Experimental Study of the Thermal and Wear Characteristics of a Foil Bearing Lubricated with a Low-Boiling Liquid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Object of Investigation
2.2. Description of the Test Rig
2.3. Experimental Procedure
3. Results and Discussion
3.1. Temperature Measurements
3.2. Measurements of Mechanical Properties
3.3. Wear Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, L.L.; Guenat, E.; Schiffmann, J. A Review of grooved dynamic gas bearings. Appl. Mech. Rev. 2020, 72, 010802. [Google Scholar] [CrossRef]
- Supreeth, D.K.; Bekinal, S.I.; Chandranna, S.R.; Doddamani, M. A review of superconducting magnetic bearings and their application. IEEE Trans. Appl. Supercond. 2022, 32, 3800215. [Google Scholar] [CrossRef]
- Samanta, P.; Hirani, H. On the evolution of passive magnetic bearings. J. Tribol. 2022, 144, 040801. [Google Scholar] [CrossRef]
- Sharma, A.; Upadhyay, N.; Kankar, P.K.; Amamath, M. Nonlinear dynamic investigations on rolling element bearings: A review. Adv. Mech. Eng. 2018, 10, 1–15. [Google Scholar] [CrossRef]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [Google Scholar] [CrossRef]
- Walton, J.F.; Hesmat, H. Application of foil bearings to turbomachinery including vertical operation. J. Eng. Gas Turbines Power 2002, 124, 1032–1041. [Google Scholar] [CrossRef]
- Samanta, P.; Murmu, N.C.; Khonsari, M.M. The evolution of foil bearing technology. Tribol. Int. 2019, 135, 305–323. [Google Scholar] [CrossRef]
- Hoffmann, H.; Pronobis, T.; Liebich, R. Stability analysis of pressurized gas foil bearings for high speed applications. In Proceedings of the 11th International Conference on Turbochargers and Turbocharging, London, UK, 13–14 May 2014. [Google Scholar]
- De Santiago, O.; San Andres, L. Parametric study of bump foil gas bearings for industrial applications. In Proceedings of the ASME Turbo Expo, Vancouver, BC, Canada, 6–10 June 2011; Volume 6, pp. 445–456. [Google Scholar]
- Kumar, J.; Khamari, D.S.; Behera, S.K.; Sahoo, R.K. A review of thermohydrodynamic aspects of gas foil bearings. Proc. Inst. Mech. Eng. Part J-J. Eng. Tribol. 2022, 236, 1466–1490. [Google Scholar] [CrossRef]
- Kozanecki, Z.; Tkacz, E.; Lagodzinski, J.; Miazga, K. Oil-free bearings for hermetic high-speed turbomachinery. J. Vib. Eng. Technol. 2014, 2, 351–360. [Google Scholar]
- Zywica, G.; Kaczmarczyk, T.Z.; Brenkacz, L.; Bogulicz, M.; Andrearczyk, A.; Baginski, P. Investigation of dynamic properties of the microturbine with a maximum rotational speed of 120 krpm—Predictions and experimental tests. J. Vibroeng. 2020, 22, 298–312. [Google Scholar] [CrossRef] [Green Version]
- Kicinski, J. The dynamics of microturbines lubricated using unconventional agents. Bull. Pol. Acad. Sci. Tech. Sci. 2015, 63, 369–377. [Google Scholar] [CrossRef]
- San Andres, L.; Ryu, K.; Diemer, P. Prediction of gas thrust foil bearing performance for oil-free automotive turbochargers. J. Eng. Gas Turbines Power 2015, 137, 032502. [Google Scholar] [CrossRef]
- Sim, K.; Lee, Y.B.; Kim, T.H. Rotordynamic analysis of an oil-free turbocharger supported on lobed gas foil bearings-predictions versus test data. Tribol. Trans. 2014, 57, 1086–1095. [Google Scholar] [CrossRef]
- Ryu, K.; Ashton, Z. Oil-Free Automotive Turbochargers: Drag Friction and On-Engine Performance Comparisons to Oil-Lubricated Commercial Turbochargers. J. Eng. Gas Turbines Power 2017, 139, 032301. [Google Scholar] [CrossRef]
- Dellacorte, C.; Lukaszewicz, V.; Valco, M.J.; Radil, K.C.; Heshmat, H. Performance and durability of high temperature foil air bearings for oil-free turbomachinery. Tribol. Trans. 2000, 43, 774–780. [Google Scholar] [CrossRef]
- Daejong, K.; Soongook, P. Hydrostatic air foil bearings: Analytical and experimental investigation. Tribol. Int. 2009, 42, 413–425. [Google Scholar] [CrossRef]
- Howard, S.A.; San Andres, L. A new analysis tool assessment for rotordynamic modeling of gas foil bearings. J. Eng. Gas Turbines Power 2011, 133, 022505. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.; Naik, S.D.; Kumar, S.; Raddhakrishna, M.; Jana, S. Development of foil bearings for small rotors. In Proceedings of the ASME 2013 Gas Turbine India Conference 2013, GTINDIA2013-3644, Bangalore, India, 5–6 December 2013. [Google Scholar] [CrossRef]
- DellaCorte, C.; Radil, K.C.; Bruckener, R.J.; Howard, S.A. Design, fabrication, and performance of open source generation I and II compliant hydrodynamic gas foil bearings. Tribol. Trans. 2008, 51, 254–264. [Google Scholar] [CrossRef]
- Feng, K.; Liu, Y.; Zhao, X.; Liu, W. Experimental evaluation of the structure characterization of a novel hybrid bump-metal mesh foil bearing. J. Tribol. 2016, 138, 021702. [Google Scholar] [CrossRef]
- Hoffmann, R.; Liebich, R. Experimental and numerical analysis of the dynamic behaviour of a foil bearing structure affected by metal shims. Tribol. Int. 2017, 115, 378–388. [Google Scholar] [CrossRef]
- Feng, K.; Liu, W.; Yu, R.; Zhang, Z. Analysis and experimental study on a novel gas foil bearing with nested compression springs. Tribol. Int. 2017, 107, 65–76. [Google Scholar] [CrossRef]
- Martowicz, A.; Roemer, J.; Zdziebko, P.; Zywica, G.; Baginski, P.; Andrearczyk, A. A novel measurement approach to experimentally determine the thermomechanical properties of a gas foil bearing using a specialized sensing foil made of Inconel alloy. Materials 2023, 16, 145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Kim, D. Experimental identification of force coefficients of large hybrid air foil bearings. J. Eng. Gas Turbines Power 2014, 136, 032503. [Google Scholar] [CrossRef]
- Hou, Y.; Zheng, Y.; Chen, S.; Liu, X.; Lai, T. The numerical study of static and dynamic characteristics of multi-layer protuberant foil bearing. J. Adv. Mech. Des. Syst. Manuf. 2015, 9, 15–00180. [Google Scholar] [CrossRef] [Green Version]
- Baginski, P.; Zywica, G.; Lubieniecki, M.; Roamer, J. The effect of cooling the foil bearing on dynamics of the rotor-bearings system. J. Vibroeng. 2018, 20, 843–857. [Google Scholar] [CrossRef] [Green Version]
- Martowicz, A.; Roamer, J.; Lubieniecki, M.; Zywica, G.; Baginski, P. Experimental and numerical study on the thermal control strategy for a gas foil bearing enhanced with thermoelectric modules. Mech. Syst. Signal Process. 2020, 138, 106581. [Google Scholar] [CrossRef]
- Saville, M.; Gu, A.; Capaldi, R. Liquid Hydrogen Turbopump Foil Bearing; AIAA 91-2108; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1991. [Google Scholar]
- Gu, A. Cryogenic Foil Bearing Turbopumps; AIAA 94-0868; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1994. [Google Scholar]
- Walton, J.F.; Heshmat, H. Compliant foil bearing for use in cryogenic turbopumps. Proc. NASA/MSFC Conf. 1994, 3282, 372–381. [Google Scholar]
- Elrod, D.; Hibbs, R.; Scharrer, J. Advanced Analysis of Bending Foil Bearings for Cryogenic Applications; AIAA 97-3100; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 1997. [Google Scholar]
- Kozanecki, Z.; Kicinski, J.; Zywica, G. Numerical model of the high speed rotors supported on variable geometry bearings. In Proceedings of the IUTAM Symposium on Emerging Trends in Rotor Dynamics, New Delhi, India, 23–26 March 2009. [Google Scholar] [CrossRef]
- Bouchehit, B.; Bou-Said, B.; Garcia, M. Static and dynamic performances of refrigerant lubricated foil bearings. IOP Conf. Ser. Mater. Sci. Eng. 2016, 147, 012043. [Google Scholar] [CrossRef] [Green Version]
- Olszewski, A.; Wodke, M.; Hryniewicz, P. Experimental investigation of prototype water-lubricated compliant foil bearings. Key Eng. Mater. 2012, 490, 97–105. [Google Scholar] [CrossRef]
- DellaCorte, C. Oil-free shaft support system rotordynamics: Past, present and future challenges and opportunities. Mech. Syst. Signal Process. 2012, 29, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Zywica, G.; Baginski, P.; Brenkacz, L.; Miaskowski, W.; Pietkiewicz, P.; Nalepa, K. Dynamic state assessment of the high-speed rotor based on a structural-flow model of a foil bearing. Diagnostyka 2017, 18, 95–102. [Google Scholar]
- Witanowski, L.; Ziolkowski, P.; Klonowicz, P.; Lampart, P. A hybrid approach to optimization of radial inflow turbine with principal component analysis. Energy 2023, 272, 127064. [Google Scholar] [CrossRef]
- Kosowski, K.; Piwowarski, M.; Stepien, R.; Wlodarski, W. Design and investigations of the ethanol microturbine. Arch. Thermodyn. 2018, 39, 41–54. [Google Scholar] [CrossRef]
- Miąskowski, W.; Moczulak, B.; Nalepa, K.; Pietkiewicz, P.; Komar, W. Start-stop analysis of high-speed bearings with a flexible bushing. In Proceedings of the 17th International Multidisciplinary Scientific Geoconference SGEM 2017: Micro and Nano Technologies, Vienna, Austria, 27–29 November 2017; Volume 17, pp. 69–76. [Google Scholar] [CrossRef]
- Kim, D.; Zimbru, G. Start-stop characteristics and thermal behavior of a large hybrid airfoil bearing for aero-propulsion applications. J. Eng. Gas Turbines Power 2012, 134, 032502. [Google Scholar] [CrossRef]
- Moczulak, B.; Miąskowski, W. Methods of research of foil bearings in start-stop cycle in the presence of working medium. Agric. Eng. 2019, 23, 41–51. [Google Scholar] [CrossRef]
- Fatu, A.; Arghir, M. Numerical analysis of the impact of manufacturing errors on the structural stiffness of foil bearings. J. Eng. Gas Turbines Power 2018, 140, 041506. [Google Scholar] [CrossRef]
- Shalash, K.; Schiffmann, J. On the manufacturing of compliant foil bearings. J. Manuf. Process 2017, 25, 357–368. [Google Scholar] [CrossRef]
- San Andres, L.; Chirathadam, T.A.; Kim, T.H. Measurement of structural stiffness and damping coefficients in a metal mesh foil bearing. J. Eng. Gas Turbines Power 2010, 132, 032503. [Google Scholar] [CrossRef]
- Schilling, G.; Liebich, R. The influence of bearing clearance on the load capacity of gas polymer bearings. Appl. Sci. 2023, 13, 4555. [Google Scholar] [CrossRef]
- Feng, K.; Kaneko, S. Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model. J. Tribol. 2010, 132, 021706. [Google Scholar] [CrossRef]
- Zywica, G.; Kicinski, J.; Baginski, P. The static and dynamic numerical analysis of the foil bearing structure. J. Vib. Eng. Technol. 2016, 4, 213–220. [Google Scholar]
- Xu, B.; Zhang, J. Influence of contact friction on static characteristics of multileaf bump foil bearing. J. Phys. Conf. Ser. 2022, 2235, 012026. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Journal diameter | 25 mm |
Sleeve inner diameter | 25.9 or 26 mm |
Bearing length | 40 mm |
Number of top foils | 1 |
Number of bump foils | 1 |
Top foil thickness | 0.1 mm |
Bump foil thickness | 0.1 mm |
Number of bumps of a bump foil | 29 |
Bump radius (inner) | 2 mm |
Bump height | 0.3 mm |
Angle between bumps | 10° |
Journal material | steel (1.0562) |
Top/Bump foil material | 2.0321/CuAl7 or CuAl7/Inconel |
Sleeve material | steel (1.0562) |
Sleeve weight | 96 g |
Foil Name | Weight Loss without Cooling [g] | Weight Loss with Cooling [g] | ||
---|---|---|---|---|
2.0321/CuAl7 | CuAl7/Inconel | 2.0321/CuAl7 | CuAl7/Inconel | |
Top | 0.00003 | 0.00088 | 0.00011 | 0.00032 |
Bump | 0.00018 | 0.00011 | 0.00037 | 0.00006 |
Foil Name | Weight Loss without Cooling [g] | Weight Loss with Cooling [g] | ||
---|---|---|---|---|
2.0321/CuAl7 | CuAl7/Inconel | 2.0321/CuAl7 | CuAl7/Inconel | |
Top | 0.00010 | 0.00226 | 0.00010 | 0.00118 |
Bump | 0.00007 | 0.00000 | 0.00002 | 0.00007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moczulak, B.; Żywica, G.; Miąskowski, W.; Kiński, W.; Bagiński, P. Experimental Study of the Thermal and Wear Characteristics of a Foil Bearing Lubricated with a Low-Boiling Liquid. Appl. Sci. 2023, 13, 6766. https://doi.org/10.3390/app13116766
Moczulak B, Żywica G, Miąskowski W, Kiński W, Bagiński P. Experimental Study of the Thermal and Wear Characteristics of a Foil Bearing Lubricated with a Low-Boiling Liquid. Applied Sciences. 2023; 13(11):6766. https://doi.org/10.3390/app13116766
Chicago/Turabian StyleMoczulak, Bartosz, Grzegorz Żywica, Wojciech Miąskowski, Wojciech Kiński, and Paweł Bagiński. 2023. "Experimental Study of the Thermal and Wear Characteristics of a Foil Bearing Lubricated with a Low-Boiling Liquid" Applied Sciences 13, no. 11: 6766. https://doi.org/10.3390/app13116766