Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy
Abstract
:1. Introduction
- Types of ASNs: This research unearthed the different types of social networks within the agricultural value chain, as well as the role of social networks in facilitating information sharing and knowledge transfer.
- Agricultural value chain digitalization: This research established the potential of ASNs in the digitalization of the agricultural value chains to enhance the efficacy of the different stakeholders involved in the digital ecosystem.
- AVC digitalization conceptual framework: This research developed a digitalization conceptual framework for the AVC digital economy ecosystem while utilizing the stakeholders’ social networks’ practices model.
- A transdisciplinary approach to AVC digitalization: This research suggested a transdisciplinary approach to the digitalization of the AVC based on multistakeholder engagements in solving social and economic challenges.
2. Literature Review
2.1. Agricultural Social Networks
2.2. Agricultural Value Chain Sustainability Challenges and Mitigation Strategies
2.3. Digital Technologies and Agricultural Value Chains in the Context of Society 5.0 Sustainability
2.4. Adoption of Information Communication Technologies in Agricultural Processes
3. Materials and Methods
3.1. Automated Content Analysis in Identifying Agriculture Social Network Themes and Concepts
3.2. Case Study Data Analysis
3.3. Data Analysis Results
3.3.1. Results Based on Automated Content Analysis
3.3.2. Models in Agricultural Social Networks
3.3.3. Case Study Data Results
4. Digitalization of the Agricultural Value Chain in Enabling a Resilient and Inclusive Digital Economy
4.1. Systems Integration in Enabling Smart Farming and Efficient Decision-Making
4.2. Blockchain for Enforcing Traceability in Supply Chain Management
4.3. Edge and Cloud Computing for Enabling Big Data and Governance
4.4. Internet of Things in Facilitating Digital Financial Inclusion
4.5. Ubiquitous Connectivity for ASNs and Digital Markets
4.6. Interoperability and Scalability of Digital Systems
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kong, X.; Shi, Y.; Yu, S.; Liu, J.; Xia, F. Academic social networks: Modeling, analysis, mining and applications. J. Netw. Comput. Appl. 2019, 132, 86–103. [Google Scholar] [CrossRef]
- Pérez-Escoda, A.; Jiménez-Narros, C.; Perlado-Lamo-De-Espinosa, M.; Pedrero-Esteban, L.M. Social Networks’ Engagement During the COVID-19 Pandemic in Spain: Health Media vs. Healthcare Professionals. Int. J. Environ. Res. Public Health 2020, 17, 5261. [Google Scholar] [CrossRef] [PubMed]
- Sobaih, A.E.E.; Hasanein, A.; Elshaer, I.A. Higher Education in and after COVID-19: The Impact of Using Social Network Applications for E-Learning on Students’ Academic Performance. Sustainability 2022, 14, 5195. [Google Scholar] [CrossRef]
- Alvi, M.; Barooah, P.; Gupta, S.; Saini, S. Women’s access to agriculture extension amidst COVID-19: Insights from Gujarat, India and Dang, Nepal. Agric. Syst. 2021, 188, 103035. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Sonka, S. Big Data: Fueling the Next Evolution of Agricultural Innovation. J. Innov. Manag. 2016, 4, 114–136. [Google Scholar] [CrossRef]
- Coble, K.H.; Mishra, A.K.; Ferrell, S.; Griffin, T. Big Data in Agriculture: A Challenge for the Future. Appl. Econ. Perspect. Policy 2018, 40, 79–96. [Google Scholar] [CrossRef]
- Kaur, H. Modelling internet of things driven sustainable food security system. Benchmarking Int. J. 2021, 28, 1740–1760. [Google Scholar] [CrossRef]
- Woodard, J. Big data and Ag-Analytics: An open source, open data platform for agricultural & environmental finance, insurance, and risk. Agric. Financ. Rev. 2016, 76, 15–26. [Google Scholar]
- Madumidha, S.; Ranjani, P.S.; Varsinee, S.S.; Sundari, P. Transparency and Traceability: In Food Supply Chain System using Blockchain Technology with Internet of Things. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli, India, 23–25 April 2019. [Google Scholar] [CrossRef]
- Misra, N.N.; Dixit, Y.; Al-Mallahi, A.; Bhullar, M.S.; Upadhyay, R.; Martynenko, A. IoT, Big Data, and Artificial Intelligence in Agriculture and Food Industry. IEEE Internet Things J. 2020, 9, 6305–6324. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling Precision Agriculture Through Embedded Sensing with Artificial Intelligence. IEEE Trans. Instrum. Meas. 2019, 69, 4103–4113. [Google Scholar] [CrossRef]
- Huang, Y.B.; Chen, Z.-X.; Yu, T.; Huang, X.-Z.; Gu, X.-F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Amiri-Zarandi, M.; Fard, M.H.; Yousefinaghani, S.; Kaviani, M.; Dara, R. A Platform Approach to Smart Farm Information Processing. Agriculture 2022, 12, 838. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Friha, O.; Ferrag, M.A.; Shu, L.; Maglaras, L.; Wang, X. Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA J. Autom. Sin. 2021, 8, 718–752. [Google Scholar] [CrossRef]
- Prayitno, G.; Hayat, A.; Efendi, A.; Tarno, H.; Fikriyah; Fauziah, S.H. Structural Model of Social Capital and Quality of Life of Farmers in Supporting Sustainable Agriculture (Evidence: Sedayulawas Village, Lamongan Regency-Indonesia). Sustainability 2022, 14, 12487. [Google Scholar] [CrossRef]
- Jiang, H.; Murmann, J.P. The rise of China’s digital economy: An overview. Manag. Organ. Rev. 2022, 18, 790–802. [Google Scholar] [CrossRef]
- Williams, L.D. Concepts of Digital Economy and Industry 4.0 in Intelligent and information systems. Int. J. Intell. Netw. 2021, 2, 122–129. [Google Scholar] [CrossRef]
- Satalkina, L.; Zenk, L.; Steiner, G. Transdisciplinary multistage system modeling: Migrant entrepreneurship in the digital economy. Kybernetes 2022, 51, 219–240. [Google Scholar] [CrossRef]
- Hajro, A.; Žilinskaitė, M.; Gibson, C.; Baldassari, P.; Mayrhofer, W.; Brewster, C.; Brannen, M.Y. Movement of People across Borders: Transdisciplinary Research to Meet the Challenges in Migration, Business, and Society. Acad. Manag. Discov. 2022. [Google Scholar] [CrossRef]
- Qin, T.; Wang, L.; Zhou, Y.; Guo, L.; Jiang, G.; Zhang, L. Digital Technology-and-Services-Driven Sustainable Transformation of Agriculture: Cases of China and the EU. Agriculture 2022, 12, 297. [Google Scholar] [CrossRef]
- Nemchenko, A.V.; Dugina, T.A.; Shaldokhina, S.Y.; Likholetov, E.A.; Likholetov, A.A. The Digital Transformation as a Response to Modern Challenges and Threats to the Development of Agriculture. In Smart Innovation in Agriculture; Springer: Singapore, 2022; pp. 37–45. [Google Scholar]
- Lachaud, M.A.; Bravo-Ureta, B.E.; Ludena, C.E. Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC). Agric. Econ. 2022, 53, 321–332. [Google Scholar] [CrossRef]
- Garske, B.; Bau, A.; Ekardt, F. Digitalization and AI in European agriculture: A strategy for achieving climate and biodiversity targets? Sustainability 2021, 13, 4652. [Google Scholar] [CrossRef]
- Soto-Acosta, P. COVID-19 Pandemic: Shifting Digital Transformation to a High-Speed Gear. Inf. Syst. Manag. 2020, 37, 260–266. [Google Scholar] [CrossRef]
- Rolandi, S.; Brunori, G.; Bacco, M.; Scotti, I. The Digitalization of Agriculture and Rural Areas: Towards a Taxonomy of the Impacts. Sustainability 2021, 13, 5172. [Google Scholar] [CrossRef]
- Ciruela-Lorenzo, A.M.; Del-Aguila-Obra, A.R.; Padilla-Meléndez, A.; Plaza-Angulo, J.J. Digitalization of Agri-Cooperatives in the Smart Agriculture Context. Proposal of a Digital Diagnosis Tool. Sustainability 2020, 12, 1325. [Google Scholar] [CrossRef]
- Tombe, R. Computer Vision for Smart Farming and Sustainable Agriculture. In Proceedings of the 2020 IST-Africa Conference (IST-Africa), IEEE, Kampala, Uganda, 18–22 May 2020. [Google Scholar]
- Kittipanya-Ngam, P.; Tan, K.H. A framework for food supply chain digitalization: Lessons from Thailand. Prod. Plan. Control 2020, 31, 158–172. [Google Scholar] [CrossRef]
- Maleksaeidi, H.; Karami, E. Social-Ecological Resilience and Sustainable Agriculture Under Water Scarcity. Agroecol. Sustain. Food Syst. 2013, 37, 262–290. [Google Scholar] [CrossRef]
- Vroegindewey, R.; Hodbod, J. Resilience of Agricultural Value Chains in Developing Country Contexts: A Framework and Assessment Approach. Sustainability 2018, 10, 916. [Google Scholar] [CrossRef]
- Abid, M.; Ngaruiya, G.; Scheffran, J.; Zulfiqar, F. The Role of Social Networks in Agricultural Adaptation to Climate Change: Implications for Sustainable Agriculture in Pakistan. Climate 2017, 5, 85. [Google Scholar] [CrossRef]
- Albizua, A.; Bennett, E.; Pascual, U.; Larocque, G. The role of the social network structure on the spread of intensive agriculture: An example from Navarre, Spain. Reg. Environ. Chang. 2020, 20, 1–16. [Google Scholar] [CrossRef]
- Levy, M.A.; Lubell, M.N. Innovation, cooperation, and the structure of three regional sustainable agriculture networks in California. Reg. Environ. Chang. 2018, 18, 1235–1246. [Google Scholar] [CrossRef]
- Albizua, A.; Bennett, E.M.; Larocque, G.; Krause, R.W.; Pascual, U. Social networks influence farming practices and agrarian sustainability. PLoS ONE 2021, 16, e0244619. [Google Scholar] [CrossRef]
- Pratiwi, A.; Suzuki, A. Effects of farmers’ social networks on knowledge acquisition: Lessons from agricultural training in rural Indonesia. J. Econ. Struct. 2017, 6, 1–23. [Google Scholar] [CrossRef]
- Hermans, F.; Sartas, M.; van Schagen, B.; van Asten, P.; Schut, M. Social network analysis of multi-stakeholder platforms in agricultural research for development: Opportunities and constraints for innovation and scaling. PLoS ONE 2017, 12, e0169634. [Google Scholar] [CrossRef]
- Krishnan, R.; Yen, P.; Agarwal, R.; Arshinder, K.; Bajada, C. Collaborative innovation and sustainability in the food supply chain- evidence from farmer producer organisations. Resour. Conserv. Recycl. 2021, 168, 105253. [Google Scholar] [CrossRef]
- Abdul-Rahaman, A.; Abdulai, A. Social networks, rice value chain participation and market performance of smallholder farmers in Ghana. Afr. Dev. Rev. 2020, 32, 216–227. [Google Scholar] [CrossRef]
- Kauffmann, E.; Peral, J.; Gil, D.; Ferrández, A.; Sellers, R.; Mora, H. A framework for big data analytics in commercial social networks: A case study on sentiment analysis and fake review detection for marketing decision-making. Ind. Mark. Manag. 2019, 90, 523–537. [Google Scholar] [CrossRef]
- Norton, G.W.; Alwang, J. Changes in Agricultural Extension and Implications for Farmer Adoption of New Practices. Appl. Econ. Perspect. Policy 2020, 42, 8–20. [Google Scholar] [CrossRef]
- Fabregas, R.; Kremer, M.; Schilbach, F. Realizing the potential of digital development: The case of agricultural advice. Science 2019, 366, eaay3038. [Google Scholar] [CrossRef] [PubMed]
- Soares, N.D.; Braga, R.; David, J.M.N.; Siqueira, K.B.; Stroele, V. Data Analysis in Social Networks for Agribusiness: A Systematic Review. IEEE Access 2023, 11, 8422–8432. [Google Scholar] [CrossRef]
- Tang, C.S. Innovative technology and operations for alleviating poverty through women’s economic empowerment. Prod. Oper. Manag. 2022, 31, 32–45. [Google Scholar] [CrossRef]
- Kumari, S.; Venkatesh, V.; Deakins, E.; Mani, V.; Kamble, S. Agriculture value chain sustainability during COVID-19: An emerging economy perspective. Int. J. Logist. Manag. 2023, 34, 280–303. [Google Scholar] [CrossRef]
- El Bilali, H.; Allahyari, M.S. Transition towards sustainability in agriculture and food systems: Role of information and communication technologies. Inf. Process. Agric. 2018, 5, 456–464. [Google Scholar] [CrossRef]
- Deepa, S.; Dixit, M.A.; Jamshed, M.A.; Syed, H.; Balamuralitharan, S. Iot Application in Agriculture for Smart Farming. Math. Stat. Eng. Appl. 2022, 71, 855–864. [Google Scholar]
- Fukuyama, M. Society 5.0: Aiming for a new human-centered society. Jpn. Spotlight 2018, 27, 47–50. [Google Scholar]
- Yıkılmaz, İ. New era: The transformation from the information society to super smart society (society 5.0). In Data, Information and Knowledge Management; Mert, G., Şen, E., Yılmaz, O., Eds.; NOBEL BİLİMSEL ESERLER: Ankara, Turkey, 2020; pp. 85–112. [Google Scholar]
- Agusdinata, D.B. The role of universities in SDGs solution co-creation and implementation: A human-centered design and shared-action learning process. Sustain. Sci. 2022, 17, 1589–1604. [Google Scholar] [CrossRef]
- Moore, H.L.; Woodcraft, S. Understanding Prosperity in East London: Local Meanings and “Sticky” Measures of the Good Life. City Soc. 2019, 31, 275–298. [Google Scholar] [CrossRef]
- Mamai, O.V.; Mamai, I.N.; Kitaeva, M.V. Digitization of the Agricultural Sector of Economy as an Element of Innovative Development in Russia; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Kusakina, O.; Dovgotko, N. The Role of Digital Technology in the Formation of Agri-Food Clusters; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Aboah, J.; Wilson, M.M.; Rich, K.M.; Lyne, M.C. Operationalising resilience in tropical agricultural value chains. Supply Chain Manag. Int. J. 2019, 24, 271–300. [Google Scholar] [CrossRef]
- Hrustek, L. Sustainability Driven by Agriculture through Digital Transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Rojas, C.N.; Peñafiel, G.A.A.; Buitrago, D.F.L.; Romero, C.A.T. Society 5.0: A Japanese Concept for a Superintelligent Society. Sustainability 2021, 13, 6567. [Google Scholar] [CrossRef]
- Zhong, Y.-P.; Tang, L.-R.; Li, Y. Role of Digital Empowerment in Developing Farmers’ Green Production by Agro-Tourism Integration in Xichong, Sichuan. Agriculture 2022, 12, 1761. [Google Scholar] [CrossRef]
- Deguchi, A.; Hirai, A.C.; Matsuoka, H.; Nakano, T.; Oshima, K.; Tai, M.; Tani, S. What Is Society 5.0? In Society 5.0: A People-Centric Super-Smart Society; Springer: Singapore, 2020; pp. 1–23. [Google Scholar]
- Mavrodieva, A.V.; Shaw, R. Disaster and Climate Change Issues in Japan’s Society 5.0—A Discussion. Sustainability 2020, 12, 1893. [Google Scholar] [CrossRef]
- Iaksch, J.; Fernandes, E.; Borsato, M. Digitalization and Big data in smart farming—A review. J. Manag. Anal. 2021, 8, 333–349. [Google Scholar] [CrossRef]
- Raheem, D.; Shishaev, M.; Dikovitsky, V. Food System Digitalization as a Means to Promote Food and Nutrition Security in the Barents Region. Agriculture 2019, 9, 168. [Google Scholar] [CrossRef]
- Yadav, S.; Luthra, S.; Garg, D. Internet of Things (IoT) Based Coordination System in Agri-Food Supply Chain: Development of an Efficient Framework Using DEMATEL-ISM. Oper. Manag. Res. 2020, 15, 1–27. [Google Scholar] [CrossRef]
- Rejeb, A.; Simske, S.; Rejeb, K.; Treiblmaier, H.; Zailani, S. Internet of Things research in supply chain management and logistics: A bibliometric analysis. Internet Things 2020, 12, 100318. [Google Scholar] [CrossRef]
- Ben-Daya, M.; Hassini, E.; Bahroun, Z.; Banimfreg, B.H. The role of internet of things in food supply chain quality management: A review. Qual. Manag. J. 2020, 28, 17–40. [Google Scholar] [CrossRef]
- Iftekhar, A.; Cui, X.; Hassan, M.; Afzal, W. Application of Blockchain and Internet of Things to Ensure Tamper-Proof Data Availability for Food Safety. J. Food Qual. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Sarker, M.N.I.; Wu, M.; Chanthamith, B.; Yusufzada, S.; Li, D.; Zhang, J. Big Data Driven Smart Agriculture: Pathway for Sustainable Development. In Proceedings of the 2019 2nd International Conference on Artificial Intelligence and Big Data (ICAIBD), IEEE, Chengdu, China, 25–28 May 2019. [Google Scholar]
- Tantalaki, N.; Souravlas, S.; Roumeliotis, M. Data-Driven Decision Making in Precision Agriculture: The Rise of Big Data in Agricultural Systems. J. Agric. Food Inf. 2019, 20, 344–380. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; La Rocca, G.; De Rosa, M. Key questions on the use of big data in farming: An activity theory approach. NJAS Wagening. J. Life Sci. 2019, 90, 100297. [Google Scholar] [CrossRef]
- de Oliveira, M.E.; Corrêa, C.G. Virtual Reality and Augmented Reality Applications in Agriculture: A Literature Review. In Proceedings of the 2020 22nd Symposium on Virtual and Augmented Reality (SVR), IEEE, Porto de Galinhas, Brazil, 7–10 November 2020. [Google Scholar]
- Hurst, W.; Mendoza, F.R.; Tekinerdogan, B. Augmented Reality in Precision Farming: Concepts and Applications. Smart Cities 2021, 4, 1454–1468. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Benos, L.; Tagarakis, A.C.; Dolias, G.; Berruto, R.; Kateris, D.; Bochtis, D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors 2021, 21, 3758. [Google Scholar] [CrossRef] [PubMed]
- Cao, K.; Liu, Y.; Meng, G.; Sun, Q. An Overview on Edge Computing Research. IEEE Access 2020, 8, 85714–85728. [Google Scholar] [CrossRef]
- Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646. [Google Scholar] [CrossRef]
- O’Grady, M.J.; Langton, D.; O’Hare, G.M.P. Edge computing: A tractable model for smart agriculture? Artif. Intell. Agric. 2019, 3, 42–51. [Google Scholar]
- Hori, M.; Kawashima, E.; Yamazaki, T. Application of cloud computing to agriculture and prospects in other fields. Fujitsu Sci. Tech. J. 2010, 46, 446–454. [Google Scholar]
- Ballantyne, P.; Maru, A.; Porcari, E.M. Information and Communication Technologies-Opportunities to Mobilize Agricultural Science for Development. Crop. Sci. 2010, 50, S-63. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research: Design and Methods; Sage: Thousand Oaks, CA, USA, 2009; Volume 5. [Google Scholar]
- Rouhani, B.D.; Mahrin, M.N.; Nikpay, F.; Ahmad, R.B.; Nikfard, P. A systematic literature review on Enterprise Architecture Implementation Methodologies. Inf. Softw. Technol. 2015, 62, 1–20. [Google Scholar] [CrossRef]
- Mugwika, P.K. Assessment of the Impacts of Climate Change and Variability on Food Security in Kenya: A Case Study of Kisii County; University of Nairobi: Nairobi, Kenya, 2019. [Google Scholar]
- Kiconco, S.; Stevens, J.B.; Akankwasa, K.; Kubiriba, J. Agricultural information exchange and service delivery within social networks: Evidence from Uganda’s banana value chain actors. J. Agric. Educ. Ext. 2022, 1–20. [Google Scholar] [CrossRef]
- Templier, M.; Paré, G. A Framework for Guiding and Evaluating Literature Reviews. Commun. Assoc. Inf. Syst. 2015, 37, 6. [Google Scholar] [CrossRef]
- Krippendorff, K. Content Analysis: An Introductino to Its Methodology, 4th ed.; SAGE Publications: Los Angeles, CA, USA, 2018. [Google Scholar]
- Bengtsson, M. How to plan and perform a qualitative study using content analysis. Nurs. Open 2016, 2, 8–14. [Google Scholar] [CrossRef]
- Halmi, A. The qualitative approach to social work: An epistemological basis. Int. Soc. Work. 1996, 39, 363–375. [Google Scholar] [CrossRef]
- Kuckartz, U. Qualitative Text Analysis: A Guide to Methods Practice and Using Software; Sage Publications: London, UK, 2014. [Google Scholar]
- Biroscak, B.J.; Scott, J.E.; Lindenberger, J.H.; Bryant, C.A. Leximancer software as a research tool for social marketers: Application to a content analysis. Soc. Mark. Q. 2017, 23, 223–231. [Google Scholar] [CrossRef]
- Kuckartz, U. Qualitative Text Analysis: A Systematic Approach. In Compendium for Early Career Researchers in Mathematics Education; Springer Nature: Berlin/Heidelberg, Germany, 2019; pp. 181–197. [Google Scholar]
- Wang, W.; Barnaghi, P.M.; Bargiela, A. Probabilistic Topic Models for Learning Terminological Ontologies. IEEE Trans. Knowl. Data Eng. 2009, 22, 1028–1040. [Google Scholar] [CrossRef]
- Smuts, H.; Van der Merwe, A. Knowledge Management in Society 5.0: A Sustainability Perspective. Sustainability 2022, 14, 6878. [Google Scholar] [CrossRef]
- Smith, A.E.; Humphreys, M.S. Evaluation of unsupervised semantic mapping of natural language with Leximancer concept mapping. Behav. Res. Methods 2006, 38, 262–279. [Google Scholar] [CrossRef]
- Nunez-Mir, G.C.; Iannone, B.V.; Pijanowski, B.C.; Kong, N.; Fei, S. Automated content analysis: Addressing the big literature challenge in ecology and evolution. Methods Ecol. Evol. 2016, 7, 1262–1272. [Google Scholar] [CrossRef]
- Guetterman, T.C.; Chang, T.; DeJonckheere, M.; Basu, T.; Scruggs, E.; Vydiswaran, V.V. Augmenting Qualitative Text Analysis with Natural Language Processing: Methodological Study. J. Med. Internet. Res. 2018, 20, e231. [Google Scholar] [CrossRef]
- Stewart, B.M.; Zhukov, Y.M. Use of force and civil–military relations in Russia: An automated content analysis. Small Wars Insur. 2009, 20, 319–343. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Bach, M.P.; Thorpe, O.; Šprajc, P. The interaction between internet, sustainable development, and emergence of society 5.0. Data 2020, 5, 80. [Google Scholar] [CrossRef]
- Watson, M.; Smith, A.; Watter, S. Leximancer Concept Mapping of Patient Case Studies. In Proceedings of the Knowledge-Based Intelligent Information and Engineering Systems, 9th International Conference, KES 2005, Melbourne, Australia, 14–16 September 2005; pp. 1232–1238. [Google Scholar] [CrossRef]
- Kim, D.; Kim, S. Sustainable Supply Chain Based on News Articles and Sustainability Reports: Text Mining with Leximancer and DICTION. Sustainability 2017, 9, 1008. [Google Scholar] [CrossRef]
- Harding, J. Qualitative Data Analysis: From Start to Finish; Sage: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Thomas, D.R. A general inductive approach for analyzing qualitative evaluation data. Am. J. Eval. 2006, 27, 237–246. [Google Scholar] [CrossRef]
- Koromila, I.; Aneziris, O.; Nivolianitou, Z.; Deligianni, A.; Bellos, E. Stakeholder analysis for safe LNG handling at ports. Saf. Sci. 2022, 146, 105565. [Google Scholar] [CrossRef]
- Ahmad, M.; Majeed, A.; Khan, M.A.; Sohaib, M.; Shehzad, K. Digital financial inclusion and economic growth: Provincial data analysis of China. China Econ. J. 2021, 14, 291–310. [Google Scholar] [CrossRef]
Social Networks Applications | Examples |
---|---|
Information sharing | Sharing of agricultural knowledge and information between farmers [37,38], researchers [39], and other stakeholders [39] occurs via social networks |
Networking and collaboration | Stakeholders, including farmers, traders, extension officers, and researchers—from different locations—collaborate and share resources for innovations [40]. |
Market access | Farmers’ access to larger markets [41,42] |
Access to extension services | Extension services to farmers, including weather alerts, crop management advice, and marketing tips [43,44] |
Crowd-sourcing data | Social networks are essential for collecting data on agricultural practices, weather patterns, and market trends [45,46] |
Economic Empowerment | Digital innovations for women’s economic empowerment [46] |
Feature | Description |
---|---|
Human-centric approach | People are at the center of the development process to create sustainable, inclusive, and prosperous societies [52,53]. |
Integration of digital technologies | Digital technologies, including artificial intelligence, the Internet of Things, and big data to solve social problems and enhance the quality of life [54,55]. |
Collaboration | Stakeholders’ collaborations, including government, industry, academia, and civil society, play a significant role in creating innovative solutions to social problems such as the lack of employment [56]. |
Sustainability | Creating sustainable societies that balance economic growth with environmental and social considerations [57]. |
Inclusivity | Innovation spurs the development of new business models to address social problems and create new opportunities [58]. |
Digital empowerment | Empower individuals and communities by providing access to information and resources and promoting participation in decision-making processes [59]. |
Enabling Digital Technologies | Technology Applications in AVC Digitalization |
---|---|
Internet of Things (IoTs) | Coordination, and logistics [64,65], quality management [66], smart farming [30] |
Blockchain | Traceability of supply sources and transparency of food sources [10], food safety [67] |
Artificial intelligence | Intelligent farm machines, greenhouse monitoring, drone-based crop imaging, social media and modernization of supply chains [11], precision agriculture [12] |
Big data | Decision-making based on data and sustainable agriculture [68,69,70] |
Augmented reality | Digital agriculture [71], precision farming [72] |
System integration | Integrated agricultural farm management [15] |
Machine learning | Digital agriculture and precision farming [73], crop disease detection, yield prediction, weed detection, water management, and crop recognition [74] |
Edge computing | Big data processing [75,76] and smart AI applications in agriculture [77] |
Cloud computing | Increased efficiency in the AVC [78] |
Ubiquitous connectivity | Increasing connectivity along the AVC with the use of different digital devices and platforms to access and share agricultural information [79] |
Data Collection | Stakeholders | Respondents per Ward | ||||||
---|---|---|---|---|---|---|---|---|
Ibeno | Bassi-Chache | Magenche | Bassi-Central | Bomorenda | Nyakoe | Totals | ||
Questionnaires | Farmer | 10 | 15 | 12 | 18 | 12 | 14 | 81 |
Trader | 15 | 18 | 16 | 10 | 12 | 11 | 82 | |
Interviews | Agr Ext. Officers | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
Farmers-Group-Leaders | 2 | 2 | 2 | 2 | 2 | 2 | 12 | |
Traders | 3 | 2 | 2 | 3 | 2 | 3 | 15 | |
Focus groups | Farmers | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
Traders | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
Themes | Hits | Concepts |
---|---|---|
Social | 5363 | interaction, networking, social media, spectrum of engagement, internet platforms, internet forums, social networks |
Network | 4379 | link, group, social support, influence, centrality, structural characteristics, participatory programs, relationships, interactions, presence, actions |
Agricultural | 4274 | research institutes, agribusiness, government, agencies, industry, extension systems, social networks, technology |
Knowledge | 3979 | information, bridges, interventions, design, management |
Farmers | 3494 | decision-makers, farmers, investors, traders |
Systems | 2039 | services, collaboration, production, artificial intelligence |
Groups | 1715 | clusters, households, farmers, networks |
Data | 928 | big data, analytics, visualization |
Model | 807 | infrastructure, machine learning |
Food | 711 | supply chain, food ecosystem |
Nodes | 489 | contacts, links, graphs, entities |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tombe, R.; Smuts, H. Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy. Appl. Sci. 2023, 13, 6382. https://doi.org/10.3390/app13116382
Tombe R, Smuts H. Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy. Applied Sciences. 2023; 13(11):6382. https://doi.org/10.3390/app13116382
Chicago/Turabian StyleTombe, Ronald, and Hanlie Smuts. 2023. "Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy" Applied Sciences 13, no. 11: 6382. https://doi.org/10.3390/app13116382
APA StyleTombe, R., & Smuts, H. (2023). Agricultural Social Networks: An Agricultural Value Chain-Based Digitalization Framework for an Inclusive Digital Economy. Applied Sciences, 13(11), 6382. https://doi.org/10.3390/app13116382