Effectiveness of a Priority Management Scheme of Living Modified Organism Re-Collection Areas in Natural Environments of South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Analysis of LMO Monitoring Project from 2009 to 2013
2.2. Establishment of an Intensive Management Scheme for the LMO Re-Released Sites
2.3. Biological Analysis for LMO Identification of Collected Samples
2.4. Survey Analysis of the Priority Management Areas for Eight Years
2.5. Post-Management of the Priority Management Area
3. Results and Discussion
3.1. LMO Monitoring Project from 2009 to 2013
3.2. Classification Analysis of the LMO Re-Collection Sites and LMO Volunteers
3.3. Development of an Intensive LMO Management Scheme
3.4. Selection and Distribution Analysis of Priority Management Areas
3.5. Survey Analysis of the Priority Management Areas for Eight Years
3.6. Impacts of Intensive Management on Priority Management Areas
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, P.; Mertz, J.E. Personal Reflections on the Origins and Emergence of Recombinant DNA Technology. Genetics 2010, 184, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandi, K.; Mahanti, S.; Dhrubo, D.; Sen, D.D.J.; Dastider, D.; Sudip, K.; Mandal, S. Genetic Engineering-the Foundation of Cutting-Edge Extramural Research. Wjpmr 2020, 6, 257–269. [Google Scholar]
- Kim, H.J.; An, J.-H.; Han, T.-H. Study on the Safety Management of Environmental Risk Assessment Field Trial of Genetically Modified Crops in Korea. J. Agric. Sci. Technol. 2015, 50, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Zeljezić, D. Genetically Modified Organisms in Food—Production, Detection and Risks. Arh. Hig. Rada. Toksikol. 2004, 55, 301–312. [Google Scholar]
- Raman, R. The Impact of Genetically Modified (GM) Crops in Modern Agriculture: A Review. GM Crops Food 2017, 8, 195–208. [Google Scholar] [CrossRef]
- Cho, J.-I.; Park, S.-H.; Lee, G.-S.; Kim, S.-M.; Lim, S.-M.; Kim, Y.-S.; Park, S.-C. Current Status of GM Crop Development and Commercialization. Korean J. Breed. Sci. 2020, 52, 40–48. [Google Scholar] [CrossRef]
- Khush, G.S. Genetically Modified Crops: The Fastest Adopted Crop Technology in the History of Modern Agriculture. Agric. Food Secur. 2012, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Adenle, A.A. Global Capture of Crop Biotechnology in Developing World over a Decade. J. Genet. Eng. Biotechnol. 2011, 9, 83–95. [Google Scholar] [CrossRef] [Green Version]
- Korea Biosafety Cleaning House. Available online: https://www.biosafety.or.kr (accessed on 10 June 2023).
- Tsatsakis, A.M.; Nawaz, M.A.; Tutelyan, V.A.; Golokhvast, K.S.; Kalantzi, O.I.; Chung, D.H.; Kang, S.J.; Coleman, M.D.; Tyshko, N.; Yang, S.H.; et al. Impact on Environment, Ecosystem, Diversity and Health from Culturing and Using GMOs as Feed and Food. Food Chem. Toxicol. 2017, 107, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Brookes, G.; Barfoot, P. Global Income and Production Impacts of Using GM Crop Technology 1996–2014. GM Crops Food 2016, 7, 38–77. [Google Scholar] [CrossRef] [Green Version]
- Finger, R.; El Benni, N.; Kaphengst, T.; Evans, C.; Herbert, S.; Lehmann, B.; Morse, S.; Stupak, N. A Meta Analysis on Farm-Level Costs and Benefits of GM Crops. Sustainability 2011, 3, 743–762. [Google Scholar] [CrossRef] [Green Version]
- Züghart, W.; Benzler, A.; Berhorn, F.; Sukopp, U.; Graef, F. Determining Indicators, Methods and Sites for Monitoring Potential Adverse Effects of Genetically Modified Plants to the Environment: The Legal and Conceptional Framework for Implementation. Euphytica 2008, 164, 845–852. [Google Scholar] [CrossRef]
- Damgaard, C.; Kjellsson, G. Gene Flow of Oilseed Rape (Brassica napus) According to Isolation Distance and Buffer Zone. Agric. Ecosyst. Environ. 2005, 108, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Dunfield, K.E.; Germida, J.J. Impact of Genetically Modified Crops on Soil- and Plant-Associated Microbial Communities. J. Environ. Qual. 2004, 33, 806–815. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.-L.; Yang, M.-K.; Du, M.-H.; Zhong, Z.-Z.; Lu, Y.-T.; Wang, G.-H.; Hua, X.-M.; Fazal, A.; Mu, C.-H.; Yan, S.-F.; et al. Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Front. Microbiol. 2019, 10, 1335. [Google Scholar] [CrossRef] [PubMed]
- Dunfield, K.E.; Germida, J.J. Seasonal Changes in the Rhizosphere Microbial Communities Associated with Field-Grown Genetically Modified Canola (Brassica napus). Appl. Environ. Microbiol. 2003, 69, 7310–7318. [Google Scholar] [CrossRef] [Green Version]
- Dunfield, K.E.; Germida, J.J. Diversity of Bacterial Communities in the Rhizosphere and Root Interior of Field-Grown Genetically Modified Brassica napus. FEMS Microbiol. Ecol. 2001, 38, 1–9. [Google Scholar] [CrossRef]
- Lee, Y.-E.; Yang, S.-H.; Bae, T.-W.; Kang, H.-G.; Lim, P.-O.; Lee, H.-Y. Effects of Field-Grown Genetically Modified Zoysia Grass on Bacterial Community Structure. J. Microbiol. Biotechnol. 2011, 21, 333–340. [Google Scholar] [CrossRef]
- Babujia, L.C.; Silva, A.P.; Nakatani, A.S.; Cantão, M.E.; Vasconcelos, A.T.R.; Visentainer, J.V.; Hungria, M. Impact of Long-Term Cropping of Glyphosate-Resistant Transgenic Soybean [Glycine max (L.) Merr.] on Soil Microbiome. Transgenic Res. 2016, 25, 425–440. [Google Scholar] [CrossRef]
- Lu, G.-H.; Zhu, Y.-L.; Kong, L.-R.; Cheng, J.; Tang, C.-Y.; Hua, X.-M.; Meng, F.-F.; Pang, Y.-J.; Yang, R.-W.; Qi, J.-L.; et al. Impact of a Glyphosate-Tolerant Soybean Line on the Rhizobacteria, Revealed by Illumina MiSeq. J. Microbiol. Biotechnol. 2017, 27, 561–572. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; van der Heijden, M.G.A. Soil Microbiomes and One Health. Nat. Rev. Microbiol. 2023, 21, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Trinh, P.; Zaneveld, J.R.; Safranek, S.; Rabinowitz, P.M. One Health Relationships Between Human, Animal, and Environmental Microbiomes: A Mini-Review. Front. Public Health 2018, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Liu, H.; Trivedi, P. Eco-Holobiont: A New Concept to Identify Drivers of Host-Associated Microorganisms. Environ. Microbiol. 2020, 22, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.-J.; Cui, Y.; Yoo, S.-H.; Lee, J.R. Organic Connection of Holobiont Components and the Essential Roles of Core Microbes in the Holobiont Formation of Feral Brassica Napus. Front. Microbiol. 2022, 13, 920759. [Google Scholar] [CrossRef]
- Pepoyan, A.Z.; Chikindas, M.L. Plant-Associated and Soil Microbiota Composition as a Novel Criterion for the Environmental Risk Assessment of Genetically Modified Plants. GM Crops Food 2019, 11, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kinderlerer, J. The Cartagena Protocol on Biosafety. Collect. Biosaf. Rev. 2008, 4, 12–65. [Google Scholar]
- Meyer, H. The Cartagena Protocol on Biosafety. Biotechnol. Dev. Monit. 2000, 43, 2–7. [Google Scholar]
- Moon, G.H. The Status of Biosafety Management and Control for Industrial Contained Use of LMOs. Food Sci. Ind. 2019, 52, 140–152. [Google Scholar] [CrossRef]
- Yamanouchi, K. Regulatory Considerations on Transgenic Livestock in Japan in Relation to the Cartagena Protocol. Theriogenology 2007, 67, 185–187. [Google Scholar] [CrossRef]
- Law Concerning the Conservation and Sustainable Use of Biological Diversity through Regulations on the Use of Living Modified Organisms (Law No. 97 of 2003). 30. Available online: http://www.env.go.jp/content/.pdf (accessed on 10 June 2023).
- Care, H.; Gene, A. Technology Act 2000. Available online: https://www.legislation.gov.au/Details/C2016C00792/ (accessed on 10 June 2023).
- Davison, J.; Bertheau, Y. EU Regulations on the Traceability and Detection of GMOs: Difficulties in Interpretation, Implementation and Compliance. CAB Rev. 2007, 2, 077. [Google Scholar] [CrossRef]
- Directive 2001/18/EC of the European Parliament and of the Council on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EEC | UNEP Law and Environment Assistance Platform. Available online: https://leap.unep.org/countries/eu/national-legislation/directive-200118ec-european-parliament-and-council-deliberate (accessed on 10 June 2023).
- Kim, H.-C.; Kim, H.M. Risk Assessment of Genetically Modified Organisms. Risk Assess. Genet. Modif. Org. 2003, 19, s1008. [Google Scholar] [CrossRef]
- Oh, S.-W.; Kim, E.-H.; Lee, S.-Y.; Baek, D.-Y.; Lee, S.-G.; Kang, H.-J.; Chung, Y.-S.; Park, S.-K.; Ryu, T.-H. Compositional Equivalence Assessment of Insect-Resistant Genetically Modified Rice Using Multiple Statistical Analyses. GM Crops Food 2021, 12, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.-S. Technocratic Precautionary Principle: Korean Risk Governance of Genetically Modified Organisms. New Genet. Soc. 2014, 33, 204–224. [Google Scholar] [CrossRef]
- Choi, W.K.; Jo, B.H.; Seol, M.A.; Eum, S.J.; Park, J.H.; Song, H.R. Presence of Environmental Risk Assessments for LMOs in nature and Future Considerations based on New Biotechnologies. J. Korean Soc. Int. Agric. 2014, 26, 297–302. [Google Scholar] [CrossRef]
- Nam, K.-H.; Han, S.M. Seed Germination of Sunflower as a Case Study for the Risk Assessment and Management of Transgenic Plants Used for Environmental Remediation in South Korea. Sustainability 2020, 12, 10110. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidance on the Environmental Risk Assessment of Genetically Modified Plants. EFSA J. 2010, 8, 1879. [Google Scholar] [CrossRef]
- Gray, A. Problem Formulation in Environmental Risk Assessment for Genetically Modified Crops: A Practitioner’s Approach. Collect. Biosaf. Rev. 2012, 6, 10–65. [Google Scholar]
- Gatew, H.; Mengistu, K. Genetically Modified Foods (GMOs); a Review of Genetic Engineering. J. World’s Poult. Res. 2019, 9, 157–163. [Google Scholar] [CrossRef]
- Convention on Biological Diversity. Guidance on Risk Assessment of Living Modified Organisms and Monitoring in the Context of Risk Assessment. 2016. UNEP/CBD/BS/COP-MOP/8/8/Add.1. Available online: https://www.cbd.int/doc/meetings/bs/mop-08/official/bs-mop-08-08-add1-en.pdf (accessed on 10 June 2023).
- Kuiper, H.A.; Davies, H.V. The SAFE FOODS Risk Analysis Framework Suitable for GMOs? A Case Study. Food Control 2010, 21, 1662–1676. [Google Scholar] [CrossRef]
- Transboundary Movement, Etc. of Living Modified Organisms Act. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC195089/ (accessed on 10 June 2023).
- Saji, H.; Nakajima, N.; Aono, M.; Tamaoki, M.; Kubo, A.; Wakiyama, S.; Hatase, Y.; Nagatsu, M. Monitoring the Escape of Transgenic Oilseed Rape around Japanese Ports and Roadsides. Environ. Biosaf. Res. 2005, 4, 217–222. [Google Scholar] [CrossRef]
- Nakajima, N.; Nishizawa, T.; Aono, M.; Tamaoki, M.; Saji, H. Occurrence of Spilled Genetically Modified Oilseed Rape Growing along a Japanese Roadside Over 10 Years. Weed Biol. Manag. 2020, 20, 139–146. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Beckie, H.J.; Matsuo, K. Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ. Biosaf. Res. 2006, 5, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Kim, I.R.; Lee, S.H.; Choi, W.K.; Yoon, A.-M.; Lee, J.R. Establishment and Application of a Monitoring Strategy for Living Modified Cotton in Natural Environments in South Korea. Appl. Sci. 2021, 11, 10259. [Google Scholar] [CrossRef]
- Kim, Y.-C.; Kim, A.R.; Lim, J.P.; Kim, T.-S.; Park, S.-G.; Kim, M.H.; Lee, J.R.; Kim, D.-H. Distribution and Management of Nutria (Myocastor coypus) Populations in South Korea. Sustainability 2019, 11, 4169. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.W.; Kim, I.R.; Lim, H.S.; Choi, W.K.; Lee, J.R. Development of Multiplex PCR Assay to Monitor Living Modified Cottons in South Korea. Appl. Sci. 2019, 9, 2688. [Google Scholar] [CrossRef] [Green Version]
- Hall, T. BIOEDIT: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/ NT. Available online: https://www.semanticscholar.org/paper/BIOEDIT%3A-A-USER-FRIENDLY-BIOLOGICAL-SEQUENCE-EDITOR-Hall/0ae262d9cf78536754bc064e07113ab5e978f208 (accessed on 10 June 2023).
- Eum, S.-J.; Kim, I.R.; Lim, H.S.; Lee, J.R.; Choi, W. Event-Specific Multiplex PCR Method for Four Genetically Modified Cotton Varieties, and Its Application. Appl. Biol. Chem. 2019, 62, 52. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Lee, J.R.; Yoon, A.-M.; Yi, S.M.; Park, J.H.; Nam, K.-H.; Jung, Y.J.; Kim, I.R.; Chun, S.-J.; Lee, E.S.; et al. Detection Method for LMO in Natural Environment; National Institute of Ecology: Seocheon, Republic of Korea, 2022; pp. 1–143. [Google Scholar]
2009 | 2010 | 2011 | 2012 | 2013 | Total | |
---|---|---|---|---|---|---|
LMO collection sites | 8 (19) a | 10 (12) | 10 (19) | 19 (42) | 18 (21) | 65 (113) |
LMO re-collection sites | 5 (14) b | 3 (3) | 4 (11) | 8 (18) | 5 (6) | 25 (52) |
Categories | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | Total |
---|---|---|---|---|---|---|---|---|---|
Roadside | 19 | 3 | 9 | 1 | 18 | 48 | 21 | 36 | 155 |
Stockbreeding farm | 4 | 13 | 7 | 3 | 18 | 7 | 10 | 14 | 76 |
Feed factory | 0 | 0 | 2 | 0 | 1 | 0 | 22 | 11 | 36 |
Port | 0 | 0 | 2 | 1 | 2 | 1 | 0 | 1 | 7 |
Other | 0 | 2 | 0 | 1 | 7 | 6 | 6 | 3 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, H.S.; Yoon, A.-M.; Kim, I.R.; Choi, W.; Jung, Y.J.; Lee, S.; Lee, J.R. Effectiveness of a Priority Management Scheme of Living Modified Organism Re-Collection Areas in Natural Environments of South Korea. Appl. Sci. 2023, 13, 7185. https://doi.org/10.3390/app13127185
Lim HS, Yoon A-M, Kim IR, Choi W, Jung YJ, Lee S, Lee JR. Effectiveness of a Priority Management Scheme of Living Modified Organism Re-Collection Areas in Natural Environments of South Korea. Applied Sciences. 2023; 13(12):7185. https://doi.org/10.3390/app13127185
Chicago/Turabian StyleLim, Hye Song, A-Mi Yoon, Il Ryong Kim, Wonkyun Choi, Young Jun Jung, Sunghyeon Lee, and Jung Ro Lee. 2023. "Effectiveness of a Priority Management Scheme of Living Modified Organism Re-Collection Areas in Natural Environments of South Korea" Applied Sciences 13, no. 12: 7185. https://doi.org/10.3390/app13127185
APA StyleLim, H. S., Yoon, A.-M., Kim, I. R., Choi, W., Jung, Y. J., Lee, S., & Lee, J. R. (2023). Effectiveness of a Priority Management Scheme of Living Modified Organism Re-Collection Areas in Natural Environments of South Korea. Applied Sciences, 13(12), 7185. https://doi.org/10.3390/app13127185