Biomechanical Performance of a Novel Implant Design in Simulated Extraction Sites and Sinuslift Procedures
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gamborena, I.; Sasaki, Y.; Blatz, M.B. Predictable immediate implant placement and restoration in the esthetic zone. J. Esthet. Restor. Dent. 2021, 33, 158–172. [Google Scholar] [CrossRef]
- Ekhlasmandkermani, M.; Amid, R.; Kadkhodazadeh, M.; Hajizadeh, F.; Abed, P.F.; Kheiri, L.; Kheiri, A. Sinus floor elevation and simultaneous implant placement in fresh extraction sockets: A systematic review of clinical data. J. Korean Assoc. Oral Maxillofac. Surg. 2021, 47, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Christiaens, V.; Pitman, J.; Glibert, M.; Hommez, G.; Atashkadeh, M.; De Bruyn, H. Rationale for a reverse tapered body shift implant for immediate placement. Int. J. Oral Maxillofac. Surg. 2020, 49, 1630–1636. [Google Scholar] [CrossRef]
- Canellas, J.V.D.S.; Medeiros, P.J.D.; Figueredo, C.M.D.S.; Fischer, R.G.; Ritto, F.G. Which is the best choice after tooth extraction, immediate implant placement or delayed placement with alveolar ridge preservation? A systematic review and meta-analysis. J. Craniomaxillofac. Surg. 2019, 47, 1793–1802. [Google Scholar] [CrossRef]
- Garcia-Sanchez, R.; Dopico, J.; Kalemaj, Z.; Buti, J.; Pardo Zamora, G.; Mardas, N. Comparison of clinical outcomes of immediate versus delayed placement of dental implants: A systematic review and meta-analysis. Clin. Oral. Implants. Res. 2022, 33, 231–277. [Google Scholar] [CrossRef]
- Maddalone, M.; Mirabelli, L.; Venino, P.M.; Karanxha, L.; Porcaro, G.; Del Fabbro, M. Long-term stability of autologous bone graft of intraoral origin after lateral sinus floor elevation with simultaneous implant placement. Clin. Implant. Dent. Relat. Res. 2018, 20, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Rues, S.; Schmitter, M.; Kappel, S.; Sonntag, R.; Kretzer, J.P.; Nadorf, J. Effect of bone quality and quantity on the primary stability of dental implants in a simulated bicortical placement. Clin. Oral Investig. 2021, 25, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.J.; Lin, C.Y.; Hung, T.F.; Chiu, H.C.; Kuo, H.Y. A novel application of dynamic guided navigation system in immediate implant placement. J. Dent. Sci. 2022, 17, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Pareek, R.; Rajawat, G.S.; Kadam, A.; Al Abdulsalam, M.; Al Abdulathim, A. Comparison of Bone Healing in Immediate Implant Placement versus Delayed Implant Placement. J. Pharm. Bioallied. Sci. 2021, 13, S1309–S1314. [Google Scholar]
- Weigl, P.; Strangio, A. The impact of immediately placed and restored single-tooth implants on hard and soft tissues in the anterior maxilla. Eur. J. Oral Implantol. 2016, 9, S89–S106. [Google Scholar]
- Rodrigues, D.M.; Petersen, R.L.; Montez, C.; de Moraes, J.R.; Ferreira, V.; Barboza, E.P. The relationship between tomographic sagittal root position of maxillary anterior teeth and the bone housing. J. Prosthet. Dent. 2022, ahead of print. [Google Scholar] [CrossRef]
- Botermans, A.; Lidén, A.; de Carvalho Machado, V.; Chrcanovic, B.R. Immediate Implant Placement in the Maxillary Aesthetic Zone: A Cone Beam Computed Tomography Study. J Clin. Med. 2021, 10, 5853. [Google Scholar] [CrossRef] [PubMed]
- Heimes, D.; Schiegnitz, E.; Kuchen, R.; Kämmerer, P.W.; Al-Nawas, B. Buccal Bone Thickness in Anterior and Posterior Teeth-A Systematic Review. Healthcare 2021, 9, 1663. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.M.; Shi, J.Y.; Qiao, S.C.; Zhang, X.; Lai, H.C.; Zhang, X.M. Accuracy and primary stability of tapered or straight implants placed into fresh extraction socket using dynamic navigation: A randomized controlled clinical trial. Clin. Oral Investig 2021, ahead of print. [Google Scholar] [CrossRef]
- Sanchez-Perez, A.; Nicolas-Silvente, A.I.; Sanchez-Matas, C.; Molina-García, S.; Navarro-Cuellar, C.; Romanos, G.E. Primary stability and PES/WES evaluation for immediate implants in the aesthetic zone: A pilot clinical double-blind randomized study. Sci. Rep. 2021, 11, 20024. [Google Scholar] [CrossRef]
- Yang, B.; Irastorza-Landa, A.; Heuberger, P.; Ploeg, H.L. Effect of insertion factors on dental implant insertion torque/energy-experimental results. J. Mech. Behav. Biomed. Mater. 2020, 112, 103995. [Google Scholar] [CrossRef]
- Noaman, A.T.; Bede, S.Y. The Effect of Bone Density Measured by Cone Beam Computed Tomography and Implant Dimensions on the Stability of Dental Implants. J. Craniofac. Surg. 2021, 33, e553–e557. [Google Scholar] [CrossRef]
- Herrero-Climent, M.; López-Jarana, P.; Lemos, B.F.; Gil, F.J.; Falcão, C.; Ríos-Santos, J.V.; Ríos-Carrasco, B. Relevant Design Aspects to Improve the Stability of Titanium Dental Implants. Materials 2020, 13, 1910. [Google Scholar] [CrossRef]
- Chu, S.J.; Levin, B.P.; Egbert, N.; Saito, H.; Nevins, M. Use of a Novel Implant with an Inverted Body-Shift and Prosthetic Angle Correction Design for Immediate Tooth Replacement in the Esthetic Zone: A Clinical Case Series. Int. J. Periodontics Restor. Dent. 2021, 41, 195–204. [Google Scholar] [CrossRef]
- Hamzani, Y.; Yassien, E.; Moskovich, L.; Becker, T.; Chaushu, G.; Haj Yahya, B. Potential Circumferential Bone Engagement following Tooth Extraction in the Posterior Mandible: Computed Tomography Assessment. Medicina 2021, 57, 874. [Google Scholar] [CrossRef] [PubMed]
- Levin, B.P.; Chu, S.J.; Saito, H.; Nevins, M.; Levin, J.P. A Novel Implant Design for Immediate Extraction Sites: Determining Primary Stability. Int. J. Periodontics Restor. Dent. 2021, 41, 357–364. [Google Scholar] [CrossRef]
- Rowan, M.; Lee, D.; Pi-Anfruns, J.; Shiffler, P.; Aghaloo, T.; Moy, P.K. Mechanical versus biological stability of immediate and delayed implant placement using resonance frequency analysis. J. Oral Maxillofac. Surg. 2015, 73, 253–257. [Google Scholar] [CrossRef]
- Levin, B.P. The Correlation Between Immediate Implant Insertion Torque and Implant Stability Quotient. Int. J. Periodontics Restor. Dent. 2016, 36, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Bavetta, G.; Bavetta, G.; Randazzo, V.; Cavataio, A.; Paderni, C.; Grassia, V.; Dipalma, G.; Gargiulo Isacco, C.; Scarano, A.; De Vito, D.; et al. A Retrospective Study on Insertion Torque and Implant Stability Quotient (ISQ) as Stability Parameters for Immediate Loading of Implants in Fresh Extraction Sockets. Biomed. Res. Int. 2019, 2019, 9720419. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.J.; Saito, H.; Levin, B.P.; Baumgarten, H.; Egbert, N.; Wills, M.J.; Del Castillo, R.A.; Tarnow, D.P.; Nevins, M. Outcomes of a 1-Year Prospective Single-Arm Cohort Study Using a Novel Macro-Hybrid Implant Design in Extraction Sockets: Part 1. Int. J. Periodontics Restor. Dent. 2021, 41, 499–508. [Google Scholar] [CrossRef]
- Saito, H.; Chu, S.J.; Tarnow, D.P. The effect of implant macrogeometry in immediate tooth replacement therapy: A case series. J. Esthet. Restor. Dent. 2021, ahead of print. [Google Scholar] [CrossRef]
- Kwon, J.J.; Hwang, J.; Kim, Y.D.; Shin, S.H.; Cho, B.H.; Lee, J.Y. Automatic three-dimensional analysis of bone volume and quality change after maxillary sinus augmentation. Clin. Implant Dent. Relat. Res. 2019, 21, 1148–1155. [Google Scholar] [CrossRef]
- Andrés-García, R.; Ríos-Santos, J.V.; Herrero-Climent, M.; Bullón, P.; Fernández-Farhall, J.; Gómez-Menchero, A.; Fernández-Palacín, A.; Ríos-Carrasco, B. Sinus Floor Elevation via an Osteotome Technique without Biomaterials. Int. J. Environ. Res. Public Health 2021, 18, 1103. [Google Scholar] [CrossRef]
- Park, Y.H.; Jung, U.W.; Kim, C.S.; Choi, S.H.; Cho, K.S.; Lee, J.S. Resonance Frequency Analysis of Tapered Implants Placed at Maxillary Posterior Sites After Lateral Sinus Augmentation: A 1.5-year Follow-Up Prospective Study. Implant Dent. 2019, 28, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kim, C.H.; Kim, J.H. Immediate implant placement following tooth extraction with simultaneous lateral sinus augmentation: A retrospective clinical study after at least 1 year of loading. Int. J. Implant Dent. 2021, 7, 96. [Google Scholar] [CrossRef]
- Bhandari, S.; Thomas, R.; Kumar, T.; Shah, R.; Mehta, D.S. Maxillary Sinus Augmentation Using Hydraulic Pressure by Lateral Approach and Simultaneous Implant Placement: Clinicoradiographic Study. Implant Dent. 2019, 28, 514–519. [Google Scholar] [CrossRef]
- De Oliveira Nicolau Mantovani, A.K.; de Mattias Sartori, I.A.; Azevedo-Alanis, L.R.; Tiossi, R.; Fontão, F.N.G.K. Influence of cortical bone anchorage on the primary stability of dental implants. Oral Maxillofac. Surg. 2018, 22, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Irinakis, T.; Wiebe, C. Clinical evaluation of the NobelActive implant system: A case series of 107 consecutively placed implants and a review of the implant features. J. Oral. Implantol. 2009, 35, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Klär, V.; Grobecker-Karl, T.; Karl, M. Biomechanical rationale for a novel implant design reducing stress on buccal bone. Appl. Sci. 2023, 13, 666. [Google Scholar] [CrossRef]
- Dard, M.; Kuehne, S.; Obrecht, M.; Grandin, M.; Helfenstein, J.; Pippenger, B.E. Integrative Performance Analysis of a Novel Bone Level Tapered Implant. Adv. Dent. Res. 2016, 28, 28–33. [Google Scholar] [CrossRef]
- Wang, R.; Eppell, S.J.; Nguyen, C.; Morris, N. Relative Contribution of Trabecular and Cortical Bone to Primary Implant Stability: An In Vitro Model Study. J. Oral Implantol. 2016, 42, 145–152. [Google Scholar] [CrossRef]
- Steiner, C.; Karl, M.; Grobecker-Karl, T. Insertion and loading characteristics of three different bone-level implants. Int. J. Oral Maxillofac. Implants. 2020, 35, 560–565. [Google Scholar] [CrossRef]
- Karl, M.; Irastorza-Landa, A. Does implant design affect primary stability in extraction sites? Quintessence Int. 2017, 48, 219–224. [Google Scholar]
- Steiner, C.; Karl, M.; Grobecker-Karl, T. Wedge shaped vs. round implants: Bone strain during the insertion process. J. Oral Implantol. 2022, 48, 557–561. [Google Scholar] [CrossRef]
- Klär, V.; Karl, M.; Grobecker-Karl, T. Bone damage during dental implant insertion: A pilot study combining strain gauge and histologic analysis. Appl. Sci. 2022, 12, 291. [Google Scholar] [CrossRef]
- Velikov, S.; Susin, C.; Heuberger, P.; Irastorza-Landa, A. A New Site Preparation Protocol That Supports Bone Quality Evaluation and Provides Predictable Implant Insertion Torque. J. Clin. Med. 2020, 9, 494. [Google Scholar] [CrossRef]
- Dantas, T.A.; Carneiro Neto, J.P.; Alves, J.L.; Vaz, P.C.S.; Silva, F.S. In silico evaluation of the stress fields on the cortical bone surrounding dental implants: Comparing root-analogue and screwed implants. J. Mech. Behav. Biomed. Mater. 2020, 104, 103667. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.C.; Huang, C.H.; Hsu, M.L. Influences of screw design features on initial stability in immediate implant placement and restoration. Clin. Biomech. 2021, 89, 105453. [Google Scholar] [CrossRef]
- Ueno, D.; Nakamura, K.; Kojima, K.; Toyoshima, T.; Tanaka, H.; Ueda, K.; Koyano, K.; Kodama, T. A stepwise under-prepared osteotomy technique improves primary stability in shallow-placed implants: A preliminary study for simultaneous vertical ridge augmentation. Odontology 2018, 106, 187–193. [Google Scholar] [CrossRef]
- Sierra-Rebolledo, A.; Allais-Leon, M.; Maurette-O’Brien, P.; Gay-Escoda, C. Primary Apical Stability of Tapered Implants Through Reduction of Final Drilling Dimensions in Different Bone Density Models: A Biomechanical Study. Implant. Dent. 2016, 25, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, D.A.; Arosio, P.; Gastaldi, G.; Gherlone, E. The insertion torque-depth curve integral as a measure of implant primary stability: An in vitro study on polyurethane foam blocks. J. Prosthet. Dent. 2018, 120, 706–714. [Google Scholar] [CrossRef]
- Elias, C.N.; Rocha, F.A.; Nascimento, A.L.; Coelho, P.G. Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J. Mech. Behav. Biomed. Mater. 2012, 16, 169–180. [Google Scholar] [CrossRef]
Sinuslift | Extraction Site | |
---|---|---|
Implants | NobelActive Internal RP 4.3 × 10 mm REF 34131 LOT 13125039 | NobelActive Internal RP 5.0 × 10 mm REF 34137 LOT 12168347 |
AlfaGate Novel Design 4.3 × 10 mm | AlfaGate Novel Design 5.0 × 10 mm | |
Drill sequence | 2.0 2.4/2.8 3.2/3.6 | Preformed Socket Depth: 10 mm 2.4/2.8 |
Parameter | NobelActive | Shapiro-Wilk-Test (p-Value) | AlfaGate | Shapiro-Wilk-Test (p-Value) | |||
---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||
Sinuslift | Maximum insertion torque [Ncm] | 48.49 | 1.965 | 0.0298 | 40.42 | 1.460 | 0.1877 |
Osstell [ISQ] | 40.65 | 5.874 | 0.8498 | 44.70 | 3.164 | 0.6327 | |
Extraction site | Maximum insertion torque [Ncm] | 14.29 | 1.244 | 0.4605 | 16.43 | 1.578 | 0.2829 |
Osstell [ISQ] | 41.80 | 3.225 | 0.9252 | 47.80 | 2.541 | 0.5593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klär, V.; Zimmerer, R.; Schulz, A.; Lethaus, B. Biomechanical Performance of a Novel Implant Design in Simulated Extraction Sites and Sinuslift Procedures. Appl. Sci. 2023, 13, 7541. https://doi.org/10.3390/app13137541
Klär V, Zimmerer R, Schulz A, Lethaus B. Biomechanical Performance of a Novel Implant Design in Simulated Extraction Sites and Sinuslift Procedures. Applied Sciences. 2023; 13(13):7541. https://doi.org/10.3390/app13137541
Chicago/Turabian StyleKlär, Virgilia, Rüdiger Zimmerer, Annika Schulz, and Bernd Lethaus. 2023. "Biomechanical Performance of a Novel Implant Design in Simulated Extraction Sites and Sinuslift Procedures" Applied Sciences 13, no. 13: 7541. https://doi.org/10.3390/app13137541
APA StyleKlär, V., Zimmerer, R., Schulz, A., & Lethaus, B. (2023). Biomechanical Performance of a Novel Implant Design in Simulated Extraction Sites and Sinuslift Procedures. Applied Sciences, 13(13), 7541. https://doi.org/10.3390/app13137541