Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environment: A Technological and Scientific Prospection
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Corrosion Inhibitors
3.2. Green Corrosion Inhibitors
3.3. Green Corrosion Inhibitors Derived from Plant Extracts
4. Conclusions
5. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saviour, A.; Umoren, S.A.; Solomon, M.M.; Saji, V.S. Fundamentals of corrosion inhibition. In Polymeric Materials in Corrosion Inhibition, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 103–127. [Google Scholar] [CrossRef]
- Gentil, Corrosão, 7th ed.; Grupo Gen-LTC: Rio de Janeiro, Brazil, 2017; 584p.
- World Steel Association. Available online: https://worldsteel.org/media-centre/press-releases/2021/global-crude-steel-output-decreases-by-0-9-in-2020 (accessed on 18 August 2021).
- Reis, M.I.; da Silva, F.D.C.; Romeiro, G.A.; Rocha, A.A.; Ferreira, F. Deposição mineral em superfícies: Problemas e oportunidades na indústria do petróleo. ReVirtual Quim. 2011, 3, 2–13. [Google Scholar] [CrossRef]
- Sastri, V.S. Green Corrosion Inhibitors: Theory and Practice, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; 304p. [Google Scholar] [CrossRef]
- Mazumder, M.A.J. Global impact of corrosion: Occurrence, cost and mitigation. Glob. J. Eng. Sci. 2020, 5, 1–4. [Google Scholar] [CrossRef]
- Chaubey, N.; Savita; Qurashi, A.; Chauhan, D.S.; Quraishi, M.A. Frontiers and advances in green and sustainable inhibitors for corrosion applications: A critical review. J. Mol. Liq. 2021, 321, 1–13. [Google Scholar] [CrossRef]
- Wei, H.; Heidarshenas, B.; Zhou, L.; Hussain, G.; Li, Q.; Ostrikov, K.K. Green inhibitors for steel corrosion in acidic environment: State of art. Mater. Today Sustain. 2020, 10, 100044. [Google Scholar] [CrossRef]
- Sherif, E.M. The role of corrosion inhibitors in protecting metallic structures against corrosion in harsh environments. In Role of Colloidal Systems in Environmental Protection; Fanun, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 509–526. [Google Scholar] [CrossRef]
- Fink, J.K. Corrosion Inhibitors. In Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids, 1st ed.; Gulf Professional Publishing: Houston, TX, USA, 2021; pp. 217–252. [Google Scholar] [CrossRef]
- Agarwal, P.; Landolt, D. Effect of anions on the efficiency of aromatic carboxylic acid corrosion inhibitors in near neutral media: Experimental investigation and theoretical modeling. Corros. Sci. 1998, 40, 673–691. [Google Scholar] [CrossRef]
- Popov, B.N. Corrosion inhibitors. In Corrosion Engineering, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 581–597. [Google Scholar] [CrossRef]
- Dariva, C.G.; Galio, A.F. Corrosion Inhibitors–Principles, Mechanisms and Applications. In Developments in Corrosion Protection; Aliofkhazraei, M., Ed.; Intech.: London, UK, 2016; pp. 365–379. [Google Scholar] [CrossRef] [Green Version]
- Umoren, S.A.; Solomon, M.M. Effect of halide ions on the corrosion inhibition efficiency of different organic species–A review. J. Ind. Eng. Chem. 2015, 21, 81–100. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, V.; Quraishi, M.A. Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: Electrochemical, SEM, AFM, and XPS studies. J. Mol. Liq. 2016, 216, 164–173. [Google Scholar] [CrossRef]
- Kesavan, D.; Gopiraman, M.; Sulochana, N. Green inhibitors for corrosion of metals: A review. Chem. Sci. Rev. Lett. 2012, 1, 1–8. [Google Scholar]
- Felipe, M.B.M.; Maciel, M.A.M.; Medeiros, S.R.; Silva, D.R. Aspectos gerais sobre corrosão e inibidores vegetais. Rev. Virtual Quim. 2013, 5, 746–759. [Google Scholar] [CrossRef]
- Dean, S.W., Jr. Inhibitor types. Mater. Perform. 1981, 20, 47–51. [Google Scholar]
- Ishak, A.; Adams, F.V.; Madu, J.O.; Joseph, I.V.; Olubambi, P.A. Corrosion inhibition of mild steel in 1M hydrochloric acid using Haematostaphis barteri leaves extract. Procedia Manuf. 2019, 35, 1279–1285. [Google Scholar] [CrossRef]
- Qiang, Y.; Zhang, S.; Tan, B.; Chen, S. Evaluation of Ginkgo leaf extract as an eco-friendly corrosion inhibitor of X70 steel in HCl solution. Corros. Sci. 2018, 133, 6–16. [Google Scholar] [CrossRef]
- Bhawsar, J.; Jain, P.K.; Jain, P. Experimental and computational studies of Nicotiana tabacum leaves extract as green corrosion inhibitor for mild steel in acidic medium. Alex. Eng. J. 2015, 54, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Khadraoui, A.; Khelifa, A.; Boutoumi, H.; Karzazi, Y.; Hammouti, B.; Al-Deyab, S.S. The oil from Mentha rotundifolia as green inhibitor of carbon steel corrosion in hydrochloric acid. Chem. Eng. Commun. 2016, 203, 270–277. [Google Scholar] [CrossRef]
- Bidi, M.A.; Azadi, M.; Rassouli, M. A new green inhibitor for lowering the corrosion rate of carbon steel in 1 M HCl solution: Hyalomma tick extract. Mat. Today Commun. 2020, 24, 100996. [Google Scholar] [CrossRef]
- Rani, B.E.; Basu, B.B.J. Green inhibitors for corrosion protection of metals and alloys: An overview. Int. J. Corros. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Web of Science. Available online: https://www-webofscience.ez9.periodicos.capes.gov.br/wos/woscc/basic-search (accessed on 9 August 2021).
- Scientific Electronic Library Online (SCIELO). Available online: https://www.scielo.br/ (accessed on 11 August 2021).
- Instituto Nacional da Propriedade Industrial. Available online: https://www.gov.br/inpi/pt-br (accessed on 10 August 2021).
- Derwent Innovations Index. Available online: https://www-webofscience.ez9.periodicos.capes.gov.br/wos/diidw/basic-search (accessed on 10 August 2021).
- Questel Orbit. Available online: https://www.orbit.com (accessed on 11 August 2021).
- Hou, B.; Li, X.; Ma, X.; DU, C.; Zang, D.; Zheng, M.; Xu, W.; Lu, D.; Ma, F. The cost of corrosion in China. NPJ Mater. Degrad. 2017, 1, 1–10. [Google Scholar] [CrossRef]
- Perez, T.E. Corrosion in the oil and gas industry: An increasing challenge for materials. Jom 2013, 65, 1033–1042. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.A.; Gois, J.S.D.; Toaldo, I.M.; Bauerfeldt, A.C.F.; Batista, D.B.; Bordignon-Luiz, M.T.; Lago, D.C.B.; Luna, A.S.; Senna, L.F.D. Optimization of espresso spent ground coffee waste extract preparation and the influence of its chemical composition as an eco-friendly corrosion inhibitor for carbon steel in acid medium. Mat. Res. 2020, 23, 1–12. [Google Scholar] [CrossRef]
- Souza, F.S.D.; Gonçalves, R.S.; Spinelli, A. Assessment of caffeine adsorption onto mild steel surface as an eco-friendly corrosion inhibitor. J. Braz. Chem. Soc. 2014, 25, 81–90. [Google Scholar] [CrossRef]
- Barros, I.B.D.; Custódio, D.L.; Andrade, M.C.D.; Veiga Junior, V.F.D.; Silva Neto, A.J.D.; Bastos, I.N. The Inhibitory Action of Aniba Canelilla (HBK) Mez. Extracts on the corrosion of carbon steel in hydrochloric acid medium. Mat. Res. 2018, 21, 1–8. [Google Scholar] [CrossRef]
- Valbon, A.; Ribeiro, B.F.; Soares, M.A.F.; Oliveira, M.C.; Neves, M.A.; Echevarria, A. Extrato de hibisco-colibri como inibidor verde de corrosão do aço-carbono em ácido sulfúrico. Quim. Nova 2019, 42, 797–802. [Google Scholar] [CrossRef]
- Rocha, J.C.; Gomes, J.A.C.P.; D’elia, E. Aqueous extracts of mango and orange peel as green inhibitors for carbon steel in hydrochloric acid solution. Mater. Res. 2014, 17, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Barreto, L.S.; Tokumoto, M.S.; Guedes, I.C.; Melo, H.G.D.; Amado, F.D.R.; Capelossi, V.R. Evaluation of the anticorrosion performance of peel garlic extract as corrosion inhibitor for ASTM 1020 carbon steel in acidic solution. Matéria 2017, 22, e11852. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.D.M.; Almeida, T.F.D.; Cotting, F.; Aoki, I.V.; Melo, H.G.D.; Capelossi, V.R. Evaluation of castor bark powder as a corrosion inhibitor for carbon steel in acidic media. Mat. Res. 2017, 20, 492–505. [Google Scholar] [CrossRef] [Green Version]
- Peres, J.; Conde, R.; Bezerra, C.; Costa, R.; Reis, G.; Souza, M.E.P.D.; Nascimento, C. Estudo da eficiência do Orbignya oleifera como inibidor verde de corrosão para aço com baixo teor de carbono comparado com inibidor comercial em solução HCl 1M. Matéria 2019, 24, 13. [Google Scholar] [CrossRef]
- Oliveira, T.M.D.; Cardoso, S.P. Avaliação do chá branco como potencial inibidor de corrosão. Matéria 2019, 24, 9. [Google Scholar] [CrossRef]
- Santos, N.; Oliveira, D.G. A patenteabilidade de tecnologias verdes como instrumento de desenvolvimento sustentável. Rev. Jurídica 2014, 4, 294–310. [Google Scholar]
- Reis, P.C.; Osawa, C.C.; Martinez, M.E.M.; Moreira, J.C.C.B.R.; Santos, D.A. Programa das Patentes Verdes no Brasil: Aliança Verde entre o Desenvolvimento Tecnológico, Crescimento Econômico e a Degradação Ambiental. In Proceedings of the XV Congreso Latino-Iberoamericano de Gestión Tecnológica, Medelín, Colombia, 21–31 October 2013. [Google Scholar]
- Degáspari, C.H.; Waszczynskyj, N. Propriedades antioxidantes de compostos fenólicos. Visão Acadêmica 2004, 5, 33–40. [Google Scholar] [CrossRef]
- Rocha, J.C.; Gomes, J.A.C.P.; D’Elia, E.; Cruz, A.P.G.; Cabral, L.M.C.; Torres, A.G.; Monteiro, M.V.C. Grape pomace extracts as green corrosion inhibitors for carbon steel in hydrochloric acid solutions. Int. J. Electrochem. Sci. 2012, 7, 11941–11956. [Google Scholar]
- Alrefaee, S.H.; Rhee, K.Y.; Verma, C.; Quraishi, M.A.; Ebenso, E.E. Challenges and advantages of using plant extract as inhibitors in modern corrosion inhibition systems: Recent advancements. J. Mol. Liq. 2021, 321, 114666. [Google Scholar] [CrossRef]
- Feng, L.; Yang, H.; Wang, F. Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution. Electrochim. Acta 2011, 58, 427–436. [Google Scholar] [CrossRef]
- Ajila, C.M.; Naidu, K.A.; Bhat, S.G.; Rao, U.J.S. Bioactive compounds and antioxidant potential of mango peel extract. Food Chem. 2007, 105, 982–988. [Google Scholar] [CrossRef]
- Liu, Q.; Song, Z.; Han, H.; Donkor, S.; Jiang, L.; Wang, W.; Chu, H. A novel green reinforcement corrosion inhibitor extracted from waste Platanus acerifolia leaves. Constr. Build. Mater. 2020, 260, 119695. [Google Scholar] [CrossRef]
- Vorobyova, V.; Skiba, M.; Chygyrynets, O.; Pylypenko, T.; Motronyuk, T.; Fateev, Y. Inhibition efficiency of apricot pomace extract as a “green” corrosion inhibitor. Mater. Today Proc. 2022, 50, 456–462. [Google Scholar] [CrossRef]
- Abdelaziz, S.; Benamira, M.; Messaadia, L.; Boughoues, Y.; Lahmar, H.; Boudjerda, A. Green corrosion inhibition of mild steel in HCl medium using leaves extract of Arbutus unedo L. plant: An experimental and computational approach. Colloids Surf. A Physicochem. Eng. Asp. 2021, 619, 126496. [Google Scholar] [CrossRef]
- Kejík, Z.; Kaplánek, R.; Masařík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; et al. Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int. J. Mol. Sci. 2021, 22, 646. [Google Scholar] [CrossRef]
- Faraj, L.; Khan, G.M. Application of natural product extracts as green corrosion inhibitors for metals and alloys in acid pickling processes-A. Int. J. Electrochem. Sci. 2015, 10, 6120–6134. [Google Scholar]
- Bertleff-Zieschang, N.; Rahim, M.A.; Ju, Y.; Braunger, J.A.; Suma, T.; Dai, Y.; Pan, S.; Cavalieri, F.; Caruso, F. Biofunctional metal–phenolic films from dietary flavonoids. Chem. Commun. 2017, 53, 1068–1071. [Google Scholar] [CrossRef] [Green Version]
- Abba, B.N.; Idouhli, R.; Ilagouma, A.T.; Abouelfida, A.; Khadiri, M.; Romane, A. Use of Endostemon tereticaulis (Pear.) M. Ashby and Hyptis spicigera Lam. Plant Extracts as Corrosion Green Inhibitors for Mild Steel in 1M HCl: Electrochemical and Surface Morphological Studies. Prot. Met. Phys. Chem. 2021, 57, 619–633. [Google Scholar] [CrossRef]
- Sivaraju, M.; Kannan, K. Eco-friendly inhibitor (Tribulus terrestris L) for mild steel corrosion in 1 N phosphoric acid. Asian J. Chem. 2010, 22, 233–244. [Google Scholar]
- Wang, Q.; Tan, B.; Bao, H.; Xie, Y.; Mou, Y.; Li, P.; Chen, D.; Shi, Y.; Li, X.; Yang, W. Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media. Bioelectrochemistry 2019, 128, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Lebrini, M.; Suedile, F.; Salvin, P.; Roos, C.; Zarrouk, A.; Jama, C.; Bentiss, F. Bagassa guianensis ethanol extract used as sustainable eco-friendly inhibitor for zinc corrosion in 3% NaCl: Electrochemical and XPS studies. Surf. Interfaces 2020, 20, 2–31. [Google Scholar] [CrossRef]
- Ahmed, R.K.; Zhang, S. Atriplex leucoclada extract: A promising eco-friendly anticorrosive agent for copper in aqueous media. J. Ind. Eng. Chem. 2021, 99, 334–343. [Google Scholar] [CrossRef]
- Bashir, S.; Singh, G.; Kumar, A. Shatavari (Asparagus Racemosus) as green corrosion inhibitor of aluminium in acidic medium. J. Mater. Environ. Sci. 2017, 8, 4284–4291. [Google Scholar] [CrossRef]
- Shahmoradi, A.R.; Ranjbarghanei, M.; Javidparvar, A.A.; Guo, L.; Berdimurodov, E.; Ramezanzadeh, B. Theoretical and surface/electrochemical investigations of walnut fruit green husk extract as effective inhibitor for mild-steel corrosion in 1M HCl electrolyte. J. Mol. Liq. 2021, 338, 13. [Google Scholar] [CrossRef]
- Umoren, S.A.; Eduok, U.M.; Israel, A.U.; Obot, I.B.; Solomon, M.M. Coconut coir dust extract: A novel eco-friendly corrosion inhibitor for Al in HCl solutions. Green Chem. Lett. Rev. 2012, 5, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Nisar, N.; Bhat, J.A. Experimental investigation of Rice Husk Ash on compressive strength, carbonation and corrosion resistance of reinforced concrete. Aust. J. Civ. Eng. 2021, 19, 155–163. [Google Scholar] [CrossRef]
- Umoren, S.A.; Obot, I.B.; Akpabio, L.E.; Etuk, S.E. Adsorption and corrosive inhibitive properties of Vigna unguiculata in alkaline and acidic media. Pigment. Resin Technol. 2008, 37, 98–105. [Google Scholar] [CrossRef]
- Magni, M.; Postiglione, E.; Marzorati, S.; Verotta, L.; Trasatti, S.P. Green corrosion inhibitors from agri-food wastes: The case of Punica granatum extract and its constituent ellagic acid. A validation study. Processes 2020, 8, 272. [Google Scholar] [CrossRef] [Green Version]
- Odewunmi, N.A.; Umoren, S.A.; Gasem, Z.M. Watermelon waste products as green corrosion inhibitors for mild steel in HCl solution. J. Environ. Chem. Eng. 2015, 3, 286–296. [Google Scholar] [CrossRef]
- Singh, M. Ramananda; GUPTA, Prachi; GUPTA, Kaushal. The litchi (Litchi Chinensis) peels extract as a potential green inhibitor in prevention of corrosion of mild steel in 0.5 M H2SO4 solution. Arab. J. Chem. 2019, 12, 1035–1041. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, S.M.R.; Barbosa, L.C.A.; Queiroz, J.H.; Knödler, M.; Schieber, A. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chem. 2008, 110, 620–626. [Google Scholar] [CrossRef]
- Gomes, A.C.T. Análise da Corrosão e da Erosão-Corrosão do Aço Carbono em Meio com NaHCO3 e CO2. Master’s Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2005. [Google Scholar]
- Machnikova, E.; Whitmire, K.H.; Hackerman, N. Corrosion inhibition of carbon steel in hydrochloric acid by furan derivatives. Electrochim. Acta 2008, 53, 6024–6032. [Google Scholar] [CrossRef]
- Abd El-Lateef, H.M.; Alnajjar, A.O. Enhanced the protection capacity of poly (o-toluidine) by synergism with zinc or lanthanum additives at C-steel/HCl interface: A combined DFT, molecular dynamic simulations and experimental methods. J. Mol. Liq. 2020, 303, 112641. [Google Scholar] [CrossRef]
- Mahdavian, M.; Tehrani-Bagha, A.R.; Alibakhshi, E.; Ashhari, S.; Palimi, M.J.; Farashi, S.; Javadian, S.; Ektefa, F. Corrosion of mild steel in hydrochloric acid solution in the presence of two cationic gemini surfactants with and without hydroxyl substituted spacers. Corros. Sci. 2018, 137, 62–75. [Google Scholar] [CrossRef]
- Jawich, M.W.; Oweimreen, G.A.; Ali, S.A. Heptadecyl-tailed mono-and bis-imidazolines: A study of the newly synthesized compounds on the inhibition of mild steel corrosion in a carbon dioxide-saturated saline medium. Corros. Sci. 2012, 65, 104–112. [Google Scholar] [CrossRef]
- Rocha, J.C.D.; Gomes, J.A.D.C.P. Inibidores de corrosão naturais-Proposta de obtenção de produtos ecológicos de baixo custo a partir de resíduos industriais. Matéria 2018, 22 (Suppl. 1), 10. [Google Scholar] [CrossRef]
- Ong, G.; Kasi, R.; Subramaniam, R. A review on plant extracts as natural additives in coating applications. Prog. Org. Coat. 2021, 151, 106091. [Google Scholar] [CrossRef]
- Quites, D.; Leiza, J.R.; Mantione, D.; Somers, A.; Forsyth, M.; Paulis, M. Incorporation of a Coumarate Based Corrosion Inhibitor in Waterborne Polymeric Binders for Corrosion Protection Applications. Macromol. Mater. Eng. 2021, 307, 2100772. [Google Scholar] [CrossRef]
- Silva, V.C.; Rodrigues, C.M. Natural products: An extraordinary source of value-added compounds from diverse biomasses in Brazil. Chem. Biol. Technol. Agric. 2014, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
Descriptors Used | |
---|---|
INPI | SciELO/Web of Science/Derwent/Orbit |
Corrosão AND inibidor | Corros* AND (inhib* OR inib*) |
Corrosão AND inibidor AND (verde OR ecologicamente correto OR ecológico OR ambientalmente amigável) | Corros* AND (inhib* OR inib*) AND (green OR environmental sustainable OR eco-friendly) |
Corrosão AND inibidor AND (verde OR ecologicamente correto OR ecológico OR ambientalmente amigável) AND plantas AND extratos | Corros* AND (inhib* or inib*) AND (green OR environmental sustainable OR eco-friendly) AND plant* AND extract* |
Group of Descriptors | Descriptors | Web of Science | SciELO | Derwent | INPI | Orbit |
---|---|---|---|---|---|---|
A | Corros* and (inhib* or inib*) | 25,407 | 79 | 43,100 | 231 | 36,454 |
B | Corros* AND (inhib* or inib*) AND (green OR environmental sustainable OR eco-friendly) | 2263 | 7 | 989 | 10 | 632 |
C | Corros* AND (inhib* or inib*) AND (green OR environmental sustainable OR eco-friendly) AND plant* AND extract* | 333 | 2 | 22 | 0 | 20 |
Inhibitor | Medium | Metal | Inhibition | Reference |
---|---|---|---|---|
Coffee powder | Acid | Carbon steel | 94.83% | Costa et al. 2020 [32] |
Caffeine | Acid | Carbon steel | 92.40% | Souza et al. 2014 [33] |
Aniba canelilla | Acid | Carbon steel | 97.00% | Barros et al. 2018 [34] |
Hibisco-colibri | Acid | Carbon steel | 97.50% | Valbon et al. 2019 [35] |
Mango and orange peels | Acid | Carbon steel | 94.00% | Rocha et al. 2014 [36] |
Castor bean | Acid | Carbon steel | 83.00% | Santos et al. 2017 [38] |
Garlic peels | Acid | Carbon steel | 95.14% | Barreto et al. 2017 [37] |
Babassu coconut oil | Acid | Carbon steel | 56.45% | Peres et al. 2019 [39] |
White tea | Acid | Carbon steel | 90.20% | Oliveira and Cardoso, 2019 [40] |
Code | Title | IPC Classification | Year of Filing | Status |
---|---|---|---|---|
BR 10 2020 000691 6 | Use of ethanolic extract of red propolis from Alagoas as an environmentally friendly metal corrosion inhibitor | C23F 11/10; C23G 1/06; C23F 11/08 | 2020 | A2 |
BR 10 2019 006077 8 | Corrosion inhibitor powder obtained from cocoa bean shell | C23F 11/10; C23F 11/04 | 2019 | A2 |
BR 10 2017 024965 4 | Process for obtaining and using glycoprotein secretion from terrestrial gastropod mollusks as an environmentally friendly metal corrosion inhibitor | C23F 11/12; C08B 37/00 | 2017 | A2 |
BR 10 2017 023566 1 | Powdered corrosion inhibitor obtained from palm kernel cake | C23F 11/10 | 2017 | A2 |
BR 10 2016 023590 1 | Process for the production and application of macerated barley residue extract as a green inhibitor for acid pickling of ferrous materials | C23F 11/04; C23F 11/06; C23F 11/08 | 2016 | A2 |
BR 10 2016 017142 3 | Protector of biodegradable metallic material based on microemulsion containing the surfactant OCS added with DBS for commercial application in oil pipelines | C10M 141/08 | 2016 | A2 |
BR 10 2016 003632 1 | Green corrosion inhibitor based on Phyllanthus amarus Schum hydroalcoholic extract. & Thonn | C09D 5/14; C09D 5/08 | 2016 | A2 |
BR 11 2017 012661 3 | Composition | C09D 5/08; C09D 5/18; C09D 1/00 | 2014 | A2 |
BR 10 2014 031459 8 | Auto-micro-emulsifying system containing industrialized copaiba oil for application in green chemistry | B01F 17/00; C23F 11/00 | 2014 | A2 |
BR 10 2014 022875 6 | Obtaining nano-self-emulsifying systems using oil from the seeds of azadirachta indica a. Juss for application as a corrosion inhibitor | B01F 17/00; C23F 11/00 | 2014 | A2 |
Code | Inhibitor | IPC Classification | Country | Status |
---|---|---|---|---|
CN103194762 | Jatropha curcas seed | C23G-001/06 | China | Pending |
CN105140595 | Óleo essencial de lavanda (lavender oil) | H01M-012/06 | China | Concede |
CN113026023 | Taraxacum officinale | C23F-011/08 | China | Pending |
IN1608/DEL/2004 | Lemon, castor oil, turmeric powder, nem leaves, tulasi leaves, ladies finger, gooseberry, grape and apple. | C23F-015/00 | India | Overdue |
IN201731006599 | Neem leaves, turmeric, coffee and tea | A61K-008/02; C23F-011/173 | India | Pending |
CN113201740 | Cocoa beans | C07D-311/62; C23G-001/06; C23G-001/08 | China | Pending |
CN112981412 | Potentilla root powder | C23F-011/10 | China | Pending |
CN111850567 | Tea powder * | C23F-011/12 | China | Pending |
CN111705322 | Stevia plant leaves | C23G-001/06; C23G-001/08 | China | Pending |
CN112376038 | Basil leaf | C23C-22/34; C23C-022/60; C23C-022/68; C23F-011/173 | China | Pending |
CN113136198 | Green walnut shells | C08H-007/00; C09K-008/74; E21B-043/27 | China | Pending |
CN109763120 | Kudingcha leaves | C23C-022/60; C23F-011/02 | China | Pending |
KR100778333 | Agar extract | C04B-014/02; C04B-014/30; C04B-016/02 | South Korea | Overdue |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Souza Morais, W.R.; da Silva, J.S.; Queiroz, N.M.P.; de Paiva e Silva Zanta, C.L.; Ribeiro, A.S.; Tonholo, J. Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environment: A Technological and Scientific Prospection. Appl. Sci. 2023, 13, 7482. https://doi.org/10.3390/app13137482
de Souza Morais WR, da Silva JS, Queiroz NMP, de Paiva e Silva Zanta CL, Ribeiro AS, Tonholo J. Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environment: A Technological and Scientific Prospection. Applied Sciences. 2023; 13(13):7482. https://doi.org/10.3390/app13137482
Chicago/Turabian Stylede Souza Morais, Williams Raphael, Jaceguai Soares da Silva, Nathalia Marcelino Pereira Queiroz, Carmen Lúcia de Paiva e Silva Zanta, Adriana Santos Ribeiro, and Josealdo Tonholo. 2023. "Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environment: A Technological and Scientific Prospection" Applied Sciences 13, no. 13: 7482. https://doi.org/10.3390/app13137482
APA Stylede Souza Morais, W. R., da Silva, J. S., Queiroz, N. M. P., de Paiva e Silva Zanta, C. L., Ribeiro, A. S., & Tonholo, J. (2023). Green Corrosion Inhibitors Based on Plant Extracts for Metals and Alloys in Corrosive Environment: A Technological and Scientific Prospection. Applied Sciences, 13(13), 7482. https://doi.org/10.3390/app13137482