Physico-Chemical Characteristics, Sensory Attributes and Oxidative Stability of Soy Milk Mayonnaise Enriched in Carotenoids from Tomato By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Extraction of Dried Tomato By-Products in Oil
2.3. Total Carotenoid Content
2.4. ABTS Antoxidant Activity
2.5. Preparation of Mayonnaise
2.6. pH Measurement
2.7. Acid Value
2.8. Color Measurement
2.9. Peroxide Value
2.10. Thiobarbituric Acid Reactive Substances Values
2.11. Sensory Evaluation
2.12. Statistical Analysis
3. Results and Discussion
3.1. Physico-Chemical Properties of Oils
3.2. Physico-Chemical Properties of Mayonnaises
3.3. Color of Mayonnaises
3.4. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flamminii, F.; Di Mattia, C.D.; Sacchetti, G.; Neri, L.; Mastrocola, D.; Pittia, P. Physical and Sensory Properties of Mayonnaise Enriched with Encapsulated Olive Leaf Phenolic Extracts. Foods 2020, 9, 997. [Google Scholar] [CrossRef]
- Mirzanajafi-Zanjani, M.; Yousefi, M.; Ehsani, A. Challenges and approaches for production of a healthy and functional mayonnaise sauce. Food Sci. Nutr. 2019, 7, 2471–2484. [Google Scholar] [CrossRef] [PubMed]
- Roman, D.; Condurache (Lazăr), N.N.; Stănciuc, N.; Andronoiu, D.G.; Aprodu, I.; Enachi, E.; Barbu, V.; Bahrim, G.E.; Stanciu, S.; Râpeanu, G. Advanced Composites Based on Sea Buckthorn Carotenoids for Mayonnaise Enrichment. Polymers 2022, 14, 548. [Google Scholar] [CrossRef] [PubMed]
- Muhialdin, B.J.; Ying, L.L.; Farouk, A.-E.; Meor Hussin, A.S. Valorisation of Virgin Coconut Oil Application in Mayonnaise Production as Functional Ingredient. J. Food Nutr. Res. 2019, 7, 65–70. [Google Scholar] [CrossRef]
- Wang, W.; Hu, C.; Sun, H.; Zhao, J.; Xu, C.; Ma, Y.; Jiang, Z. Low-cholesterol-low-fat mayonnaise prepared from soybean oil body as a substitute for egg yolk: The effect of substitution ratio on physicochemical properties and sensory evaluation. LWT-Food Sci. Technol. 2022, 167, 113867. [Google Scholar] [CrossRef]
- Raikos, V.; Hayes, H.; Ni, H. Aquafaba from commercially canned chickpeas as potential egg replacer for the development of vegan mayonnaise: Recipe optimisation and storage stability. Int. J. Food Sci. Technol. 2020, 55, 1935–1942. [Google Scholar] [CrossRef]
- Raymundo, A.; Franco, J.M.; Empis, J.; Sousa, I. Optimization of the composition of low-fat oil-in-water emulsions stabilized by white lupin protein. J. Am. Oil Chem. Soc. 2002, 79, 783–790. [Google Scholar] [CrossRef]
- Rahmati, K.; Mazaheri Tehrani, M.; Daneshvar, K. Soy milk as an emulsifier in mayonnaise: Physico-chemical, stability and sensory evaluation. J. Food Sci. Technol. 2014, 51, 3341–3347. [Google Scholar] [CrossRef] [Green Version]
- Ghazaei, S.; Mizani, M.; Piravi-Vanak, Z.; Alimi, M. Particle size and cholesterol content of a mayonnaise formulated by OSA-modified potato starch. Food Sci. Technol. 2015, 35, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.S.; Salas-Mellado, M.D.L.M. Development of mayonnaise with substitution of oil or egg yolk by the addition of chia (Salvia hispanica L.) mucilage. J. Food Sci. 2018, 83, 74–83. [Google Scholar] [CrossRef]
- Rahbari, M.; Aalami, M.; Kashaninejad, M.; Maghsoudlou, Y.; Aghdaei, S.S.A. A mixture design approach to optimizing low cholesterol mayonnaise formulation prepared with wheat germ protein isolate. J. Food Sci. Technol. 2015, 52, 3383–3393. [Google Scholar] [CrossRef] [Green Version]
- Nikzade, V.; Tehrani, M.M.; Saadatmand-Tarzjan, M. Optimization of Low-Cholesterol–Low-Fat Mayonnaise Formulation: Effect of Using Soy Milk and Some Stabilizer by a Mixture Design Approach. Food Hydrocoll. 2012, 28, 344–352. [Google Scholar] [CrossRef]
- Ahmadi-Dastgerdi, A.; Ezzatpanah, H.; Asgary, S.; Dokhani, S.H.; Rahimi, E.; GholamiAhangaran, M. Oxidative stability of mayonnaise supplemented with essential oil of Achillea millefolium ssp millefolium during storage. Food Sci. Technol. 2019, 13, 34–42. [Google Scholar] [CrossRef]
- Ozdemir, N.; Kantekin-Erdogan, M.N.; Tat, T.; Tekin, A. Effect of black cumin oil on the oxidative stability and sensory characteristics of mayonnaise. J. Food Sci. Technol. 2018, 55, 1562–1568. [Google Scholar] [CrossRef]
- Kishk, Y.F.M.; Elsheshetawy, H.E. Effect of Ginger Powder on the Mayonnaise Oxidative Stability, Rheological Measurements, and Sensory Characteristics. Ann. Agric. Sci. 2013, 58, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [Green Version]
- Ueda, J.M.; Pedrosa, M.C.; Heleno, S.A.; Carocho, M.; Ferreira, I.C.F.R.; Barros, L. Food Additives from Fruit and Vegetable By-Products and Bio-Residues: A Comprehensive Review Focused on Sustainability. Sustainability 2022, 14, 5212. [Google Scholar] [CrossRef]
- Saeed, A.; Shabbir, A.; Khan, A. Stabilization of sunflower oil by using potato peel extract as a natural antioxidant. Biomass Convers. Biorefin. 2022, 1–10. [Google Scholar] [CrossRef]
- Kariminejad, M.; Naimabadi, A.; Morshedi, A.; Mohammadi-Moghaddam, T.; Shokuhi, A.; Bordbar, M. Oxidative stability of sunflower and soybean oils enriched with black plum peel extract in comparison with synthetic antioxidants. PLoS ONE 2023, 18, e0279735. [Google Scholar] [CrossRef]
- Vági, E.; Simándi, B.; Vásárhelyiné, K.P.; Daood, H.; Kéry, Á.; Doleschall, F.; Nagy, B. Supercritical carbon dioxide extraction of carotenoids, tocopherols and sitosterols from industrial tomato by-products. J. Supercrit. Fluids 2007, 40, 218–226. [Google Scholar] [CrossRef]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edge, R.; Truscott, T.G. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review. Antioxidants 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharbi, S.; Renda, G.; La Barbera, L.; Amri, M.; Messina, C.M.; Santulli, A. Tunisian tomato by-products, as a potential source of natural bioactive compounds. Nat. Prod. Res. 2017, 31, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Nour, V.; Panaite, T.D.; Ropota, M.; Turcu, R.; Trandafir, I.; Corbu, A.R. Nutritional and bioactive compounds in dried tomato processing waste. CyTA—J. Food 2018, 16, 222–229. [Google Scholar] [CrossRef]
- Madia, V.N.; De Vita, D.; Ialongo, D.; Tudino, V.; De Leo, A.; Scipione, L.; Di Santo, R.; Costi, R.; Messore, A. Recent Advances in Recovery of Lycopene from Tomato Waste: A Potent Antioxidant with Endless Benefits. Molecules 2021, 26, 4495. [Google Scholar] [CrossRef] [PubMed]
- Benakmoum, A.; Abbeddou, S.; Ammouche, A.; Kefalas, P.; Gerasopoulos, D. Valorisation of low quality edible oil with tomato peel waste. Food Chem. 2008, 110, 684–690. [Google Scholar] [CrossRef]
- Nour, V.; Corbu, A.R.; Rotaru, P.; Karageorgou, I.; Lalas, S. Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas Aceites 2018, 69, e238. [Google Scholar] [CrossRef] [Green Version]
- Szydłowska-Czerniak, A.; Trokowski, K.; Karlovits, G.; Szłyk, E. Effect of refining processes on antioxidant capacity, total contents of phenolics and carotenoids in palm oils. Food Chem. 2011, 129, 1187–1192. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Park, B.I.; Kim, J.; Lee, K.; Lim, T.; Hwang, K.T. Flavonoids in Common and Tartary Buckwheat Hull Extracts and Antioxidant Activity of the Extracts against Lipids in Mayonnaise. J. Food Sci. Technol. 2019, 56, 2712–2720. [Google Scholar] [CrossRef]
- Witte, V.C.; Krause, G.F.; Bailey, M.F. A new extraction method for determining 2-thiobarbituric acid values of pork and beef during storage. J. Food Sci. 1970, 35, 582–585. [Google Scholar] [CrossRef]
- Hassanein, M.M.; El-Shami, S.M.; El-Mallah, M.H. Changes occurring in vegetable oils composition due to microwave heating. Grasas Aceites 2003, 54, 343–349. [Google Scholar] [CrossRef]
- Corbu, A.R.; Rotaru, A.; Nour, V. Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): The investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour. J. Therm. Anal. Calorim. 2020, 142, 735–747. [Google Scholar] [CrossRef]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focșan, M.; Rugină, D.O.; Pintea, A. Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients 2020, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Nour, V.; Panaite, T.D.; Corbu, A.R.; Ropota, M.; Turcu, R.P. Nutritional and bioactive compounds in dried sea-buckthorn pomace. Erwerbs-Obstbau 2021, 63, 91–98. [Google Scholar] [CrossRef]
- Depree, J.A.; Savage, G.P. Physical and flavour stability of mayonnaise. Trends Food Sci. Technol. 2001, 12, 157–163. [Google Scholar] [CrossRef]
- Herald, T.J.; Abugoush, M.; Aramouni, F. Physical and sensory properties of egg yolk and egg yolk substitutes in a model mayonnaise system. J. Texture Stud. 2009, 40, 692–709. [Google Scholar] [CrossRef]
- Gomes, S.; Freitas-Silva, O.; Lima, J.P. Effect of oregano essential oil on oxidative stability of low- acid mayonnaise. J. Pharm. 2016, 6, 45–52. [Google Scholar]
- Xiong, R.; Xie, G.; Edmondson, A. Modelling the pH of mayonnaise by the ratio of egg to vinegar. Food Control 2000, 11, 49–56. [Google Scholar] [CrossRef]
- Naznin, M.T.; Maeda, T.; Morita, N. Stability of E and Z-ajoene in home-made mayonnaise. Int. J. Food Prop. 2010, 13, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, R.; Karami, M.; Bahramian, S.; Emamifar, A. Production of Low-fat mayonnaise without preservatives: Using the ultrasonic process and investigating of microbial and physicochemical properties of the resultant product. Food Sci. Nutr. 2021, 9, 2676–2685. [Google Scholar] [CrossRef] [PubMed]
- Karas, R.; Skvarča, M.; Žlender, B. Sensory quality of standard and light mayonnaise during storage. Food Technol. Biotechnol. 2002, 40, 119–127. [Google Scholar]
- Pradhananga, M.; Adhikari, B. Sensory and Quality Evaluation of Mayonnaise and Its Effect on Storage Stability. Update Dent. Coll. J. 2016, 2, 48–53. [Google Scholar] [CrossRef]
- Ghorbani Gorji, S.; Smyth, H.E.; Sharma, M.; Fitzgerald, M. Lipid oxidation in mayonnaise and the role of natural antioxidants: A review. Trends Food Sci. Technol. 2016, 56, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Altunkaya, A.; Hedegaard, R.S.V.; Harholt, J.; Brimer, L.; Gökmen, V.; Skibsted, L.H. Oxidative Stability and Chemical Safety of Mayonnaise Enriched with Grape Seed Extract. Food Funct. 2013, 4, 1647–1653. [Google Scholar] [CrossRef]
- Li, C.; Kim, H.-W.; Li, H.; Lee, D.-C.; Rhee, H. Antioxidative Effect of Purple Corn Extracts during Storage of Mayonnaise. Food Chem. 2014, 152, 592–596. [Google Scholar] [CrossRef]
- Tananuwong, K.; Tewaruth, W. Extraction and application of antioxidants from black glutinous rice. LWT-Food Sci. Technol. 2010, 43, 476–481. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. Quantitative analysis, in vitro assessment of bioavailability and antioxidant activity of food carotenoids—A review. J. Food Compos. Anal. 2010, 23, 726–740. [Google Scholar] [CrossRef]
- Rizk, E.M.; Bedier, S.H.; Elgendy, M.A. Utilization of carotenoid pigments extracted from tomato peel as natural antioxidants and colorants in sunflower oil and spaghetti. Egypt. J. Agric. Res. 2014, 92, 309–321. [Google Scholar] [CrossRef]
- Khoo, H.E.; Prasad, K.N.; Kong, K.W.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules 2011, 16, 1710–1738. [Google Scholar] [CrossRef]
- Yilmaz, E. The Chemistry of Fresh Tomato Flavor. Turk. J. Agric. For. 2001, 25, 149–155. [Google Scholar]
- Ayala-Zavala, J.F.; González-Aguilar, G.A.; Del-Toro-Sánchez, L. Enhancing Safety and Aroma Appealing of Fresh-Cut Fruits and Vegetables Using the Antimicrobial and Aromatic Power of Essential Oils. J. Food Sci. 2009, 74, R84–R91. [Google Scholar] [CrossRef]
C | DTB2.5 | DTB5 | |
---|---|---|---|
Total carotenoid content (mg/kg) | nd a | 19.48 ± 0.68 b | 34.86 ± 0.85 c |
Acid value (g/kg) | 0.56 ± 0.03 a | 0.84 ± 0.05 b | 0.98 ± 0.04 c |
Peroxide value (meq/kg) | 2.10 ± 0.10 c | 1.88 ± 0.09 b | 1.42 ± 0.06 a |
Antioxidant activity (mmol/kg) | 2.78 ± 0.13 a | 3.34 ± 0.17 b | 4.01 ± 0.18 c |
L* | 78.85 ± 0.25 c | 76.92 ± 0.28 b | 75.7 ± 0.32 a |
a* | 0.12 ± 0.03 a | 0.65 ± 0.03 b | 0.95 ± 0.04 c |
b* | 6.37 ± 0.21 a | 4.69 ± 0.28 b | 3.61 ± 0.46 c |
Time (Weeks) | MC | MBHT | MDSB2.5 | MDSB5 | MDSB5B |
---|---|---|---|---|---|
pH | |||||
0 | 3.60 ± 0.02 aA | 3.62 ± 0.03 abA | 3.65 ± 0.02 bA | 3.66 ± 0.03 bA | 3.66 ± 0.02 bA |
2 | 3.65 ± 0.03 aAB | 3.68 ± 0.02 aB | 3.66 ± 0.03 aA | 3.67 ± 0.02 aAB | 3.67 ± 0.02 aA |
4 | 3.65 ± 0.03 aAB | 3.73 ± 0.02 bC | 3.66 ± 0.03 aA | 3.67 ± 0.02 aAB | 3.69 ± 0.02 abA |
6 | 3.68 ± 0.03 aBC | 3.78 ± 0.02 bD | 3.66 ± 0.03 aA | 3.69 ± 0.02 aAB | 3.78 ± 0.02 bB |
8 | 3.72 ± 0.03 bC | 3.85 ± 0.02 cE | 3.67 ± 0.03 aA | 3.71 ± 0.02 abB | 3.98 ± 0.02 dC |
Acid values (g/kg) | |||||
0 | 0.90 ± 0.03 c | 0.90 ± 0.03 c | 0.84 ± 0.04 b | 0.79 ± 0.03 a | 0.87 ± 0.03 b |
2 | 1.23 ± 0.04 d | 1.01 ± 0.04 b | 1.12 ± 0.04 c | 1.01 ± 0.05 b | 0.90 ± 0.03 a |
4 | 1.68 ± 0.05 e | 1.29 ± 0.04 c | 1.40 ± 0.04 d | 1.18 ± 0.05 b | 1.27 ± 0.05 a |
6 | 2.24 ± 0.11 d | 1.74 ± 0.08 bc | 1.85 ± 0.10 c | 1.63 ± 0.09 b | 1.46 ± 0.08 a |
8 | 3.14 ± 0.16 d | 2.47 ± 0.10 bc | 2.64 ± 0.14 c | 2.36 ± 0.14 ab | 2.13 ± 0.12 a |
Peroxide values (meq/kg) | |||||
0 | 2.20 ± 0.12 dA | 1.80 ± 0.08 cA | 1.20 ± 0.14 bA | 0.60 ± 0.10 aA | 0.60 ± 0.10 aA |
2 | 2.50 ± 0.23 cAB | 1.90 ± 0.17 bA | 1.60 ± 0.21 abB | 1.50 ± 0.24 aB | 1.40 ± 0.24 aB |
4 | 2.90 ± 0.32 bBC | 1.90 ± 0.34 aA | 2.00 ± 0.28 aC | 1.90 ± 0.24 aC | 1.90 ± 0.24 aC |
6 | 3.20 ± 0.30 bC | 2.00 ± 0.24 aA | 2.90 ± 0.16 bE | 2.10 ± 0.20 aC | 2.30 ± 0.18 aD |
8 | 3.00 ± 0.22 bC | 2.00 ± 0.26 aA | 2.40 ± 0.18 aD | 2.00 ± 0.24 aC | 2.10 ± 0.20 aCD |
TBARS values (mg/kg) | |||||
0 | 0.22 ± 0.02 abA | 0.20 ± 0.02 abA | 0.24 ± 0.02 bA | 0.18 ± 0.03 aA | 0.18 ± 0.03 aA |
2 | 0.33 ± 0.04 dB | 0.26 ± 0.02 abB | 0.32 ± 0.02 cdB | 0.28 ± 0.02 bcB | 0.22 ± 0.02 aB |
4 | 0.57 ± 0.04 dC | 0.34 ± 0.03 abC | 0.45 ± 0.02 cC | 0.37 ± 0.02 bC | 0.32 ± 0.02 aC |
6 | 0.96 ± 0.05 dD | 0.63 ± 0.04 abD | 0.75 ± 0.04 cD | 0.69 ± 0.03 bcD | 0.56 ± 0.03 aD |
8 | 1.46 ± 0.08 dE | 0.88 ± 0.05 bE | 1.04 ± 0.04 cE | 0.94 ± 0.04 bE | 0.68 ± 0.03 aE |
Time (Weeks) | MC | MBHT | MDSB2.5 | MDSB5 | MDSB5B |
---|---|---|---|---|---|
L* | |||||
0 | 93.39 ± 0.32 cA | 94.29 ± 0.47 dD | 86.42 ± 0.66 bB | 84.84 ± 0.77 aBC | 84.23 ± 0.87 aC |
2 | 93.84 ± 0.75 cA | 94.48 ± 0.44 cD | 85.79 ± 0.52 bB | 84.45 ± 0.63 aAB | 84.47 ± 0.39 aCD |
4 | 93.51 ± 0.40 dA | 93.45 ± 0.20 dC | 83.61 ± 0.82 bA | 85.40 ± 0.42 cC | 81.13 ± 0.66 aA |
6 | 93.77 ± 0.51 dA | 92.09 ± 0.49 cB | 84.28 ± 0.47 bA | 83.89 ± 0.47 abA | 83.33 ± 0.48 aB |
8 | 94.08 ± 0.66 eA | 89.36 ± 0.74 dA | 86.21 ± 0.72 cB | 84.23 ± 0.67 aAB | 85.21 ± 0.44 bD |
a* | |||||
0 | −1.92 ± 0.04 aA | −1.74 ± 0.10 aA | 9.91 ± 0.41 bC | 13.43 ± 0.54 cC | 13.97 ± 0.45 dC |
2 | −1.89 ± 0.30 aA | −1.43 ± 0.10 aB | 9.80 ± 0.53 bC | 13.32 ± 0.25 cC | 13.89 ± 0.65 dC |
4 | −1.76 ± 0.43 aA | −1.24 ± 0.40 bBC | 9.58 ± 0.17 cC | 13.11 ± 0.46 dC | 13.69 ± 0.08 eC |
6 | −1.73 ± 0.17 aA | −1.19 ± 0.06 bBC | 8.88 ± 0.35 cB | 12.56 ± 0.21 dB | 12.89 ± 0.16 dB |
8 | −1.70 ± 0.18 aA | −1.15 ± 0.11 bC | 8.32 ± 0.28 cA | 11.81 ± 0.45 dA | 12.04 ± 0.19 dA |
b* | |||||
0 | 9.46 ± 0.20 aC | 10.00 ± 0.48 bB | 29.70 ± 0.23 cB | 39.68 ± 0.39 dD | 40.75 ± 0.48 eB |
2 | 9.01 ± 0.31 aB | 9.65 ± 0.54 aA | 29.09 ± 0.56 bA | 38.85 ± 0.19 cC | 39.81 ± 0.66 dA |
4 | 8.80 ± 0.26 aAB | 9.38 ± 0.12 aA | 28.96 ± 0.70 bA | 38.48 ± 0.33 cC | 39.55 ± 0.57 dA |
6 | 8.68 ± 0.22 aAB | 9.23 ± 0.23 bA | 28.88 ± 0.31 cA | 37.73 ± 0.25 dB | 39.69 ± 0.30 eA |
8 | 8.56 ± 0.24 aA | 9.18 ± 0.33 bA | 29.06 ± 0.20 cA | 35.80 ± 0.25 dA | 39.63 ± 0.85 eA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blejan, A.M.; Nour, V. Physico-Chemical Characteristics, Sensory Attributes and Oxidative Stability of Soy Milk Mayonnaise Enriched in Carotenoids from Tomato By-Products. Appl. Sci. 2023, 13, 7101. https://doi.org/10.3390/app13127101
Blejan AM, Nour V. Physico-Chemical Characteristics, Sensory Attributes and Oxidative Stability of Soy Milk Mayonnaise Enriched in Carotenoids from Tomato By-Products. Applied Sciences. 2023; 13(12):7101. https://doi.org/10.3390/app13127101
Chicago/Turabian StyleBlejan, Ana Maria, and Violeta Nour. 2023. "Physico-Chemical Characteristics, Sensory Attributes and Oxidative Stability of Soy Milk Mayonnaise Enriched in Carotenoids from Tomato By-Products" Applied Sciences 13, no. 12: 7101. https://doi.org/10.3390/app13127101
APA StyleBlejan, A. M., & Nour, V. (2023). Physico-Chemical Characteristics, Sensory Attributes and Oxidative Stability of Soy Milk Mayonnaise Enriched in Carotenoids from Tomato By-Products. Applied Sciences, 13(12), 7101. https://doi.org/10.3390/app13127101