Three-Dimensional Kinematics and Kinetics of the Overhead Deep Squat in Healthy Adults: A Descriptive Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Informed Consent
2.3. Participants
2.4. Instrumentation
Procedures
2.5. Data Reduction and Analysis
3. Results
3.1. Sample Demographics
Descriptive Kinematic and Kinetic Results
3.2. Forefoot, Hindfoot, and Tibia Kinematics
3.2.1. Forefoot Relative to Hindfoot (HF/FF)
3.2.2. Forefoot (FF) Relative to Tibia
3.2.3. Hindfoot (HF) Relative to Tibia
3.3. Kinetics—Ankle Joint Moments and Power
3.4. Tibiofemoral Joint (TFJ) Kinematics
3.5. Kinetics—TFJ Moments and Power
3.6. Hip Joint Kinematics
3.7. Kinetics—Hip Joint Moments and Power
3.8. Pelvic Kinematics
3.8.1. Trunk Motion Relative to the Pelvis
3.8.2. Trunk Motion Relative to Laboratory Coordinate System
3.9. Upper Extremity Kinematics (Humerus Relative to the Trunk Segment)
3.10. Ground Reaction Forces (GRFs)
4. Discussion
4.1. Ankle/Foot Kinematics
4.2. Knee Joint Kinematics
4.3. Hip Joint Kinematics
4.4. Trunk and Pelvic Segment Kinematics
4.5. Lower Extremity Kinetics
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuchna, J.W.; Hoch, M.C.; Hoch, J.M. The interrater and intrarater reliability of the functional movement screen: A systematic review with meta-analysis. Phys. Ther. Sport 2016, 19, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Dorrel, B.S.; Long, T.; Shaffer, S.; Myer, G.D. Evaluation of the Functional Movement Screen as an injury prediction tool among active adult populations: A systematic review and meta-analysis. Sports Health 2015, 7, 532–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garrison, M.; Westrick, R.; Johnson, M.R.; Benenson, J. Association between the functional movement screen and injury development in college athletes. Int. J. Sports Phys. Ther. 2015, 10, 21–28. [Google Scholar]
- Schneiders, A.G.; Davidsson, A.; Hörman, E.; Sullivan, S.J. Functional movement screen normative values in a young, active population. Int. J. Sports Phys. Ther. 2011, 6, 75–82. [Google Scholar]
- Teyhen, D.S.; Shaffer, S.W.; Lorenson, C.L.; Halfpap, J.P.; Donofry, D.F.; Walker, M.J.; Dugan, J.L.; Childs, J.D. The Functional Movement Screen: A reliability study. J. Orthop. Sports Phys. Ther. 2012, 42, 530–540. [Google Scholar] [CrossRef] [Green Version]
- Clifton, D.R.; Grooms, D.R.; Onate, J.A. Overhead deep squat performance predicts Functional Movement Screen™ score. Int. J. Sports Phys. Ther. 2015, 10, 622–627. [Google Scholar]
- Armstrong, R.; Greig, M. Injury identification: The efficacy of the functional movement screenTM in female and male rugby union players. Int. J. Sports Phys. Ther. 2018, 13, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Bonazza, N.A.; Smuin, D.; Onks, C.Y.; Silvis, M.L.; Dhawan, A. Reliability, validity, and injury predictive value of the Functional Movement Screen: A systematic review with meta-analysis. Am. J. Sports Med. 2016, 45, 725–732. [Google Scholar] [CrossRef]
- Smith, C.A.; Chimera, N.J.; Wright, N.J.; Warren, M. Interrater and Intrarater Reliability of the Functional Movement Screen. J. Strength Cond. Res. 2013, 27, 982–987. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.J.; Plisky, P.J.; Southers, C.; Scoma, C.; Kiesel, K.B. Biomechanical analysis of the different classifications of the Functional Movement Screen deep squat test. Sports Biomech. 2010, 9, 270–279. [Google Scholar] [CrossRef]
- Bell, D.R.; Oates, D.C.; Clark, M.A.; Padua, D.A. Two- and 3-dimensional knee valgus are reduced after an exercise intervention in young adults with demonstrable valgus during squatting. J. Athl. Train. 2013, 48, 442–449. [Google Scholar] [CrossRef] [Green Version]
- Dill, K.E.; Begalle, R.L.; Frank, B.S.; Zinder, S.M.; Padua, D.A. Altered knee and ankle kinematics during squatting in those with limited weight-bearing–lunge ankle-dorsiflexion range of motion. J. Athl. Train. 2014, 49, 723–732. [Google Scholar] [CrossRef] [Green Version]
- List, R.; Gülay, T.; Stoop, M.; Lorenzetti, S. Kinematics of the trunk and the lower extremities during restricted and unrestricted squats. J. Strength Cond. Res. 2013, 27, 1529–1538. [Google Scholar] [CrossRef]
- Graci, V.; Van Dillen, L.R.; Salsich, G.B. Gender differences in trunk, pelvis and lower limb kinematics during a single leg squat. Gait Posture 2012, 36, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Heredia CLockie, R.G.; Lynn, S.K.; Paumukoff, D.N. Comparison of lower extremity kinematics during the overhead deep squat by Functional Movement Screen score. J. Sports Sci. Med. 2021, 20, 759–765. [Google Scholar] [CrossRef]
- Mauntel, T.C.; Post, E.G.; Padua, D.A.; Bell, D.R. Sex Differences during an Overhead Squat Assessment. J. Appl. Biomech. 2015, 31, 244–249. [Google Scholar] [CrossRef]
- Stebbins, J.; Harrington, M.; Thompson, N.; Zavatsky, A.; Theologis, T. Repeatability of a model for measuring multi-segment foot kinematics in children. Gait Posture 2006, 23, 401–410. [Google Scholar] [CrossRef]
- Scattone Silva, R.; Maciel, C.D.; Serrão, F.V. The effects of forefoot varus on hip and knee kinematics during single-leg squat. Man. Ther. 2015, 20, 79–83. [Google Scholar] [CrossRef]
- Han, D.; Nam, S.; Song, J.; Lee, W.; Kang, T. The effect of knee flexion angles and ground conditions on the muscle activation of the lower extremity in the squat position. J. Phys. Ther. Sci. 2017, 29, 1852–1855. [Google Scholar] [CrossRef] [Green Version]
- Minick, K.I.; Kiesel, K.B.; Burton, L.; Taylor, A.; Plisky, P.; Butler, R.J. Interrater reliability of the Functional Movement Screen. J. Strength Cond. Res. 2010, 24, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Hollman, J.H.; Galardi, C.M.; Lin, I.-H.; Voth, B.C.; Whitmarsh, C.L. Frontal and transverse plane hip kinematics and gluteus maximus recruitment correlate with frontal plane knee kinematics during single-leg squat tests in women. Clin. Biomech. 2014, 29, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Roos, P.E.; Button, K.; van Deursen, R.W.M. Motor control strategies during double leg squat following anterior cruciate ligament rupture and reconstruction: An observational study. J. NeuroEng. Rehabil. 2014, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B.J.; Voight, M. Functional movement screening: The use of fundamental movements as an assessment of function—Part 1. Int. J. Sports Phys. Ther. 2014, 9, 396–409. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Woltring, H.J. A Fortran package for generalized, cross-validatory spline smoothing and differentiation. Adv. Eng. Softw. 1986, 8, 104–113. [Google Scholar] [CrossRef]
- Balsdon, M.E.R.; Dombroski, C.E. Reliability of a multi-segment foot model in a neutral cushioning shoe during treadmill walking. J. Foot Ankle Res. 2018, 1, 60. [Google Scholar] [CrossRef]
- Carson, M.C.; Harrington, M.E.; Thompson, N.; O’Connor, J.J.; Theologis, T.N. Kinematic analysis of a multi-segment foot model for research and clinical applications: A repeatability analysis. J. Biomech. 2001, 34, 1299–1307. [Google Scholar] [CrossRef]
- Harrington, M.E.; Zavatsky, A.B.; Lawson, S.E.M.; Yuan, Z.; Theologis, T.N. Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging. J. Biomech. 2007, 40, 595–602. [Google Scholar] [CrossRef]
- Murray, I.A.; Johnson, G.R. A study of the external forces and moments at the shoulder and elbow while performing every day tasks. Clin. Biomech. 2004, 19, 586–594. [Google Scholar] [CrossRef]
- Parker, K.; Stebbins, J.; Bates, J. Comparing the Harrington and Davis method of hip joint centre localisation for unimpaired and pathological subjects. Gait Posture 2014, 39, S114–S115. [Google Scholar] [CrossRef]
- Wright, C.J.; Arnold, B.L.; Coffey, T.G.; Pidcoe, P.E. Repeatability of the modified Oxford foot model during gait in healthy adults. Gait Posture 2011, 33, 108–112. [Google Scholar] [CrossRef]
- Stief, F.; Böhm, H.; Michel, K.; Schwirtz, A.; Döderlein, L. Reliability and accuracy in three-dimensional gait analysis: A comparison of two lower body protocols. J. Appl. Biomech. 2013, 29, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Mantovani, G.; Ng, K.C.G.; Lamontagne, M. Regression models to predict hip joint centers in pathological hip population. Gait Posture 2016, 44, 48–54. [Google Scholar] [CrossRef]
- Baker, R. Measuring Walking: A Handbook of Clinical Gait Analysis; Mac Keith Press: London, UK, 2013; Volume 56, Available online: http://doi.wiley.com/10.1111/dmcn.12288 (accessed on 24 June 2019).
- DeLeo, A.T.; Dierks, T.A.; Ferber, R.; Davis, I.S. Lower extremity joint coupling during running: A current update. Clin. Biomech. 2004, 19, 983–991. [Google Scholar] [CrossRef]
- Dierks, T.A.; Davis, I. Discrete and continuous joint coupling relationships in uninjured recreational runners. Clin. Biomech. 2007, 22, 581–591. [Google Scholar] [CrossRef]
- Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation, 3rd ed.; Elsevier: St Louis, MO, USA, 2016. [Google Scholar]
- Robertson, D.G.E.; Caldwell, G.E.; Hamill, F.; Kamen, G.; Whittlesey, S.N. Research Methods in Biomechanics, 2nd ed.; Human Kinetics: Boston, MA, USA, 2013. [Google Scholar]
- Wing, A.; Flanagan, J.; Richardson, J. Anticipatory postural adjustments in stance and grip. Exp. Brain Res. 1997, 116, 122–130. [Google Scholar] [CrossRef]
- Khamis, S.; Yizhar, Z. Effect of feet hyperpronation on pelvic alignment in a standing position. Gait Posture 2007, 25, 127–134. [Google Scholar] [CrossRef]
- Kainz, H.; Carty, C.P.; Modenese, L.; Boyd, R.N.; Lloyd, D.G. Estimation of the hip joint centre in human motion analysis: A systematic review. Clin. Biomech. 2015, 30, 319–329. [Google Scholar] [CrossRef]
- Cashman, G. The effect of weak hip abductors or external rotators on knee valgus kinematics in healthy subjects: A systematic review. J. Sport Rehabil. 2012, 21, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, M.H.; Trost, J.P.; Wervey, R.A. Measurement and management of errors in quantitative gait data. Gait Posture 2004, 20, 196–203. [Google Scholar] [CrossRef] [Green Version]
Characteristic | |||
---|---|---|---|
Sex | Male (N = 32) | Female (N = 40) | All (N = 72) |
Age (y) | 24.93 ± 2.7 | 23.55 ± 2.7 | 24.16 ± 2.8 |
Height (cm) | 180.1 ± 7.3 | 165.5 ± 6.3 | 171.3 ± 10.3 |
Weight (kg) | 80.9 ± 10.3 | 58.9 ± 7.8 | 68.5 ± 14.1 |
BMI (kg/m2) | 25.0 ± 4.1 | 21.8 ± 2.4 | 23.2 ± 3.6 |
1% | 25% | 50% | 76% | 100% | |
---|---|---|---|---|---|
Kinematics (All Reported in Degrees) | |||||
L HF/FF Dorsi/Plantarflexion | −1.59 (4.17) | 7.70 (5.18) | 10.82 (5.41) | 7.86 (5.37) | −2.38 (3.92) |
L HF/FF Add/Abduction | 6.35 (4.89) | 7.32 (4.86) | 6.99 (4.94) | 6.79 (4.67) | 6.16 (4.87) |
L HF/FF Sup/Pronatio | −5.34 (6.23) | −6.07 (6.48) | −6.86 (6.65) | −5.98 (6.58) | −5.13 (6.31) |
Tibia/FF Dorsi/Plantarflexion | 0.89 (4.09) | 22.78 (6.65) | 30.31 (5.83) | 22.40 (8.02) | −1.29 (3.62) |
L Tibia/FF Add/Abduction | 8.06 (4.35) | 8.64 (6.45) | 3.30 (7.06) | 6.90 (6.19) | 7.25 (4.30) |
L Tibia/FF Sup/Pronation | 4.17 (8.88) | 1.54 (9.33) | −2.57 (9.65) | 0.51 (9.48) | 3.71 (8.83) |
L Tibia/HF Dorsi/Plantarflexio | 3.44 (3.48) | 15.76 (5.99) | 19.28 (5.90) | 14.92 (6.41) | 1.82 (3.59) |
L Tibia/HF Add/Abduction | 1.96 (3.71) | 0.32 (4.78) | −4.42 (5.06) | −0.56 (4.73) | 1.44 (3.98) |
L Tibia/HF Sup/Pronation | 9.38 (6.11) | 7.59 (6.20) | 3.47 (6.38) | 6.65 (6.07) | 8.69 (5.83) |
L TFJ Flexion/Extension | 0.22 (6.43) | 68.29 (14.91) | 122.88 (17.47) | 78.20 (21.29) | −1.14 (5.85) |
L TFJ Varus/Valgus | 0.04 (2.55) | 0.72 (7.18) | 0.28 (9.66) | −1.25 (8.52) | 0.10 (2.68) |
L TFJ Rotation | −17.66 (8.90) | −6.01 (8.61) | 3.45 (11.67) | −5.50 (8.83) | −15.75 (9.16) |
L Hip Flexion/Extension | 10.50 (6.03) | 75.24 (13.92) | 118.74 (13.22) | 84.47 (16.71) | 12.77 (7.36) |
L Hip Add/Abduction | −0.81 (2.83) | −16.00 (5.17) | −19.33 (5.55) | −15.15 (5.57) | −7.95 (2.75) |
L Hip Rotation | −4.33 (8.40) | −4.24 (9.22) | 10.65 (14.09) | −2.97 (11.72) | −7.08 (7.98) |
L Pelvic Anterior Tilt | 15.27 (4.61) | 32.86 (6.86) | 26.90 (11.55) | 31.00 (6.92) | 16.47 (5.55) |
L Pelvic Obliquity | 0.56 (1.39) | 1.16 (1.96) | 1.14 (2.82) | 0.87 (2.12) | 0.50 (1.47) |
L Pelvic Rotation | −0.87 (2.35) | −0.74 (2.02) | −0.14 (2.17) | 0.16 (2.45) | −0.63 (2.09) |
L Trunk Rel to Pelvis Forw/Backw lean | 24.16 (5.88) | 21.04 (6.65) | −5.06 (13.91) | 9.56 (10.35) | 21.47 (6.07) |
L Trunk Rel to Pelvis Lateral Lean | 0.58 (1.69) | 0.87 (1.91) | 0.93 (2.70) | 0.77 (2.23) | 0.54 (1.95) |
L Trunk Rel to Pelvis Rotation | −0.10 (3.59) | 0.12 (3.21) | 0.17 (3.17) | 0.10 (3.11) | −0.08 (3.35) |
L Trunk Forw/Backw Lean | 8.90 (3.06) | −11.80 (5.98) | −31.91 (10.13) | −21.41 (8.72) | 4.99 (3.88) |
L Trunk Lateral Lean | 0.05 (1.10) | −0.33 (1.46) | −0.25 (2.13) | −0.12 (1.98) | 0.08 (1.23) |
Left Trunk Rotation | −0.88 (2.93) | −0.84 (2.77) | −0.48 (2.52) | −0.10 (2.80) | −0.64 (2.81) |
L Shoulder Abduction | 126.61 (8.18) | 126.29 (8.99) | 125.49 (9.47) | 125.00 (9.35) | 121.81 (10.31) |
L Shoulder External Rotation | 80.92 (16.31) | 82.14 (17.01) | 83.93 (17.83) | 81.45 (17.42) | 77.50 (16.31) |
Kinetics | |||||
L Ankle Plantar/Dorsi Moment (Nm/kg) | 0.28 (0.01) | 0.16 (0.11) | 0.23(0.16) | 0.11(0.08) | 0.25(0.10) |
L Ankle Ev/Inv Moment (Nm/kg) | 0.03 (0.05) | −0.03 (0.05) | −0.09 (0.06) | −0.03 (0.05) | 0.03 (0.04) |
L Ankle Ext/Int Moment (Nm/kg) | 0.03 (0.03) | 0.05 (0.04) | 0.05 (0.05) | 0.04 (0.04) | 0.03 (0.03) |
L Ankle Power (Watts/kg) | −0.01 (0.02) | −0.06 (0.06) | 0.00 (0.02) | 0.05 (0.05) | 0.00 (0.07) |
L TFJ Flex/Ext Moment (Nm/kg) | −0.14 (0.13) | 0.62 (0.21) | 0.80 (0.25) | 0.68 (0.22) | −0.18 (0.12) |
L TFJ Valgus/Varus Moment (Nm/kg) | −0.03 (0.06) | 0.05 (0.11) | 0.27 (0.21) | 0.04 (0.15) | −0.03 (0.07) |
L TFJ Ext/Int Moment (Nm/kg) | 0.03 (0.03) | 0.08 (0.08) | 0.30 (0.12) | 0.08 (0.06) | 0.02 (0.03) |
L TFJ Power (Watts/kg) | 0.02 (0.04) | −1.09 (0.50) | −0.27 (0.35) | 1.37 (0.51) | 0.00 (0.03) |
L Hip Flex/Ext Moment (Nm/kg) | 0.00 (0.13) | 0.43 (0.19) | 0.77 (0.20) | 0.57 (0.22) | 0.05 (0.14) |
L Hip Add/Abduction Moment (Nm/kg) | 0.01 (0.07) | −0.18 (0.13) | −0.54 (0.16) | −0.21 (0.20) | 0.00 (0.08) |
L Hip Ext/Int Moment (Nm/kg) | 0.03 (0.03) | 0.07 (0.09) | −0.14 (0.15) | 0.05 (0.11) | 0.03 (0.05) |
L Hip Power (Watts/kg) | 0.00 (0.02) | −0.40 (0.19) | −0.13 (0.17) | 0.52 (0.20) | 0.01 (0.03) |
Left Vertical GRF (% body weight) | 0.51 (0.04) | 0.48 (0.05) | 0.55 (0.07) | 0.50 (0.05) | 0.51 (0.05) |
Left Posterior/Anterior GRF (% body weight) | 0.07 (0.01) | 0.05 (0.02) | −0.01 (0.04) | 0.05 (0.26) | 0.07 (0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoogenboom, B.J.; May, C.J.; Alderink, G.J.; Thompson, B.S.; Gilmore, L.A. Three-Dimensional Kinematics and Kinetics of the Overhead Deep Squat in Healthy Adults: A Descriptive Study. Appl. Sci. 2023, 13, 7285. https://doi.org/10.3390/app13127285
Hoogenboom BJ, May CJ, Alderink GJ, Thompson BS, Gilmore LA. Three-Dimensional Kinematics and Kinetics of the Overhead Deep Squat in Healthy Adults: A Descriptive Study. Applied Sciences. 2023; 13(12):7285. https://doi.org/10.3390/app13127285
Chicago/Turabian StyleHoogenboom, Barbara J., Christopher J. May, Gordon J. Alderink, Brian S. Thompson, and Lukas A. Gilmore. 2023. "Three-Dimensional Kinematics and Kinetics of the Overhead Deep Squat in Healthy Adults: A Descriptive Study" Applied Sciences 13, no. 12: 7285. https://doi.org/10.3390/app13127285
APA StyleHoogenboom, B. J., May, C. J., Alderink, G. J., Thompson, B. S., & Gilmore, L. A. (2023). Three-Dimensional Kinematics and Kinetics of the Overhead Deep Squat in Healthy Adults: A Descriptive Study. Applied Sciences, 13(12), 7285. https://doi.org/10.3390/app13127285