High Imperceptible Data Hiding Method Based on Combination Theory for AMBTC Compressed Images
Abstract
:1. Introduction
- i.
- Non-block classification. In the proposed scheme, all blocks are embeddable. The threshold value is not established because there is no specification for a smooth and complex block.
- ii.
- High embedding capacity in the complex block. By utilizing the concept of combination theory, the proposed scheme can embed at least four secret bits resulting in higher embedding capacity in the complex block compared with the related works.
- iii.
- High imperceptible AMBTC data hiding. By applying the concept of combination theory, the proposed scheme only needs to change 1 bit of pixel to embed 4 secret bits. Hence, it has advantages for complex images.
2. Related Works
2.1. Absolute Moment Block Truncation Coding (AMBTC)
2.2. Combination Theory
Algorithm 1: Confidential Data Calculation |
FOR p = 1 :u; q = 1 : v |
IF P’x,y hasSr |
T(Sr) = T(Sr) +1 |
END |
END |
Algorithm 2: Confidential Data Embedding |
FOR p = 1: u; q = 1: v |
IF Px,y= S” |
IF Gi (p,q) = 1 |
Gi (p,q) = 0 |
ELSE |
Gi (p,q) = 1 |
END |
END |
END |
2.3. Block-Classification-Based RDH for AMBTC-Compressed Images
3. The Proposed Method
3.1. The Embedding Procedures
3.2. The Extraction Procedures
Algorithm 3: Confidential Data Calculation |
FOR p = 1: u ; q = 1: v |
IF P’x,y hasSr |
T(Sr) = T(Sr) +1 |
END |
END |
4. Experimental Results
4.1. The Environment and Parameters
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alhomoud, A.M. Image steganography in spatial domain: Current status, techniques, and trends. Intell. Autom. Soft Comput. 2021, 27, 69–88. [Google Scholar] [CrossRef]
- Min-allah, N.; Nagy, N.; Aljabri, M.; Alkharraa, M.; Alqahtani, M.; Alghamdi, D.; Sabri, R.; Alshaikh, R. Quantum Image Steganography Schemes for Data Hiding: A Survey. Appl. Sci. 2022, 12, 10294. [Google Scholar] [CrossRef]
- Anggriani, K.; Wu, N.; Hwang, M. Research on Coverless Image Steganography. Int. J. Netw. Secur. 2023, 25, 25–31. [Google Scholar] [CrossRef]
- Dorobant, A.; Brad, R. Improving Lossless Image Compression with Contextual Memory. Appl. Sci. 2019, 9, 2681. [Google Scholar] [CrossRef] [Green Version]
- Saleh, S.Q. Digital Image Steganalysis: Current Methodologies and Future Challenges. IEEE Access 2022, 10, 92321–92336. [Google Scholar] [CrossRef]
- Wang, Y.L.; Shen, J.J.; Hwang, M.S. A Novel Dual Image-based High Payload Reversible Hiding Technique Using LSB Matching. Int. J. Netw. Secur. 2018, 20, 801–804. [Google Scholar] [CrossRef]
- Wang, Y.L.; Shen, J.J.; Hwang, M.S. An Improved Dual Image-based Reversible Hiding Technique Using LSB Matching. Int. J. Netw. Secur. 2017, 19, 858–862. [Google Scholar] [CrossRef]
- Lee, C.F.; Shen, J.J.; Wu, C.Y. Overlapping Difference Expansion Reversible Data Hiding. Int. J. Netw. Secur. 2023, 25, 201–211. [Google Scholar]
- Linde, Y. An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 1980, 28, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Chiranjeevi, K.; Jena, U.R. Image compression based on vector quantization using cuckoo search optimization technique. Ain Shams Eng. J. 2018, 9, 1417–1431. [Google Scholar] [CrossRef] [Green Version]
- Chavan, P.P.; Rani, B.S.; Murugan, M.; Chavan, P. An image compression model via adaptive vector quantization: Hybrid optimization algorithm. Imaging Sci. J. 2020, 68, 259–277. [Google Scholar] [CrossRef]
- Wang, Y.L.; Shen, J.J.; Hwang, M.S. A Survey of Reversible Data Hiding for VQ-Compressed Images. Int. J. Netw. Secur. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Robert, O.; Mitchell, J.; Delp, E. Image Compression Using Block Truncation Coding. IEEE Trans. Commun. 1979, 27, 1335–1341. [Google Scholar]
- Somasundaram, K. Efficient Block Truncation Coding. Int. J. Comput. Sci. Eng. 2010, 2, 2163–2166. [Google Scholar]
- Yang, C.-N.; Chou, Y.-C.; Chang, T.-K.; Kim, C. An Enhanced Adaptive Block Truncation Coding with Edge Quantization Scheme. Appl. Sci. 2020, 10, 7340. [Google Scholar] [CrossRef]
- Sau, K.; Kumar, R.; Chanda, A. Image Compression based on Block Truncation Coding using Clifford Algebra. Procedia Technol. 2013, 10, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Lema, M.D.; Mitchell, R. Absolute Moment Block Truncation Coding and Its Application to Color Images. IEEE Trans. Commun. 1984, 32, 1148–1157. [Google Scholar] [CrossRef]
- Lai, P.C.; Shen, J.J.; Chou, Y.C. High Embedding Capacity Data Hiding Technique Based on Hybrid AMBTC and LSB Substitutions. Int. J. Netw. Secur. 2023, 25, 221–234. [Google Scholar]
- Perfilieva, I.; Hurtik, P. The F-transform preprocessing for JPEG strong compression of high-resolution images. Inf. Sci. 2021, 550, 221–238. [Google Scholar] [CrossRef]
- Mancini, L.; Kourousias, G.; Velez, A.; Barrera, J.F.; Bredies, K.; Holler, M. Developed JPEG Algorithm Applied in Image Compression Developed JPEG Compression Algorithm Applied in Image. IOP Conf. Ser. Mater. Sci. Eng. 2020, 928, 062015. [Google Scholar] [CrossRef]
- Hamano, G.; Imaizumi, S. Effects of JPEG Compression on Vision Transformer Image Classification for Encryption-then-Compression Images. Sensors 2023, 23, 3400. [Google Scholar] [CrossRef]
- Lee, C.-F.; Chang, C.-C.; Li, G. A Data Hiding Scheme Based on Turtle-shell for AMBTC Compressed Images. KSII Trans. Internet Inf. Syst. 2020, 14, 2554–2575. [Google Scholar] [CrossRef]
- Horng, J.-H.; Chang, C.; Li, G.-L. Steganography Using Quotient Value Differencing and LSB Substitution for AMBTC Compressed Images. IEEE Access 2020, 8, 129347–129358. [Google Scholar] [CrossRef]
- Lin, C.; Nguyen, T.; Chang, C.; Chang, W. Efficient Reversible Data Hiding Scheme for AMBTC-Compressed Images. Appl. Sci. 2021, 11, 6741. [Google Scholar] [CrossRef]
- Kim, C. Separable Reversible Data Hiding in Encrypted AMBTC Images Using Hamming Code. Appl. Sci. 2022, 12, 8225. [Google Scholar] [CrossRef]
- Kim, C.; Shin, D.; Yang, C. Data Hiding Method for Color AMBTC Compressed Images Using Color Difference. Appl. Sci. 2021, 11, 3418. [Google Scholar] [CrossRef]
- Kim, C. Dual Reversible Data Hiding Based on AMBTC Using Hamming Code and LSB Replacement. Electronics 2022, 11, 3210. [Google Scholar] [CrossRef]
- Lin, C.; Lin, J.; Chang, C. Reversible Data Hiding for AMBTC Compressed Images Based on Matrix and Hamming Coding. Electronics 2021, 10, 281. [Google Scholar] [CrossRef]
- Anggriani, K.; Wu, N.; Hwang, M. Research on Data Hiding Schemes for AMBTC Compressed Images. Int. J. Netw. Secur. 2022, 24, 1114–1123. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, C.; Lin, C.; Wang, Z. An Adaptive Reversible Data Hiding Scheme Using AMBTC and Quantization Level Difference. Appl. Sci. 2021, 11, 635. [Google Scholar] [CrossRef]
- Anggriani, K.; Chiou, S.; Wu, N.; Hwang, M. A High-Capacity Coverless Information Hiding Based on the Lowest and Highest Image Fragments. Electronics 2023, 12, 395. [Google Scholar] [CrossRef]
- Wu, N.; Hwang, M. Development of a data hiding scheme based on combination theory for lowering the visual noise in binary images. Displays 2017, 49, 116–123. [Google Scholar] [CrossRef]
Lee et al.’s Scheme [22] | Horng et al.’s Scheme [23] | Lin et al.’s Scheme [24] | |
Complex Block | difference value D = |hq − lq| > TH | difference value D = ||hq − lq| > TH | difference value D = ||hq − lq|≤ 2m |
Smooth Block | difference value D = ||hq − lq|≤ TH | difference value D = ||hq − lq|≤ TH | difference value D = ||hq − lq| > 2m |
Image | Metrics | Lee et al.’s Scheme TH = 0 [22] | Horng et al.’s Scheme TH = 0 [23] | Lin et al.’s Scheme TH = 0 [24] | Proposed Scheme |
---|---|---|---|---|---|
Airplane | PSNR | 33.63 | 31.65 | 31.95 | 38.25 |
MSE | 28.22 | 44.47 | 41.50 | 9.72 | |
Capacity | 95,255 | 114,666 | 81,097 | 195,928 | |
Baboon | PSNR | 30.88 | 26.39 | 26.00 | 37.97 |
MSE | 53.12 | 149.30 | 163.33 | 10.36 | |
Capacity | 83,060 | 126,600 | 64,882 | 104,284 | |
Boat | PSNR | 31.68 | 30.59 | 31.15 | 36.27 |
MSE | 44.11 | 56.76 | 49.89 | 15.34 | |
Capacity | 83,240 | 115,448 | 78,178 | 158,440 | |
Lena | PSNR | 33.48 | 31.42 | 33.97 | 37.42 |
MSE | 29.15 | 46.78 | 26.06 | 11.76 | |
Capacity | 91,190 | 124,877 | 75,128 | 201,364 | |
Pepper | PSNR | 32.67 | 31.72 | 33.40 | 35.89 |
MSE | 35.18 | 43.76 | 29.72 | 16.72 | |
Capacity | 83,600 | 125,657 | 78,799 | 197,632 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anggriani, K.; Chiou, S.-F.; Wu, N.-I.; Hwang, M.-S. High Imperceptible Data Hiding Method Based on Combination Theory for AMBTC Compressed Images. Appl. Sci. 2023, 13, 7050. https://doi.org/10.3390/app13127050
Anggriani K, Chiou S-F, Wu N-I, Hwang M-S. High Imperceptible Data Hiding Method Based on Combination Theory for AMBTC Compressed Images. Applied Sciences. 2023; 13(12):7050. https://doi.org/10.3390/app13127050
Chicago/Turabian StyleAnggriani, Kurnia, Shu-Fen Chiou, Nan-I Wu, and Min-Shiang Hwang. 2023. "High Imperceptible Data Hiding Method Based on Combination Theory for AMBTC Compressed Images" Applied Sciences 13, no. 12: 7050. https://doi.org/10.3390/app13127050
APA StyleAnggriani, K., Chiou, S. -F., Wu, N. -I., & Hwang, M. -S. (2023). High Imperceptible Data Hiding Method Based on Combination Theory for AMBTC Compressed Images. Applied Sciences, 13(12), 7050. https://doi.org/10.3390/app13127050