant Assays
3.3. Glucosidase Inhibitory Capacity
3.4. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cosme, F.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Gonçalves, B. Red fruits composition and their health benefits—A review. Foods 2022, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Rodrigues, M.; Flores-Félix, J.D.; Campos, G.; Nunes, A.R.; Ribeiro, A.B.; Silva, L.R.; Alves, G. Sweet cherry phenolics revealed to be promising agents in inhibiting P-glycoprotein activity and increasing cellular viability under oxidative stress conditions: In vitro and in silico study. J. Food Sci. 2021, 87, 450–465. [Google Scholar] [CrossRef] [PubMed]
- Boespflug, E.L.; Eliassen, J.C.; Dudley, J.A.; Shidler, M.D.; Kalt, W.; Summer, S.S.; Stein, A.L.; Stover, A.N.; Krikorian, R. Enhanced neuronal activation with blueberry supplementation in mild cognitive impairment. Nutr. Neurosci. 2018, 21, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Maya-Cano, D.A.; Arango-Varela, S.; Santa-Gonzalez, G.A. Phenolic compounds of blueberries (Vaccinium spp.) as a protective strategy against skin cell damage induced by ROS: A review of antioxidant potential and antiproliferative capacity. Heliyon 2021, 7, e06297. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Rodrigues, M.; Santos, A.O.; Alves, G.; Silva, L.R. Antioxidant Status, Antidiabetic Properties and Effects on Caco-2 Cells of Colored and Non-Colored Enriched Extracts of Sweet Cherry Fruits. Nutrients 2018, 10, 1688. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Flores-Félix, J.D.; Costa, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Hepatoprotective effects of sweet cherry extracts (Cv. saco). Foods 2021, 10, 2623. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Costa, A.R.; Flores-Félix, J.D.; Alves, G.; Silva, L.R. Anti-inflammatory and antiproliferative properties of sweet cherry phenolic-rich extracts. Molecules 2022, 27, 268. [Google Scholar] [CrossRef]
- Al Othaim, A.; Marasini, D.; Carbonero, F. Impact of increasing concentration of tart and sweet cherries juices concentrates on healthy mice gut microbiota. Food Front. 2020, 1, 224–233. [Google Scholar] [CrossRef]
- Seeram, N.P.; Momin, R.A.; Nair, M.G.; Bourquin, L.D. Cyclooxygenase inhibitory and antioxidant cyanidin glycosides in cherries and berries. Phytomedicine 2001, 8, 362–369. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef]
- Boto-Ordóñez, M.; Urpi-Sarda, M.; Queipo-Ortuño, M.I.; Tulipani, S.; Tinahones, F.J.; Andres-Lacueva, C. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: A randomized clinical trial. Food Funct. 2014, 5, 1932–1938. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Kim, H.L.; Kim, S.J.; Park, K.S. Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea. J. Zhejiang Univ. Sci. B 2013, 14, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, E.; Poerner, N.; Rockenbach, I.I.; Gonzaga, L.V.; Mendes, C.R.; Fett, R. Phenolic compounds and antioxidant activity of blueberry cultivars grown in Brazil. Food Sci. Technol. 2011, 31, 911–917. [Google Scholar] [CrossRef]
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Ho, J.H.; Young, J.K.; Hyun, S.Y.; Lee, C.Y. Sweet and sour cherry phenolics and their protective effects on neuronal cells. J. Agric. Food Chem. 2005, 53, 9921–9927. [Google Scholar] [CrossRef] [PubMed]
- Picariello, G.; De Vito, V.; Ferranti, P.; Paolucci, M.; Volpe, M.G. Species- and cultivar-dependent traits of Prunus avium and Prunus cerasus polyphenols. J. Food Compos. Anal. 2016, 45, 50–57. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Campos, G.; Alves, G.; Garcia-Viguera, C.; Moreno, D.A.; Silva, L.R. Physical and phytochemical composition of 23 Portuguese sweet cherries as conditioned by variety (or genotype). Food Chem. 2020, 335, 127637. [Google Scholar] [CrossRef]
- Howard, L.R.; Clark, J.R.; Brownmiller, C. Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season. J. Sci. Food Agric. 2003, 83, 1238–1247. [Google Scholar] [CrossRef]
- Jia, C.; Waterhouse, G.I.N.; Sun-Waterhouse, D.; Sun, Y.G.; Wu, P. Variety–compound–quality relationship of 12 sweet cherry varieties by HPLC-chemometric analysis. Int. J. Food Sci. Technol. 2019, 54, 2897–2914. [Google Scholar] [CrossRef]
- Vilela, A.; Gonçalves, B.; Ribeiro, C.; Fonseca, A.; Correia, S.; Fernandes, H.; Ferreira, S.; Bacelar, E.; Silva, A.P. Study of textural, chemical, color and sensory properties of organic blueberries harvested in two Distinct years: A chemometric approach. J. Texture Stud. 2016, 47, 199–207. [Google Scholar] [CrossRef]
- Budak, N.H. Bioactive components of Prunus avium L. black gold (red cherry) and Prunus avium L. stark gold (white cherry) juices, wines and vinegars. J. Food Sci. Technol. 2017, 54, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.; Areche, C.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanin characterization, total phenolic quantification and antioxidant features of some chilean edible berry extracts. Molecules 2014, 19, 10936–10955. [Google Scholar] [CrossRef] [PubMed]
- Bunea, A.; Ruginǎ, D.O.; Pintea, A.M.; Sconţa, Z.; Bunea, C.I.; Socaciu, C. Comparative polyphenolic content and antioxidant activities of some wild and cultivated blueberries from Romania. Not. Bot. Horti Agrobot. 2011, 39, 70–76. [Google Scholar] [CrossRef]
- Kader, F.; Rovel, B.; Girardin, M.; Metche, M. Fractionation and identification of the phenolic compounds of Highbush blueberries (Vaccinium corymbosum L.). Food Chem. 1996, 55, 35–40. [Google Scholar] [CrossRef]
- Gavrilova, V.; Kajdžanoska, M.; Gjamovski, V.; Stefova, M. Separation, characterization and quantification of phenolic compounds in blueberries and red and black currants by HPLC-DAD-ESI-MSn. J. Agric. Food Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef]
- Nair, A.R.; Mariappan, N.; Stull, A.J.; Francis, J. Blueberry supplementation attenuates oxidative stress within monocytes and modulates immune cell levels in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled trial. Food Funct. 2017, 8, 4118–4128. [Google Scholar] [CrossRef]
- McAnulty, L.S.; Nieman, D.C.; Dumke, C.L.; Shooter, L.A.; Henson, D.A.; Utter, A.C.; Milne, G.; McAnulty, S.R. Effect of blueberry ingestion on natural killer cell counts, oxidative stress, and inflammation prior to and after 2.5 h of running. Appl. Physiol. Nutr. Metab. 2011, 36, 976–984. [Google Scholar] [CrossRef]
- Johnson, S.A.; Feresin, R.G.; Navaei, N.; Figueroa, A.; Elam, M.L.; Akhavan, N.S.; Hooshmand, S.; Pourafshar, S.; Payton, M.E.; Arjmandi, B.H. Effects of daily blueberry consumption on circulating biomarkers of oxidative stress, inflammation, and antioxidant defense in postmenopausal women with pre- and stage 1-hypertension: A randomized controlled trial. Food Funct. 2017, 8, 372–380. [Google Scholar] [CrossRef]
- Ntemiri, A.; Ghosh, T.S.; Gheller, M.E.; Tran, T.T.T.; Blum, J.E.; Pellanda, P.; Vlckova, K.; Neto, M.C.; Howell, A.; Thalacker-Mercer, A.; et al. Whole blueberry and isolated polyphenol-rich fractions modulate specific gut microbes in an in vitro colon model and in a pilot study in human consumers. Nutrients 2020, 12, 2800. [Google Scholar] [CrossRef]
- Krikorian, R.; Skelton, M.R.; Summer, S.S.; Shidler, M.D.; Sullivan, P.G. Blueberry supplementation in midlife for dementia risk reduction. Nutrients 2022, 14, 1619. [Google Scholar] [CrossRef]
- Stull, A.J.; Cash, K.C.; Champagne, C.M.; Gupta, A.K.; Boston, R.; Beyl, R.A.; Johnson, W.D.; Cefalu, W.T. Blueberries improve endothelial function, but not blood pressure, in adults with metabolic syndrome: A randomized, double-blind, placebo-controlled clinical trial. Nutrients 2015, 7, 4107–4123. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mateos, A.; Rendeiro, C.; Bergillos-Meca, T.; Tabatabaee, S.; George, T.W.; Heiss, C.; Spencer, J.P.E. Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: A randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am. J. Clin. Nutr. 2013, 98, 1179–1191. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Phenolic compounds profile and antioxidant properties of six sweet cherry (Prunus avium) cultivars. Food Res. Int. 2017, 97, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Hayaloglu, A.A.; Demir, N. Phenolic compounds, volatiles, and sensory characteristics of twelve sweet cherry (Prunus avium L.) cultivars grown in Turkey. J. Food Sci. 2016, 81, C7–C18. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Bento, C.; Silva, B.M.; Silva, L.R. Sweet cherries from Fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Res. Int. 2017, 95, 91–100. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, D.; Lozano, M.; Fernández-León, M.F.; Bernalte, M.J.; Ayuso, M.C.; Rodríguez, A.B. Sweet cherry phytochemicals: Identification and characterization by HPLC-DAD/ESI-MS in six sweet-cherry cultivars grown in Valle del Jerte (Spain). J. Food Compos. Anal. 2010, 23, 533–539. [Google Scholar] [CrossRef]
- Arbizu, S.; Mertens-talcott, S.U.; Talcott, S.; Noratto, G.D. Dark sweet cherry (Prunus avium) supplementation reduced blood pressure and pro-inflammatory interferon gamma (IFNγ) in obese adults without affecting lipid profile, glucose levels and liver enzymes. Nutrients 2023, 15, 681. [Google Scholar] [CrossRef]
- Kelley, D.S.; Adkins, Y.; Reddy, A.; Woodhouse, L.R.; Mackey, B.E.; Erickson, K.L. Sweet Bing cherries lower circulating concentrations of markers for chronic inflammatory diseases in healthy humans. J. Nutr. 2013, 143, 340–344. [Google Scholar] [CrossRef]
- Garrido, M.; Espino, J.; González-Gómez, D.; Lozano, M.; Cubero, J.; Toribio-Delgado, A.F.; Maynar-Mariño, J.I.; Terrón, M.P.; Muñoz, J.L.; Pariente, J.A.; et al. A nutraceutical product based on Jerte Valley cherries improves sleep and augments the antioxidant status in humans. e-SPEN Eur. e-J. Clin. Nutr. Metab. 2009, 4, 321–323. [Google Scholar] [CrossRef]
- Kent, K.; Charlton, K.; Roodenrys, S.; Batterham, M.; Potter, J.; Traynor, V.; Gilbert, H.; Morgan, O.; Richards, R. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. Eur. J. Nutr. 2017, 56, 333–341. [Google Scholar] [CrossRef]
- Jacob, R.A.; Spinozzi, G.M.; Vicky, A.; Kelley, D.S.; Prior, R.L.; Hess-Pierce, B.; Kader, A.A. Consumption of cherries lowers plasma urate in healthy women. J. Nutr. 2003, 2, 1826–1829. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development; ICAN: Infection Control Africa Network: Cape Town, South Africa, 2017. [Google Scholar]
- Chawla, M.; Verma, J.; Gupta, R.; Das, B. Antibiotic Potentiators Against Multidrug-Resistant Bacteria: Discovery, Development, and Clinical Relevance. Front. Microbiol. 2022, 13, 887251. [Google Scholar] [CrossRef] [PubMed]
- Baysal, G.; Olcay, H.S.; Günneç, Ç. Encapsulation and antibacterial studies of goji berry and garlic extract in the biodegradable chitosan. J. Bioact. Compat. Polym. 2023, 38, 088391152311570. [Google Scholar] [CrossRef]
- Coimbra, A.T.; Luís, Â.F.; Batista, M.T.; Ferreira, S.M.; Duarte, A.P.C. Phytochemical Characterization, Bioactivities Evaluation and Synergistic Effect of Arbutus unedo and Crataegus monogyna Extracts with Amphotericin B. Curr. Microbiol. 2020, 77, 2143–2154. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Meng, L.; Wang, R.; Fan, Y.; Wang, R. Dynamics of anthocyanin profiles of the fruits of four blueberry (Vaccinium sp.) cultivars during different growth stages. Int. J. Food Prop. 2022, 25, 1302–1316. [Google Scholar] [CrossRef]
- Huang, W.Y.; Liu, Y.M.; Wang, J.; Wang, X.N.; Li, C.Y. Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells. Molecules 2014, 19, 12827–12841. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, C.T.; Sciarappa, W.; Wang, C.Y.; Camp, M.J. Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J. Agric. Food Chem. 2008, 56, 5788–5794. [Google Scholar] [CrossRef]
- Liu, J.; Hefni, M.E.; Witthöft, C.M. Characterization of flavonoid compounds in common Swedish berry species. Foods 2020, 9, 358. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Dtsch. Leb. 2007, 103, 369–378. [Google Scholar]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef]
- Di Matteo, A.; Russo, R.; Graziani, G.; Ritieni, A.; Di Vaio, C. Characterization of autochthonous sweet cherry cultivars (Prunus avium L.) of Southern Italy for fruit quality, bioactive compounds and antioxidant activity. J. Sci. Food Agric. 2017, 97, 2782–2794. [Google Scholar] [CrossRef] [PubMed]
- Seymour, E.M.; Singer, A.A.M.; Kirakosyan, A.; Urcuyo-llanes, D.E.; Kaufman, P.B.; Bolling, S.F. Altered hyperlipidemia, hepatic steatosis, and hepatic peroxisome proliferator-activated receptors in rats with intake of tart Cherry. J. Med. Food 2008, 11, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Duymuş, H.G.; Göger, F.; Başer, K.H.C. In vitro antioxidant properties and anthocyanin compositions of elderberry extracts. Food Chem. 2014, 155, 112–119. [Google Scholar] [CrossRef]
- Bento, C.; Gonçalves, A.C.; Silva, B.; Silva, L.R. Assessing the phenolic profile, antioxidant, antidiabetic and protective effects against oxidative damage in human erythrocytes of peaches from Fundão. J. Funct. Foods 2018, 43, 224–233. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Fidrianny, I.; Natalia, S.; Insanu, M. Antioxidant capacities of various fruit extracts from three varieties of tomato and correlation with total phenolic, flavonoid, carotenoid content. Int. J. Pharm. Clin. Res. 2015, 7, 283–289. [Google Scholar]
- Moein, S.; Moein, M.; Farmani, F.; Sabahi, Z. Different methods evaluation of antioxidant properties of Myrtus communis extract and its fractions. Trends Pharm. Sci. 2015, 1, 153–158. [Google Scholar]
- Basu, P.; Maier, C. In vitro antioxidant activities and polyphenol contents of seven commercially available fruits. Pharmacognosy Res. 2016, 8, 258–264. [Google Scholar] [CrossRef]
- Céspedes, C.L.; Valdez-morales, M.; Avila, J.G.; El-hafidi, M.; Alarcón, J. Phytochemical profile and the antioxidant activity of Chilean wild black-berry fruits, Aristotelia chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem. 2010, 119, 886–895. [Google Scholar] [CrossRef]
- Kähkönen, M.P.; Heinonen, M. Antioxidant activity of anthocyanins and their aglycons. J. Agric. Food Chem. 2003, 51, 628–633. [Google Scholar] [CrossRef]
- Cabrita, L.; Fossen, T.; Andersen, M. Analytical, nutritional and clinical methods section colour and stability of the six common anthocyanidin 3-glucosides in aqueous solutions. Food Chem. 2000, 68, 101–107. [Google Scholar] [CrossRef]
- Akita, Y.; Kitamura, S.; Hase, Y.; Narumi, I.; Ishizaka, H.; Kondo, E.; Kameari, N.; Nakayama, M.; Tanikawa, N.; Morita, Y.; et al. Isolation and characterization of the fragrant cyclamen O-methyltransferase involved in flower coloration. Planta 2011, 234, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Galati, G.; Sabzevari, O.; Wilson, J.X.; OBrien, P.J. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 2002, 177, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Graft-Johnson, J.; Nowak, D. Effect of selected plant phenolics on Fe2+-EDTA-H2O2 system mediated deoxyribose oxidation: Molecular structure-derived relationships of anti- and pro-oxidant actions. Molecules 2017, 22, 59. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Moita, E.; Valentão, P.; Fernandes, F.; Monteiro, P.; Andrade, P.B. Effects of colored and noncolored phenolics of Echium plantagineum L. bee pollen in Caco-2 cells under oxidative stress induced by tert-butyl hydroperoxide. J. Agric. Food Chem. 2015, 63, 2083–2091. [Google Scholar] [CrossRef]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef]
- Lapidot, T.; Walker, M.D.; Kanner, J. Antioxidant and prooxidant effects of phenolics on pancreatic β-cells in vitro. J. Agric. Food Chem. 2002, 50, 7220–7225. [Google Scholar] [CrossRef]
- Akkarachiyasit, S.; Yibchok-Anun, S.; Wacharasindhu, S.; Adisakwattana, S. In vitro inhibitory effects of cyandin-3-rutinoside on pancreatic α-amylase and its combined effect with acarbose. Molecules 2011, 16, 2075–2083. [Google Scholar] [CrossRef]
- Heger, V.; Benesova, B.; Viskupicova, J.; Majekova, M.; Zoofishan, Z.; Hunyadi, A.; Horakova, L. Phenolic compounds from Morus nigra regulate viability and apoptosis of pancreatic β-cells possibly via SERCA Activity. ACS Med. Chem. Lett. 2020, 11, 1006–1013. [Google Scholar] [CrossRef]
- Hong, S.H.; Heo, J.I.; Kim, J.H.; Kwon, S.O.; Yeo, K.M.; Bakowska-Barczak, A.M.; Kolodziejczyk, P.; Ryu, O.H.; Choi, M.K.; Kang, Y.H.; et al. Antidiabetic and Beta cell-protection activities of purple corn anthocyanins. Biomol. Ther. 2013, 21, 284–289. [Google Scholar] [CrossRef]
- Stull, A.J.; Cash, K.C.; Johnson, W.D.; Champagne, C.M.; Cefalu, W.T. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women. J. Nutr. 2010, 140, 1764–1768. [Google Scholar] [CrossRef] [PubMed]
- Curtis, P.J.; Berends, L.; van der Velpen, V.; Jennings, A.; Haag, L.; Chandra, P.; Kay, C.D.; Rimm, E.B.; Cassidy, A. Blueberry anthocyanin intake attenuates the postprandial cardiometabolic effect of an energy-dense food challenge: Results from a double blind, randomized controlled trial in metabolic syndrome participants. Clin. Nutr. 2022, 41, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Feng, D.; Planinic, P.; Ebersole, J.L.; Lyons, T.J.; Alexander, J.M. Dietary blueberry and soluble fiber supplementation reduces risk of gestational randomized controlled trial. J. Nutr. 2021, 151, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Jesus, F.; Gonçalves, A.C.; Alves, G.; Silva, L.R. Exploring the phenolic profile, antioxidant, antidiabetic and anti-hemolytic potential of Prunus avium vegetal parts. Food Res. Int. 2019, 116, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Noratto, G.D.; Lage, N.N.; Chew, B.P.; Mertens-Talcott, S.U.; Talcott, S.T.; Pedrosa, M.L. Non-anthocyanin phenolics in cherry (Prunus avium L.) modulate IL-6, liver lipids and expression of PPARδ and LXRs in obese diabetic (db/db) mice. Food Chem. 2018, 266, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Sakulnarmrat, K.; Srzednicki, G.; Konczak, I. Composition and inhibitory activities towards digestive enzymes of polyphenolic-rich fractions of Davidsons plum and quandong. LWT Food Sci. Technol. 2014, 57, 366–375. [Google Scholar] [CrossRef]
- Tadera, K.; Minami, Y.; Takamatsu, K.; Matsuoka, T. Inhibition of a-glucosidase and a-amylase by flavonoids. J. Nutr. Sci. Vitaminol. 2006, 52, 149–153. [Google Scholar] [CrossRef]
- Das, Q.; Islam, M.R.; Marcone, M.F.; Warriner, K.; Diarra, M.S. Potential of berry extracts to control foodborne pathogens. Food Control 2017, 73, 650–662. [Google Scholar] [CrossRef]
- Alibi, S.; Crespo, D.; Navas, J. Plant-derivatives small molecules with antibacterial activity. Antibiotics 2021, 10, 231. [Google Scholar] [CrossRef]
- Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165. [Google Scholar] [CrossRef]
- Nikolić, B.; Vasilijević, B.; Ćirić, A.; Mitić-Ćulafić, D.; Cvetković, S.; Džamić, A.; Knežević-Vukčević, J. Bioactivity of Juniperus communis essential oil and post-distillation waste: Assessment of selective toxicity against food contaminants. Arch. Biol. Sci. 2019, 71, 235–244. [Google Scholar] [CrossRef]
- Najar, B.; Pistelli, L.; Mancini, S.; Fratini, F. Chemical composition and in vitro antibacterial activity of essential oils from different species of Juniperus (section Juniperus). Flavour Fragr. J. 2020, 35, 623–638. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Herranz-López, M.; Micol, V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine 2021, 90, 153626. [Google Scholar] [CrossRef] [PubMed]
- Ben Lagha, A.; Dudonné, S.; Desjardins, Y.; Grenier, D. Wild Blueberry (Vaccinium angustifolium Ait.) Polyphenols Target Fusobacterium nucleatum and the Host Inflammatory Response: Potential Innovative Molecules for Treating Periodontal Diseases. J. Agric. Food Chem. 2015, 63, 6999–7008. [Google Scholar] [CrossRef]
- Shen, X.; Sun, X.; Xie, Q.; Liu, H.; Zhao, Y.; Pan, Y.; Hwang, C.A.; Wu, V.C.H. Antimicrobial effect of blueberry (Vaccinium corymbosum L.) extracts against the growth of Listeria monocytogenes and Salmonella Enteritidis. Food Control 2014, 35, 159–165. [Google Scholar] [CrossRef]
- Sun, X.H.; Hao, L.R.; Xie, Q.C.; Lan, W.Q.; Zhao, Y.; Pan, Y.J.; Wu, V.C. Antimicrobial effects and membrane damage mechanism of blueberry (Vaccinium corymbosum L.) extract against Vibrio parahaemolyticus. Food Control 2020, 111, 107020. [Google Scholar] [CrossRef]
- Bernal-Gallardo, J.O.; Molina-Torres, J.; Angoa-Pérez, M.V.; Cárdenas-Valdovinos, J.G.; García-Ruíz, I.; Ceja-Díaz, J.A.; Mena-Violante, H.G. Phenolic Compound Content and the Antioxidant and Antimicrobial Activity of Wild Blueberries (Vaccinium stenophyllum Steud.) Fruits Extracts during Ripening. Horticulturae 2021, 8, 15. [Google Scholar] [CrossRef]
- Nunes, A.R.; Flores-Félix, J.D.; Gonçalves, A.C.; Falcão, A.; Alves, G.; Silva, L.R. Anti-Inflammatory and Antimicrobial Activities of Portuguese Prunus avium L. (Sweet Cherry) By-Products Extracts. Nutrients 2022, 14, 4576. [Google Scholar] [CrossRef]
- Morris, S.; Cerceo, E. Trends, epidemiology, and management of multi-drug resistant gram-negative bacterial infections in the hospitalized setting. Antibiotics 2020, 9, 196. [Google Scholar] [CrossRef]
Blueberry Fruits | Sweet Cherry Fruits | |||||||
---|---|---|---|---|---|---|---|---|
cv. Legacy | cv. Duke | cv. Sweetheart | cv. Saco [5] | |||||
Anthocyanins | Total extract | Coloured fraction | Total extract | Coloured fraction | Total extract | Coloured fraction | Total extract | Coloured fraction |
Unknown 1 | nd | nd | nd | nd | nd | nd | 2.99 ± 0.24 | nd |
Delphinidin 3-O-galactoside | nq | 3016.39 ± 37.27 | 18,692.91 ± 6.13 | 1662.34 ± 25.72 a | nd | nd | nd | nd |
Peonidin 3-O-rutinoside | nd | nd | nd | nd | nq | nq | nd | nd |
Delphinidin 3-O-arabinoside | 2147.51 ± 7.68 | 949.45 ± 8.50 a | 4444.20 ± 5.51 | 99.56 ± 12.37 a | nd | nd | nd | nd |
Unknown 2 | nd | nd | nd | nd | nd | nd | 341.16 ± 2.82 | nd |
Cyanidin 3-O-rutinoside | nd | nd | nd | nd | nd | nq | 3865.64 ± 2.95 | 15,656.18 ± 25.71 a |
Cyanidin 3-O-galactoside | nq | nq | nq | nq | nd | nd | nd | nd |
Petunidin 3-O-galactoside | 3609.50 ± 63.70 | 3927.97 ± 4.76 a | 19,654.66 ± 240.64 | 1899.83 ± 31.56 a | nd | nd | nd | nd |
Pelargonidin 3-O-rutinoside | nd | nd | nd | nd | nq | nq | 337.464 ± 20.19 [5] | 130.39 ± 1.22 a |
Cyanidin 3-O-arabinoside | nq | 915.07 ± 9.97 | 396.21 ± 23.31 | nq | nd | nd | nd | nd |
Cyanidin 3-O-glucoside | nd | nd | nd | nd | nd | nd | 193.48 ± 0.54 | 3427.93 ± 4.39 a |
Petunidin 3-O-arabinoside | nq | 17,729.35 ± 165.12 | 32,401.38 ± 254.78 | 12,474.90 ± 149.46 a | nd | nd | nd | nd |
Malvidin 3-O-galactoside | nq | 4756.33 ± 55.57 | 19,631.59 ± 48.43 | 3011.97 ± 44.56 a | nd | nd | nd | nd |
Malvidin 3-O-arabinoside | 2249.05 ± 41.03 | 1741.46 ± 17.90 a | 3020.86 ± 22.62 | 1878.27 ± 56.85 a | nd | nd | nd | nd |
Delphinidin 3-O-rutinoside | nd | nd | nd | nd | nq | 22.03 ± 2.46 | nd | nd |
Σ anthocyanins | 8006.05 | 33,036.02 | 98,241.80 | 21,026.88 | nq | 22.03 | 4740.73 | 19,214.50 |
Blueberry Fruits | Sweet Cherry Fruits | |||||||
---|---|---|---|---|---|---|---|---|
cv. Legacy | cv. Duke | cv. Sweetheart | cv. Saco [5] | |||||
Non-coloured phenolics | Total extract | Non-coloured fraction | Total extract | Non-coloured fraction | Total extract | Non-coloured fraction | Total extract | Non-coloured fraction |
Hydroxybenzoic acid derivative 1 | nd | nd | nd | nd | nd | nd | 1337.85 ± 68.16 | 1839.54 ± 5.09 a |
Hydroxycinnamic acid derivative 1 | nd | nd | nd | nd | nd | nd | 494.32 ± 51.66 | 679.69 ± 71.03 |
Hydroxycinnamic acid derivative 2 | nd | nd | nd | nd | nd | nd | 143.45 ± 21.30 | 197.24 ± 29.28 |
3-O-Caffeoylquinic acid | 810.87 ± 3.95 | 1405.08 ± 8.46 a | nq | 184.22 ± 2.92 a | nq | nq | 1482.97 ± 54.15 | 2039.09 ± 74.45 a |
Hydroxybenzoic acid derivative 2 | nd | nd | nd | nd | nd | nd | 25.08 ± 0.92 | 34.48 ± 1.27 |
ρ-Coumaric acid derivative 1 | nd | nd | nd | nd | nd | nd | 50.02 ± 0.55 | 68.78 ± 0.76 |
ρ-Coumaroylquinic acid | nd | nd | nd | nd | nd | nd | nq | nq |
Hydroxycinnamic acid derivative 3 | nd | nd | nd | nd | nd | nd | 372.26 ± 35.99 | 511.86 ± 49.48 |
5-O-Caffeoylquinic acid | 196.29 ± 1.00 | 208.33 ± 3.19 | 183.79 ± 2.42 | 832.08 ± 1.16 a | 6984.19 ± 28.18 | 2974.10 ± 61.48 | 734.38 ± 44.86 | 1009.77 ± 61.68 a |
Hydroxycinnamic acid derivative 4 | nd | nd | nd | nd | nd | nd | 2835.87 ± 143.08 | 3899.33 ± 196.73 a |
Caffeic acid derivative | nq | nq | nd | nd | nd | nd | nd | nd |
Caffeic acid | nd | nd | nd | nd | nd | nd | 1263.49 ± 98.92 | 1737.30 ± 136.01 a |
ρ-Coumaric acid derivative 2 | nd | nd | nd | nd | nd | nd | 528.74 ± 19.83 | 727.02 ± 27.26 |
Hydroxycinnamic acid derivative 5 | nd | nd | nd | nd | nd | nd | 704.96 ± 97.52 | 969.31 ± 134.08 a |
Hydroxycinnamic acid derivative 6 | nd | nd | nd | nd | nd | nd | 196.75 ± 16.19 | 270.53 ± 22.26 |
ρ-Coumaric acid | nd | nd | nd | nd | nd | nd | 21.07 ± 1.64 | 28.96 ± 2.26 |
Hydroxycinnamic acid derivative 7 | nd | nd | nd | nd | nd | nd | 666.97 ± 67.02 | 917.089 ± 92.15 a |
Hydroxycinnamic acid derivative 8 | nd | nd | nd | nd | nd | nd | 175.97 ± 16.59 | 241.95 ± 22.80 |
Quercetin 3-O-glucoside | nd | nd | nd | nd | nd | nd | nq | nq |
Myricetin 3-O-glucoside | nd | nd | nd | nd | nd | nd | nd | nd |
Kaempferol 3-O-rutinoside | nd | nd | nd | nd | nd | nd | nq | nq |
Quercetin aglycone | 6962.43 ± 49.94 | 7478.30 ± 37.44 a | 7521.47 ± 12.80 | nq | nd | nd | 35.58 ± 3.73 | 48.93 ± 5.13 |
Σ non-coloured phenolics | 7969.59 | 9091.72 | 7705.47 | 1016.29 | 6984.19 | 2974.10 | 11,069.73 | 15,220.88 |
Blueberry Fruits | Sweet Cherry Fruits | Control | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cv. Legacy | cv. Duke | cv. Sweetheart | cv. Saco | ||||||||||
Biological potential | Total extract | Coloured fraction | Non-coloured fraction | Total extract | Coloured fraction | Non-coloured fraction | Total extract | Coloured fraction | Non-coloured fraction | Total extract | Coloured fraction | Non-coloured fraction | |
Antioxidant assays | |||||||||||||
FRAP | 87.47 ± 1.46 | 40.60 ± 1.37 | 137.59 ± 1.03 | 18.18 ± 0.38 | 66.65 ± 0.74 | 111.14 ± 1.71 | 145.65 ± 1.37 | 62.53 ± 0.74 | 322.64 ± 1.86 | 27.22 ± 0.23 [2] | 9.43 ± 0.43 [2] | 50.09 ± 0.77 [2] | 6.36 ± 0.35 (acid ascorbic control) |
DPPH● | 144.68 ± 1.04 | 44.32 ± 0.75 | 86.03 ± 1.53 | 208.06 ± 2.70 | 30.87 ± 0.67 | 49.11 ± 0.68 | 397.84 ± 2.74 | 84.15 ± 1.46 | 225.36 ± 1.04 | 21.88 ± 0.32 [5] | 31.39 ± 0.60 [5] | 210.86 ± 0.86 [5] | 7.18 ± 0.28 (acid ascorbic control) |
●NO | 50.34 ± 1.12 | 39.44 ± 0.45 | 63.91 ± 1.39 | 69.53 ± 1.55 | 19.92 ± 0.54 | 115.11 ± 1.80 | 358.64 ± 2.40 | 170.74 ± 2.02 | 167.96 ± 0.92 | 33.72 ± 0.89 [5] | 47.44 ± 0.67 [5] | 167.96 ± 0.92 [5] | 279.03 ± 1.71 (acid ascorbic control) |
O2●− | 1.13 ± 0.21 (IC25) | 0.69 ± 0.16 (IC25) | 1.42 ± 0.18 (IC25) | 1.02 ± 10.33 (IC25) | 0.74 ± 3.15 (IC25) | 1.14 ± 15.46 (IC25) | 39.07 ± 0.77 (IC25) | 3.06 ± 0.34 (IC25) | 3.11 ± 0.39 (IC25) | 41.68 ± 0.72 [5] | 16.58 ± 0.27 (IC25) [5] | 69.40 ± 1.22 [5] | 39.69 ± 0.66 8.43 ± 0.38 (IC25) (acid ascorbic control) |
α-Glucosidase inhibitory assay | |||||||||||||
α-Glucosidase | 65.96 ± 5.07 | 267.64 ± 4.04 | 180.36 ± 2.13 | 83.88 ± 1.45 | 298.79 ± 2.01 | 78.05 ± 1.23 | 449.16 ± 2.49 | 2349.78 ± 4.18 | 1325.90 ± 4.69 | 53.15 ± 1.32 [5] | 142.02 ± 1.17 [5] | 456.19 ± 3.74 (IC25) [5] | 287.51 ± 4.32 (acarbose control) |
Blueberry Extracts | Sweet Cherry Extracts | Control | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cv. Legacy | cv. Duke | cv. Sweetheart | cv. Saco | ||||||||||
Non-Coloured Fraction | Coloured Fraction | Total Extract | Non-Coloured Fraction | Coloured Fraction | Total Extract | Non-Coloured Extract | Coloured Extract | Total Extract | Non-Coloured Extract | Coloured Extract | Total Extract | Gentamycin | |
Gram-positive | |||||||||||||
E. faecalis ATCC 29212 | 2 | 1 | 1 | 2 | 0.5 | 0.5 | nd | nd | nd | nd | nd | nd | 0.016 |
B. cereus ATCC 11778 | >4 | 4 | 4 | 4 | 4 | 4 | >2 | >2 | >2 | >2 | >2 | >2 | 0.00003 |
L. monocytogenes LMG 16779 | 0.5 | 0.25 | 0.5 | 1 | 0.12 | 2 | nd | nd | nd | nd | nd | nd | 0.016 |
S. aureus ATCC 25923 | 1 | 0.25 | 1 | 1 | 0.12 | 2 | >2 | 1 | >2 | >2 | 2 | >2 | 0.00003 |
Gram-negative | |||||||||||||
Salmonella enterica subsp. enterica ATCC 13311 serovar Typhimurium | 2 | 2 | 1 | 2 | 2 | 0.5 | >2 | >2 | >2 | >2 | >2 | >2 | 0.00006 |
K. pneumoniae ATCC 13883 | 0.12 | 0.5 | 1 | 0.5 | 0.25 | 1 | >2 | >2 | >2 | >2 | >2 | >2 | 0.016 |
P. mirabilis CECT 17 | 2 | 2 | 2 | 2 | 2 | 2 | >2 | >2 | >2 | >2 | >2 | >2 | 0.00013 |
S. marcescens CECT 159 | >4 | 2 | 2 | 4 | 2 | 4 | >2 | >2 | >2 | >2 | >2 | >2 | 0.00025 |
A. baumannii LMG 1025 | 1 | 0.5 | 0.5 | 1 | 0.25 | 1 | >2 | >2 | >2 | >2 | >2 | >2 | 0.00006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, A.C.; Nunes, A.R.; Meirinho, S.; Ayuso-Calles, M.; Roca-Couso, R.; Rivas, R.; Falcão, A.; Alves, G.; Silva, L.R.; Flores-Félix, J.D. Exploring the Antioxidant, Antidiabetic, and Antimicrobial Capacity of Phenolics from Blueberries and Sweet Cherries. Appl. Sci. 2023, 13, 6348. https://doi.org/10.3390/app13106348
Gonçalves AC, Nunes AR, Meirinho S, Ayuso-Calles M, Roca-Couso R, Rivas R, Falcão A, Alves G, Silva LR, Flores-Félix JD. Exploring the Antioxidant, Antidiabetic, and Antimicrobial Capacity of Phenolics from Blueberries and Sweet Cherries. Applied Sciences. 2023; 13(10):6348. https://doi.org/10.3390/app13106348
Chicago/Turabian StyleGonçalves, Ana C., Ana R. Nunes, Sara Meirinho, Miguel Ayuso-Calles, Rocío Roca-Couso, Raúl Rivas, Amílcar Falcão, Gilberto Alves, Luís R. Silva, and José David Flores-Félix. 2023. "Exploring the Antioxidant, Antidiabetic, and Antimicrobial Capacity of Phenolics from Blueberries and Sweet Cherries" Applied Sciences 13, no. 10: 6348. https://doi.org/10.3390/app13106348
APA StyleGonçalves, A. C., Nunes, A. R., Meirinho, S., Ayuso-Calles, M., Roca-Couso, R., Rivas, R., Falcão, A., Alves, G., Silva, L. R., & Flores-Félix, J. D. (2023). Exploring the Antioxidant, Antidiabetic, and Antimicrobial Capacity of Phenolics from Blueberries and Sweet Cherries. Applied Sciences, 13(10), 6348. https://doi.org/10.3390/app13106348