Dynamic Interactions between Parallel Grid-Forming Inverters in a Microgrid
Abstract
:1. Introduction
2. Microgrid and Control Structure
3. Impedance Derivation
4. Stability Analysis
4.1. Eigenvalue-Based Stability Analysis Using s-Domain Nodal Admittance Matrix
4.2. Influencing Factor Identification
- -
- Nodal voltage mode shape
- -
- Participation Factor:
4.3. Nodal Admittance Matrix Calculation
4.4. Eigenvalue Analysis
- Adding the virtual impedance;
- Applying the feed-forward loop in the inner control.
4.5. Mode Shape Analysis
5. EMT Study
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saha, S.; Saleem, M.; Roy, T. Impact of high penetration of renewable energy sources on grid frequency behaviour. Int. J. Electr. Power Energy Syst. 2023, 145, 108701. [Google Scholar] [CrossRef]
- Jain, D.; Saxena, D. Comprehensive review on control schemes and stability investigation of hybrid AC-DC microgrid. Electr. Power Syst. Res. 2023, 218, 109182. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Z.; An, R.; Liu, J.; Wu, T.; Lin, Z. An Islanding Detection Method Using Synchronized Small-AC-Signal Injection for Grid-Forming Inverters in Microgrids. IEEE Trans. Power Electron. 2023, 38, 5816–5831. [Google Scholar] [CrossRef]
- Armghan, A.; Hassan, M.; Armghan, H.; Yang, M.; Alenezi, F.; Azeem, M.K.; Ali, N. Barrier Function Based Adaptive Sliding Mode Controller for a Hybrid AC/DC Microgrid Involving Multiple Renewables. Appl. Sci. 2021, 11, 8672. [Google Scholar] [CrossRef]
- Mohammed, N.; Lashab, A.; Ciobotaru, M.; Guerrero, J.M. Accurate reactive power sharing strategy for droop-based islanded AC microgrids. IEEE Trans. Ind. Electron. 2022, 70, 2696–2707. [Google Scholar] [CrossRef]
- Kikusato, H.; Orihara, D.; Hashimoto, J.; Takamatsu, T.; Oozeki, T.; Matsuura, T.; Miyazaki, S.; Hamada, H.; Miyazaki, T. Performance evaluation of grid-following and grid-forming inverters on frequency stability in low-inertia power systems by power hardware-in-the-loop testing. Energy Rep. 2023, 9, 381–392. [Google Scholar] [CrossRef]
- Chiang, S.; Chang, J. Parallel control of the UPS inverters with frequency-dependent droop scheme. In Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230), Vancouver, BC, Canada, 17–21 June 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 2, pp. 957–961. [Google Scholar]
- Kim, H.J.; Nam, T.; Hur, K.; Chang, B.; Chow, J.H.; Entriken, R. Dynamic interactions among multiple FACTS controllers—A survey. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–29 July 2011; pp. 1–8. [Google Scholar]
- Pilotto, L.A.S.; Long, W.F.; Edris, A.A. Basic mechanisms of control interactions among power electronic-assisted power systems. In Proceedings of the 2001 IEEE/PES Transmission and Distribution Conference and Exposition, Developing New Perspectives (Cat. No.01CH37294), Atlanta, GA, USA, 2 November 2001; Volume 1, pp. 397–402. [Google Scholar]
- Pilotto, L.; Ping, W.; Carvalho, A.; Wey, A.; Long, W. Analysis of Control Interactions on FACTS Assisted Power Systems. In EPRI Research Project 3022–33.34: First Interim Report; Electric Power Research Institute: Palo Alto, CA, USA, 1995. [Google Scholar]
- Enslin, J.H.; Heskes, P.J. Harmonic-interaction between a large number of distributed power inverters and the distribution network. IEEE Trans. Power Electron. 2004, 19, 1586–1593. [Google Scholar] [CrossRef]
- Li, C. Unstable Operation of Photovoltaic Inverter From Field Experiences. IEEE Trans. Power Deliv. 2018, 33, 1013–1015. [Google Scholar] [CrossRef]
- Xu, Y.; Zhao, S.; Cao, Y.; Sun, K. Understanding Subsynchronous Oscillations in DFIG-Based Wind Farms Without Series Compensation. IEEE Access 2019, 7, 107201–107210. [Google Scholar] [CrossRef]
- Ren, L.; Guo, H.; Dou, Z.; Wang, F.; Zhang, L. Modeling and Analysis of the Harmonic Interaction between Grid-Connected Inverter Clusters and the Utility Grid. Energies 2022, 15, 3490. [Google Scholar] [CrossRef]
- Amin, M.; Molinas, M. Understanding the Origin of Oscillatory Phenomena Observed Between Wind Farms and HVdc Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 378–392. [Google Scholar] [CrossRef] [Green Version]
- Agorreta, J.L.; Borrega, M.; López, J.; Marroyo, L. Modeling and control of N-paralleled grid-connected inverters with LCL filter coupled due to grid impedance in PV plants. IEEE Trans. Power Electron. 2011, 26, 770–785. [Google Scholar] [CrossRef]
- Lu, M.; Yang, Y.; Johnson, B.; Blaabjerg, F. An Interaction-Admittance Model for Multi-Inverter Grid-Connected Systems. IEEE Trans. Power Electron. 2019, 34, 7542–7557. [Google Scholar] [CrossRef] [Green Version]
- Coelho, E.A.A.; Cortizo, P.C.; Garcia, P.F.D. Small-signal stability for parallel-connected inverters in stand-alone AC supply systems. IEEE Trans. Ind. Appl. 2002, 38, 533–542. [Google Scholar] [CrossRef]
- Xiong, R.; Lee, Y.; Zhao, J. Modeling and analysis of stability for parallel inverters operated with instantaneous maximum current control strategy. In Proceedings of the Multiconference on “Computational Engineering in Systems Applications”, Beijing, China, 4–6 October 2006; IEEE: Piscataway, NJ, USA, 2006; Volume 2, pp. 1701–1706. [Google Scholar]
- Yu, K.; Ai, Q.; Wang, S.; Ni, J.; Lv, T. Analysis and Optimization of Droop Controller for Microgrid System Based on Small-Signal Dynamic Model. IEEE Trans. Smart Grid 2016, 7, 695–705. [Google Scholar] [CrossRef]
- He, J.; Li, Y.W. Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans. Ind. Appl. 2011, 47, 2525–2538. [Google Scholar] [CrossRef]
- Wang, X.; Blaabjerg, F.; Chen, Z.; Wu, W. Resonance analysis in parallel voltage-controlled distributed generation inverters. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 2977–2983. [Google Scholar]
- Corradini, L.; Mattavelli, P.; Corradin, M.; Polo, F. Analysis of parallel operation of uninterruptible power supplies loaded through long wiring cables. IEEE Trans. Power Electron. 2009, 25, 1046–1054. [Google Scholar] [CrossRef]
- Kundur, P.S.; Malik, O.P. Power System Stability and Control; McGraw-Hill Education: New York, NY, USA, 2022. [Google Scholar]
- Semlyen, A. S-domain methodology for assessing the small signal stability of complex systems in nonsinusoidal steady state. IEEE Trans. Power Syst. 1999, 14, 132–137. [Google Scholar] [CrossRef]
- Gomes, S.; Martins, N.; Portela, C. Modal analysis applied to s-domain models of ac networks. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No. 01CH37194), Columbus, OH, USA, 28 January–1 February 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 3, pp. 1305–1310. [Google Scholar]
- Varricchio, S.L.; Gomes, S.; Martins, N. S-domain approach to reduce harmonic voltage distortions using sensitivity analysis. In Proceedings of the 2001 IEEE Power Engineering Society Winter Meeting, Conference Proceedings (Cat. No. 01CH37194), Columbus, OH, USA, 28 January–1 February 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 2, pp. 809–814. [Google Scholar]
- Varricchio, S.; Gomes, S., Jr. Electrical network dynamic models with application to modal analysis of harmonics. Electr. Power Syst. Res. 2018, 154, 433–443. [Google Scholar] [CrossRef]
- Zhan, Y.; Xie, X.; Liu, H.; Liu, H.; Li, Y. Frequency-domain modal analysis of the oscillatory stability of power systems with high-penetration renewables. IEEE Trans. Sustain. Energy 2019, 10, 1534–1543. [Google Scholar] [CrossRef]
- Boylestad, R.L. Introductory Circuit Analysis; Pearson Education India: Noida, India, 2003. [Google Scholar]
- Xu, Z.; Wang, S.; Xing, F.; Xiao, H. Study on the method for analyzing electric network resonance stability. Energies 2018, 11, 646. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Huang, Z.; Cui, Y.; Wang, H. Harmonic resonance mode analysis. IEEE Trans. Power Deliv. 2005, 20, 1182–1190. [Google Scholar] [CrossRef]
- Grainger, J.J. Power System Analysis; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
Description | Parameters | Value |
---|---|---|
Rated power | 10 kW | |
Rated voltage | 400 V | |
0.1 | ||
Converter filter | 1.5 mH | |
25 F | ||
Distribution feeder () | 0.45 mH | |
ratio | 3 | |
Local load () | 80 | |
Sampling period | ||
Current control | 5 | |
PR voltage control | 0.06 | |
10 | ||
8 rad/s | ||
120 rad/s | ||
P-f droop | ||
V-Q droop |
Node | ||||
---|---|---|---|---|
1 | 0.0048 | 0.5000 | 0.5006 | 0.0020 |
2 | 0.3341 | 0.0000 | 0.0007 | 0.4982 |
3 | 0.3333 | 0.0000 | 0.0000 | 0.0000 |
4 | 0.3341 | 0.0000 | 0.0007 | 0.4982 |
5 | 0.0048 | 0.5000 | 0.5006 | 0.0020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almutairi, S.Z. Dynamic Interactions between Parallel Grid-Forming Inverters in a Microgrid. Appl. Sci. 2023, 13, 6989. https://doi.org/10.3390/app13126989
Almutairi SZ. Dynamic Interactions between Parallel Grid-Forming Inverters in a Microgrid. Applied Sciences. 2023; 13(12):6989. https://doi.org/10.3390/app13126989
Chicago/Turabian StyleAlmutairi, Sulaiman Z. 2023. "Dynamic Interactions between Parallel Grid-Forming Inverters in a Microgrid" Applied Sciences 13, no. 12: 6989. https://doi.org/10.3390/app13126989
APA StyleAlmutairi, S. Z. (2023). Dynamic Interactions between Parallel Grid-Forming Inverters in a Microgrid. Applied Sciences, 13(12), 6989. https://doi.org/10.3390/app13126989