Antioxidant, Antibacterial, and Cosmeceutical Potential of Four Common Edible Mushrooms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mushroom Materials
2.2. Mushroom Extracts
2.3. Evaluation of Phenolic Composition
2.4. Determination of Antiradical and Antioxidant Capacities
2.5. Phenolic Compound Analysis Using High-Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD)
2.6. Antibacterial Activity
2.7. Anti-Hyaluronidase Activity
- -
- B1: 20 µL of distilled water + 20 µL of enzyme diluent + 20 µL of enzyme diluent + 20 µL of 300 mM sodium phosphate buffer + 100 µL of acid albumin solution;
- -
- B2: 20 µL of distilled water + 20 µL of enzyme diluent + 20 µL of enzyme diluent + 20 µL of hyaluronic acid solution + 100 µL of acid albumin solution;
- -
- B3: 20 µL of distilled water + 20 µL of enzyme diluent + 20 µL of hyaluronidase enzyme solution + 20 µL of hyaluronic acid + 100 µL of acid albumin solution.
- -
- B4: 20 µL of sample + 20 µL of enzyme diluent + 20 µL of hyaluronidase enzyme solution + 20 µL of 300 mM sodium phosphate buffer + 100 µL of acid albumin solution;
- -
- B5: 20 µL of sample + 20 µL of enzyme diluent + 20 µL of enzyme diluent + 20 µL of hyaluronic acid solution + 100 µL of acid albumin solution.
2.8. Anti-Tyrosinase Activity
2.9. Cosmetic Cream Formulations with the Extracts
2.9.1. Stability Tests
2.9.2. TPC and Antioxidant Activity of the Creams
2.10. Statistical Analysis
3. Results and Discussion
3.1. Phenolic Contents and In Vitro Antioxidant Capacity
3.2. Phenolic Profile
3.3. Antibacterial Activity
3.4. Cosmeceutical Properties of Mushroom Extracts
3.5. Incorporation of A. bisporus Extract into a Cosmetic Cream
3.5.1. Stability Tests of a Cosmetic Cream Containing A. bisporus Extract
3.5.2. Phenolic Contents and In Vitro Antioxidant Capacity of a Cosmetic Cream Containing A. bisporus Extract
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019. [Google Scholar]
- Esparza, I.; Jiménez-Moreno, N.; Bimbela, F.; Ancín-Azpilicueta, C.; Gandía, L.M. Fruit and vegetable waste management: Conventional and emerging approaches. J. Environ. Manag. 2020, 265, 110510. [Google Scholar] [CrossRef]
- Roy, P.; Mohanty, A.K.; Dick, P.; Misra, M. A Review on the Challenges and Choices for Food Waste Valorization: Environmental and Economic Impacts. ACS Environ. Au 2023, 3, 58–75. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 10 March 2023).
- Antunes, F.; Marçal, S.; Taofiq, O.; Morais, A.; Freitas, A.C.; Ferreira, I.; Pintado, M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020, 25, 2672. [Google Scholar] [CrossRef] [PubMed]
- Abdelshafy, A.M.; Belwal, T.; Liang, Z.; Wang, L.; Li, D.; Luo, Z.; Li, L. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Crit. Rev. Food Sci. Nutr. 2022, 62, 6204–6224. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Mehra, R.; Guiné, R.P.F.; Lima, M.J.; Kumar, N.; Kaushik, R.; Ahmed, N.; Yadav, A.N.; Kumar, H. Edible Mushrooms: A Comprehensive Review on Bioactive Compounds with Health Benefits and Processing Aspects. Foods 2021, 10, 2996. [Google Scholar] [CrossRef]
- Singh, M.P.; Rai, S.N.; Dubey, S.K.; Pandey, A.T.; Tabassum, N.; Chaturvedi, V.K.; Singh, N.B. Biomolecules of mushroom: A recipe of human wellness. Crit. Rev. Biotechnol. 2022, 42, 913–930. [Google Scholar] [CrossRef]
- Venturella, G.; Ferraro, V.; Cirlincione, F.; Gargano, M.L. Medicinal Mushrooms: Bioactive Compounds, Use, and Clinical Trials. Int. J. Mol. Sci. 2021, 22, 634. [Google Scholar] [CrossRef]
- García-Sanmartín, J.; Bobadilla, M.; Mirpuri, E.; Grifoll, V.; Pérez-Clavijo, M.; Martínez, A. Agaricus Mushroom-Enriched Diets Modulate the Microbiota-Gut-Brain Axis and Reduce Brain Oxidative Stress in Mice. Antioxidants 2022, 11, 695. [Google Scholar] [CrossRef]
- Vamanu, E.; Dinu, L.D.; Pelinescu, D.R.; Gatea, F. Therapeutic Properties of Edible Mushrooms and Herbal Teas in Gut Microbiota Modulation. Microorganisms 2021, 9, 1262. [Google Scholar] [CrossRef]
- Iñiguez, M.; Pérez-Matute, P.; Villanueva-Millán, M.J.; Recio-Fernández, E.; Roncero-Ramos, I.; Pérez-Clavijo, M.; Oteo, J.-A. Agaricus bisporus supplementation reduces high-fat diet-induced body weight gain and fatty liver development. J. Physiol. Biochem. 2018, 74, 635–646. [Google Scholar] [CrossRef]
- Ekowati, N.; Yuniati, N.I.; Hernayanti, H.; Ratnaningtyas, N.I. Antidiabetic Potentials of Button Mushroom (Agaricus bisporus) on Alloxan-Induced Diabetic Rats. Biosaintifika J. Biol. Biol. Educ. 2018, 10, 655–662. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-J. Current Uses of Mushrooms in Cancer Treatment and Their Anticancer Mechanisms. Int. J. Mol. Sci. 2022, 23, 10502. [Google Scholar] [CrossRef]
- Finimundy, T.C.; Scola, G.; Scariot, F.J.; Dillon, A.J.P.; Moura, S.; Echeverrigaray, S.; Henriques, J.P.; Roesch-Ely, M. Extrinsic and Intrinsic Apoptotic Responses Induced by Shiitake Culinary-Medicinal Mushroom Lentinus edodes (Agaricomycetes) Aqueous Extract against a Larynx Carcinoma Cell Line. Int. J. Med. Mushrooms 2018, 20, 31–46. [Google Scholar] [CrossRef]
- Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska, J. Anti-inflammatory properties of edible mushrooms: A review. Food Chem. 2018, 243, 373–381. [Google Scholar] [CrossRef]
- Hu, Q.; Yuan, B.; Xiao, H.; Zhao, L.; Wu, X.; Rakariyatham, K.; Zhong, L.; Han, Y.; Muinde Kimatu, B.; Yang, W. Polyphenols-rich extract from Pleurotus eryngii with growth inhibitory of HCT116 colon cancer cells and anti-inflammatory function in RAW264.7 cells. Food Funct. 2018, 9, 1601–1611. [Google Scholar] [CrossRef]
- Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The antioxidant potential of different edible and medicinal mushrooms. Biomed. Pharmacother. 2022, 147, 112621. [Google Scholar] [CrossRef]
- Bach, F.; Zielinski, A.A.F.; Helm, C.V.; Maciel, G.M.; Pedro, A.C.; Stafussa, A.P.; Ávila, S.; Haminiuk, C.W.I. Bio compounds of edible mushrooms: In vitro antioxidant and antimicrobial activities. LWT 2019, 107, 214–220. [Google Scholar] [CrossRef]
- Garcia, J.; Afonso, A.; Fernandes, C.; Nunes, F.M.; Marques, G.; Saavedra, M.J. Comparative antioxidant and antimicrobial properties of Lentinula edodes Donko and Koshin varieties against priority multidrug-resistant pathogens. S. Afr. J. Chem. Eng. 2021, 35, 98–106. [Google Scholar] [CrossRef]
- Garcia, J.; Rodrigues, F.; Castro, F.; Aires, A.; Marques, G.; Saavedra, M.J. Antimicrobial, Antibiofilm, and Antioxidant Properties of Boletus edulis and Neoboletus luridiformis Against Multidrug-Resistant ESKAPE Pathogens. Front. Nutr. 2022, 8, 773346. [Google Scholar] [CrossRef]
- Taofiq, O.; González-Paramás, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics—A review. Ind. Crop. Prod. 2016, 90, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.-H.; Zulkifli, N.A.; Tan, T.-C. Edible Mushroom: Nutritional Properties, Potential Nutraceutical Values, and Its Utilisation in Food Product Development. In An Introduction to Mushroom; Passari, A.K., Sánchez, S., Eds.; IntechOpen: Rijeka, Croatia, 2020; pp. 1–19. [Google Scholar]
- Royse, D.J.; Baars, J.; Tan, Q. Current Overview of Mushroom Production in the World. In Edible and Medicinal Mushrooms; Diego, C.Z., Pardo-Giménez, A., Eds.; John Wiley & Sons, Ltd.: West Sussex, UK, 2017; pp. 5–13. [Google Scholar]
- Machado-Carvalho, L.; Martins, T.; Aires, A.; Marques, G. Optimization of Phenolic Compounds Extraction and Antioxidant Activity from Inonotus hispidus Using Ultrasound-Assisted Extraction Technology. Metabolites 2023, 13, 524. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Dominguez-Perles, R.; Rodrigues, M.; Barros, A.I.R.N.A. Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Ind. Crop. Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Barros, A. Variation of the Polyphenolic Composition and Antioxidant Capacity of Freshly Prepared Pomegranate Leaf Infusions over One-Day Storage. Antioxidants 2021, 10, 1187. [Google Scholar] [CrossRef] [PubMed]
- Aires, A.; Carvalho, R. Kiwi fruit residues from industry processing: Study for a maximum phenolic recovery yield. J. Food Sci. Technol. 2020, 57, 4265–4276. [Google Scholar] [CrossRef] [PubMed]
- Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Barreiro, M.F.; González-Paramás, A.M.; Ferreira, I.C. Development of Mushroom-Based Cosmeceutical Formulations with Anti-Inflammatory, Anti-Tyrosinase, Antioxidant, and Antibacterial Properties. Molecules 2016, 21, 1372. [Google Scholar] [CrossRef] [Green Version]
- Veiga, A.; Toledo, M.; Rossa, L.S.; Mengarda, M.; Stofella, N.C.F.; Oliveira, L.J.; Gonçalves, A.G.; Murakami, F.S. Colorimetric microdilution assay: Validation of a standard method for determination of MIC, IC(50%), and IC(90%) of antimicrobial compounds. J. Microbiol. Methods 2019, 162, 50–61. [Google Scholar] [CrossRef]
- Łyko, L.; Olech, M.; Nowak, R. LC-ESI-MS/MS Characterization of Concentrated Polyphenolic Fractions from Rhododendron luteum and Their Anti-Inflammatory and Antioxidant Activities. Molecules 2022, 27, 827. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Cielecka-Piontek, J. Chitosan as a Functional Carrier for the Local Delivery Anti-Inflammatory Systems Containing Scutellariae baicalensis radix Extract. Pharmaceutics 2022, 14, 2148. [Google Scholar] [CrossRef]
- No, J.K.; Soung, D.Y.; Kim, Y.J.; Shim, K.H.; Jun, Y.S.; Rhee, S.H.; Yokozawa, T.; Chung, H.Y. Inhibition of tyrosinase by green tea components. Life Sci. 1999, 65, PL241–PL246. [Google Scholar] [CrossRef]
- Rodrigues Ueoka, A.; Pedriali Moraes, C.A. Development and Stability Evaluation of Liquid Crystal-Based Formulations Containing Glycolic Plant Extracts and Nano-Actives. Cosmetics 2018, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Salem, Y.; Rajha, H.N.; Franjieh, D.; Hoss, I.; Manca, M.L.; Manconi, M.; Castangia, I.; Perra, M.; Maroun, R.G.; Louka, N. Stability and Antioxidant Activity of Hydro-Glyceric Extracts Obtained from Different Grape Seed Varieties Incorporated in Cosmetic Creams. Antioxidants 2022, 11, 1348. [Google Scholar] [CrossRef]
- Adeel, S.; Habiba, M.; Kiran, S.; Iqbal, S.; Abrar, S.; Hassan, C.M. Utilization of Colored Extracts for the Formulation of Ecological Friendly Plant-Based Green Products. Sustainability 2022, 14, 11758. [Google Scholar] [CrossRef]
- Reis, F.S.; Martins, A.; Barros, L.; Ferreira, I.C. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012, 50, 1201–1207. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, L.; Brennan, M.; Brennan, C. How does the addition of mushrooms and their dietary fibre affect starchy foods. J. Futur Foods 2022, 2, 18–24. [Google Scholar] [CrossRef]
- Aishah, M.S.; Wan Rosli, W.D. The effect of addition of oyster mushroom (Pleurotus sajor-caju) on nutrient composition and sensory acceptation of selected wheat- and rice-based products. Int. Food Res. J. 2013, 20, 183–188. [Google Scholar]
- Gadallah, M.G.E.; Ashoush, I.S. Value Addition on Nutritional and Sensory Properties of Biscuit Using Desert Truffle (Terfezia claveryi) Powder. Food Nutr. Sci. 2016, 7, 1171–1181. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Brennan, M.A.; Guan, W.; Zhang, J.; Yuan, L.; Brennan, C.S. Enhancing the Nutritional Properties of Bread by Incorporating Mushroom Bioactive Compounds: The Manipulation of the Pre-Dictive Glycaemic Response and the Phenolic Properties. Foods 2021, 10, 731. [Google Scholar] [CrossRef]
- Lu, X.; Brennan, M.A.; Serventi, L.; Liu, J.; Guan, W.; Brennan, C.S. Addition of mushroom powder to pasta enhances the antioxidant content and modulates the predictive glycaemic response of pasta. Food Chem. 2018, 264, 199–209. [Google Scholar] [CrossRef]
- Thomas, B.; Sudheer, K.P.; Saranya, S.; Kothakota, A.; Pandiselvam, R.; Joseph, M. Development of protein enriched cold extruded pasta products using hybrid dried processed mushroom powder and defatted flours: A study on nutraceutical, textural, colour and sensory attributes. LWT 2022, 170, 113991. [Google Scholar] [CrossRef]
- Addor, F.A.S. Antioxidants in dermatology. An. Bras. Dermatol. 2017, 92, 356–362. [Google Scholar] [CrossRef] [Green Version]
- Papaccio, F.; D′Arino, A.; Caputo, S.; Bellei, B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Fogarasi, M.; Socaci, S.A.; Dulf, F.V.; Diaconeasa, Z.M.; Fărcaș, A.C.; Tofană, M.; Semeniuc, C.A. Bioactive Compounds and Volatile Profiles of Five Transylvanian Wild Edible Mushrooms. Molecules 2018, 23, 3272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çayan, F.; Deveci, E.; Tel-Çayan, G.; Duru, M.E. Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J. Food Meas. Charact. 2020, 14, 1690–1698. [Google Scholar] [CrossRef]
- Gąsecka, M.; Mleczek, M.; Siwulski, M.; Niedzielski, P. Phenolic composition and antioxidant properties of Pleurotus ostreatus and Pleurotus eryngii enriched with selenium and zinc. Eur. Food Res. Technol. 2016, 242, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Vaz, J.A.; Barros, L.; Martins, A.; Morais, J.S.; Vasconcelos, M.H.; Ferreira, I.C.F.R. Phenolic profile of seventeen Portuguese wild mushrooms. LWT 2011, 44, 343–346. [Google Scholar] [CrossRef] [Green Version]
- Ayobami, O.; Brinkwirth, S.; Eckmanns, T.; Markwart, R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: A systematic review and meta-analysis. Emerg. Microbes Infect. 2022, 11, 443–451. [Google Scholar] [CrossRef]
- Clericuzio, M.; Bivona, M.; Gamalero, E.; Bona, E.; Novello, G.; Massa, N.; Dovana, F.; Marengo, E.; Robotti, E. A Systematic Study of the Antibacterial Activity of Basidiomycota Crude Extracts. Antibiotics 2021, 10, 1424. [Google Scholar] [CrossRef]
- Fogarasi, M.; Diaconeasa, Z.M.; Pop, C.R.; Fogarasi, S.; Semeniuc, C.A.; Fărcaş, A.C.; Țibulcă, D.; Sălăgean, C.-D.; Tofană, M.; Socaci, S.A. Elemental Composition, Antioxidant and Antibacterial Properties of Some Wild Edible Mushrooms from Romania. Agronomy 2020, 10, 1972. [Google Scholar] [CrossRef]
- Erdoğan Eliuz, E.A. Antibacterial activity and antibacterial mechanism of ethanol extracts of Lentinula edodes (Shiitake) and Agaricus bisporus (button mushroom). Int. J. Environ. Health Res. 2022, 32, 1828–1841. [Google Scholar] [CrossRef]
- Moussa, A.Y.; Fayez, S.; Xiao, H.; Xu, B. New insights into antimicrobial and antibiofilm effects of edible mushrooms. Food Res. Int. 2022, 162, 111982. [Google Scholar] [CrossRef]
- Joseph, T.P.; Chanda, W.; Padhiar, A.A.; Batool, S.; LiQun, S.; Zhong, M.; Huang, M. A Preclinical Evaluation of the Antitumor Activities of Edible and Medicinal Mushrooms: A Molecular Insight. Integr. Cancer Ther. 2018, 17, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Plácido, A.I.; Roque, F.; Morgado, M. The Promising Role of Mushrooms as a Therapeutic Adjuvant of Conventional Cancer Therapies. Biologics 2022, 2, 58–68. [Google Scholar] [CrossRef]
- Abd Razak, D.L.; Jamaluddin, A.; Abd Rashid, N.Y.; Sani, N.A.; Abdul Manan, M. Assessment of Cosmeceutical Potentials of Selected Mushroom Fruitbody Extracts Through Evaluation of Antioxidant, Anti-Hyaluronidase and Anti-Tyrosinase Activity. J 2020, 3, 329–342. [Google Scholar] [CrossRef]
- Nitthikan, N.; Leelapornpisid, P.; Naksuriya, O.; Intasai, N.; Kiattisin, K. Potential and Alternative Bioactive Compounds from Brown Agaricus bisporus Mushroom Extracts for Xerosis Treatment. Sci. Pharm. 2022, 90, 59. [Google Scholar] [CrossRef]
- Yahaya, Y.A.; Don, M.M. Evaluation of Trametes Lactinea Extracts on the Inhibition of Hyaluronidase, Lipoxygenase and Xanthine Oxidase Activities in vitro. J. Phys. Sci. 2012, 23, 1–15. [Google Scholar]
- Usman, M.; Murtaza, G.; Ditta, A. Nutritional, Medicinal, and Cosmetic Value of Bioactive Compounds in Button Mushroom (Agaricus bisporus): A Review. Appl. Sci. 2021, 11, 5943. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [Green Version]
- Panzella, L.; Napolitano, A. Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. Cosmetics 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Nautiyal, A.; Wairkar, S. Management of hyperpigmentation: Current treatments and emerging therapies. Pigment Cell Melanoma Res. 2021, 34, 1000–1014. [Google Scholar] [CrossRef]
- Yoon, K.N.; Alam, N.; Lee, J.S.; Lee, K.R.; Lee, T.S. Detection of phenolic compounds concentration and evaluation of antioxidant and anti-tyrosinase activity of various extract from Lentinus edodes. World Appl. Sci. J. 2011, 12, 1851–1859. [Google Scholar]
- Alam, N.; Yoon, K.N.; Lee, K.R.; Shin, P.G.; Cheong, J.C.; Yoo, Y.B.; Shim, J.M.; Lee, M.W.; Lee, U.Y.; Lee, T.S. Antioxidant Activities and Tyrosinase Inhibitory Effects of Different Extracts from Pleurotus ostreatus Fruiting Bodies. Mycobiology 2010, 38, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef] [PubMed]
- Hoang, H.T.; Moon, J.-Y.; Lee, Y.-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021, 8, 106. [Google Scholar] [CrossRef]
A. bisporus | B. edulis | L. edodes | P. ostreatus | |
---|---|---|---|---|
Phenolic composition | ||||
Total phenols (mg GA/g DW) | 8.53 ± 0.66 b | 10.96 ± 0.51 a | 4.76 ± 0.20 c | 4.39 ± 0.31 d |
Ortho-diphenols (mg CA/g DW) | 3.92 ± 0.53 b | 4.44 ± 0.27 a | 4.74 ± 0.21 a | 1.74 ± 0.09 c |
Flavonoids (mg Catechin/g DW) | 3.67 ± 1.03 a | 1.61 ± 0.15 b | 1.54 ± 0.17 b | 0.80 ± 0.09 c |
Antioxidant activity | ||||
ABTS (µmol Trolox/g DW) | 30.00 ± 3.16 a | 15.89 ± 1.17 b | 10.44 ± 0.73 c | 8.89 ± 0.78 d |
DPPH (µmol Trolox/g DW) | 56.15 ± 3.61 a | 27.67 ± 2.00 b | 14.78 ± 1.20 c | 11.78 ± 0.97 d |
FRAP (µmol Trolox/g DW) | 50.67 ± 2.35 a | 51.22 ± 2.82 a | 18.78 ± 2.17 b | 10.22 ± 0.67 c |
UV (nm) | UV-DAD/VIS Bands (nm) of Standards | UV-DAD/VIS Bands (nm) of Samples | A. bisporus | B. edulis | L. edodes | P. ostreatus | |
---|---|---|---|---|---|---|---|
Gallic acid | 254 | 229, 269 | 224, 261 | 0.032 ± 0.001 | 0.112 ± 0.003 | 0.103 ± 0.002 | 0.102 ± 0.003 |
p-Hydroxybenzoic acid | 254 | 253 | 258 | 2.554 ± 0.047 | 0.616 ± 0.028 | 0.010 ± 0.001 | 0.017 ± 0.002 |
(–)-Epigallocatechin gallate | 280 | 273 | 273 | n.d. | 0.252 ± 0.008 | n.d. | n.d. |
(+)-Catechin | 280 | 237, 279 | 226, 279 | 0.597 ± 0.023 | n.d | 0.044 ± 0.003 | n.d. |
Naringenin | 280 | 226sh, 288, 331sh | 224, 283, 309sh | n.d. | n.d. | 0.220 ± 0.001 | 0.275 ± 0.014 |
(–)-Gallocatechin gallate | 280 | 273 | 274 | 0.061 ± 0.027 | n.d. | n.d. | n.d. |
A. bisporus | B. edulis | L. edodes | P. ostreatus | CN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Bacterial Isolates | Code | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC |
Gram-positive | ||||||||||
Enterococcus faecium | MJMC 531-B | 20 | >20 | 20 | >20 | 10 | >20 | 10 | >20 | <0.156 |
MS Staphylococcus aureus | MJMC 109 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | >20 | <0.156 |
MR Staphylococcus aureus | MJMC 534-B | 20 | 20 | 20 | 20 | 20 | 20 | NI | - | <0.156 |
MR Staphylococcus aureus | MJMC 565-A | 20 | 20 | 5 | 10 | NI | - | NI | - | <0.156 |
Staphylococcus aureus | ATCC 25923 | 20 | 20 | 20 | 20 | NI | - | NI | - | <0.156 |
Gram-negative | ||||||||||
Acinetobacter baumannii | MJMC 525 | 10 | 10 | 10 | 10 | 20 | 20 | NI | - | >20 |
Enterobacter aerogenes | MJMC 534-A | 20 | 20 | 20 | 20 | 20 | >20 | 20 | >20 | <0.156 |
Klebsiella pneumoniae | MJH 513 | NI | - | 20 | 20 | NI | - | NI | - | <0.156 |
Pseudomonas aeruginosa | MJH 540 | NI | - | 20 | 20 | NI | - | NI | - | <0.156 |
Escherichia coli | ATCC 25922 | 20 | 20 | 10 | 10 | 20 | 20 | 20 | 20 | <0.156 |
Mushrooms | 0.1 mg DE/mL | 1.0 mg DE/mL | 10.0 mg DE/mL | IC50 (mg DE/mL) |
---|---|---|---|---|
A. bisporus | 6.4 ± 10.3% B; ab | 43.0 ± 7.1% AB; a | 74.4 ± 7.5% B; a | 5.4 ± 0.4 |
B. edulis | 0.3 ± 0.5% b | 2.0 ± 2.0% c | 1.2 ± 1.1% c | n.d. |
L. edodes | 6.6 ± 4.0% a | 7.0 ± 1.4% b | 3.2 ± 5.4% bc | n.d. |
P. ostreatus | 6.7 ± 6.6% a | 6.8 ± 4.7% bc | 3.3 ± 1.6% b | n.d. |
Mushrooms | 0.1 mg DE/mL | 1.0 mg DE/mL | 10.0 mg DE/mL | IC50 (mg DE/mL) |
---|---|---|---|---|
A. bisporus | 6.2 ± 1.9% B; c | 14.7 ± 1.2% AB; b | 39.9 ± 2.6% A; a | 13.2 ± 1.4 a |
B. edulis | 12.9 ± 2.4% B; b | 16.1 ± 2.0% AB; b | 23.3 ± 3.7% A; bc | 36.6 ± 15.9 ab |
L. edodes | 15.2 ± 1.4% B; b | 16.6 ± 3.3% AB; ab | 18.8 ± 1.8% A; c | 93.7 ± 36.4 bc |
P. ostreatus | 20.0 ± 1.7% B; a | 20.2 ± 1.6% B; a | 24.1 ± 1.4% A; b | 71.7 ± 27.7 bc |
Parameters | Initial | 30 Days | Heating and Cooling Cycles | |||||||
---|---|---|---|---|---|---|---|---|---|---|
4 °C | 25 °C | 40 °C | ||||||||
FD | AB | FD | AB | FD | AB | FD | AB | FD | AB | |
Color | White | Beige | White | Beige | White | Beige | White | Beige | White | Beige |
Homogeneity | Good | Good | Good | Good | Good | Good | Good | Good | Good | Good |
Feel on skin | Smooth | Smooth | Smooth | Smooth | Smooth | Smooth | Smooth | Smooth | Smooth | Smooth |
Phase separation | No | No | No | No | No | No | No | No | No | No |
pH | 4.51 | 4.52 | 4.55 | 4.57 | 4.51 | 4.64 | 4.60 | 4.71 | 4.71 | 4.75 |
Creams | Total Phenols (mg GA/g Cream) | DPPH (µM Trolox/g Cream) |
---|---|---|
FD | 2.49 ± 0.11 | 5.99 ± 1.73 |
AB | 3.51 ± 0.13 ** | 16.27 ± 2.36 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado-Carvalho, L.; Martins, T.; Aires, A.; Saavedra, M.J.; Marques, G. Antioxidant, Antibacterial, and Cosmeceutical Potential of Four Common Edible Mushrooms. Appl. Sci. 2023, 13, 7357. https://doi.org/10.3390/app13137357
Machado-Carvalho L, Martins T, Aires A, Saavedra MJ, Marques G. Antioxidant, Antibacterial, and Cosmeceutical Potential of Four Common Edible Mushrooms. Applied Sciences. 2023; 13(13):7357. https://doi.org/10.3390/app13137357
Chicago/Turabian StyleMachado-Carvalho, Liliana, Tânia Martins, Alfredo Aires, Maria José Saavedra, and Guilhermina Marques. 2023. "Antioxidant, Antibacterial, and Cosmeceutical Potential of Four Common Edible Mushrooms" Applied Sciences 13, no. 13: 7357. https://doi.org/10.3390/app13137357
APA StyleMachado-Carvalho, L., Martins, T., Aires, A., Saavedra, M. J., & Marques, G. (2023). Antioxidant, Antibacterial, and Cosmeceutical Potential of Four Common Edible Mushrooms. Applied Sciences, 13(13), 7357. https://doi.org/10.3390/app13137357