Relationship between Effective Duration and Intelligibility of Japanese Monosyllables in Individuals with Sensorineural Hearing Loss
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure for Determining SRS
2.1.1. Subjects
2.1.2. Speech Audiometry Procedure
2.1.3. Grouping
2.2. ACF Factors Obtained from the Monosyllables
2.3. Data Analysis
3. Results
4. Discussion
4.1. Relationship between Percentage of Articulation and τe-med
4.2. Average τe-med of the Presented Monosyllables and Responses
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosen, S. Temporal information in speech: Acoustic, auditory and linguistic aspects. Philos. Trans. R. Soc. B Biol. Sci. 1992, 336, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Hou, L.; Xu, L. Role of short-time acoustic temporal fine structure cues in sentence recognition for normal-hearing listeners. J. Acoust. Soc. Am. 2018, 143, EL127–EL132. [Google Scholar] [CrossRef]
- Moore, B.C.J.; Glasberg, B.R.; Hopkins, K. Frequency discrimination of complex tones by hearing-impaired subjects: Evidence for loss of ability to use temporal fine structure. Hear. Res. 2006, 222, 16–27. [Google Scholar] [CrossRef]
- Bacon, S.P.; Opie, J.M. Modulation detection interference in listeners with normal and impaired hearing. J. Speech Lang. Hear. Res. 2002, 45, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Kodera, K.; Akai, S.; Hirota, E.; Miura, M.; Yabe, S. Study on consonant confusion in Japanese patients with sensorineural hearing loss. Nippon. Jibiinkoka Gakkai Kaiho 1993, 96, 1404–1409,1573. (In Japanese) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akasaka, S.; Nishimura, T.; Okayasu, T.; Hosoi, H. Percentage of correct answers to 57-S individual Japanese monosyllabic words in the hearing impaired. Audiol. Jpn. 2010, 53, 69–75. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Shimokura, R.; Akasaka, S.; Nishimura, T.; Hosoi, H.; Matsui, T. Autocorrelation factors and intelligibility of Japanese monosyllables in individuals with sensorineural hearing loss. J. Acoust. Soc. Am. 2017, 141, 1065–1073. [Google Scholar] [CrossRef]
- Ando, Y. Subjective preferences for sound fields. In Auditory and Visual Sensations; Springer: New York, NY, USA, 2009; pp. 25–38. [Google Scholar]
- Cariani, P.A.; Delgutte, B. Neural correlates of the pitch of complex tones. I. Pitch and pitch salience. J. Neurophysiol. 1996, 76, 1698–1716. [Google Scholar] [CrossRef] [Green Version]
- Cariani, P.A.; Delgutte, B. Neural correlates of the pitch of complex tones. II. Pitch shift, pitch ambiguity, phase invariance, pitch circularity, rate pitch, and the dominance region for pitch. J. Neurophysiol. 1996, 76, 1717–1734. [Google Scholar] [CrossRef] [Green Version]
- Ando, Y. Prediction of subjective preference in concert halls. In Concert Hall Acoustics; Springer: Heidelberg, Germany, 1985; pp. 70–88. [Google Scholar]
- Sato, S.; You, J.; Jeon, J.Y. Sound quality characteristics of refrigerator noise in real living environments with relation to psychoacoustical and autocorrelation function parameters. J. Acoust. Soc. Am. 2007, 122, 314–325. [Google Scholar] [CrossRef]
- Soeta, Y.; Shimokura, R. Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Appl. Acoust. 2017, 124, 11–19. [Google Scholar] [CrossRef]
- Kitamura, T.; Shimokura, R.; Sato, S.; Ando, Y. Measurement of temporal and spatial factors of a flushing toilet noise in a downstairs bedroom. J. Temporal Des. Archit. Environ. 2002, 2, 13–19. [Google Scholar]
- Fujii, K.; Soeta, Y.; Ando, Y. Acoustical properties of aircraft noise measured by temporal and spatial factors. J. Sound Vib. 2001, 241, 69–78. [Google Scholar] [CrossRef]
- Fujii, K.; Atagi, J.; Ando, Y. Temporal and spatial factors of traffic noise and its annoyance. J. Temporal Des. Archit. Environ. 2002, 2, 33–41. [Google Scholar]
- Soeta, Y.; Shimokura, R. Survey of interior noise characteristics in various types of trains. Appl. Acoust. 2013, 74, 1160–1166. [Google Scholar] [CrossRef]
- Jeon, J.Y.; Sato, S. Annoyance caused by heavyweight floor impact sounds in relation to the autocorrelation function and sound quality metrics. J. Sound Vib. 2008, 311, 767–785. [Google Scholar] [CrossRef]
- Korenaga, Y.; Ando, Y. A method of calculating intelligibility of sound field in relation to temporal structure of reflections—On the trend of syllable confusion under sound field composed of a direct sound and up to two reflections. J. Acoust. Soc. Jpn. 1996, 52, 940–947. (In Japanese) [Google Scholar]
- Ando, Y. [Application]; Vol. II. Speech reception in sound fields. In Auditory Vis Sensations; Springer: New York, NY, USA, 2009; pp. 179–197. [Google Scholar]
- Ando, Y.; Sakai, H.; Sato, S. Formulae describing subjective attributes for sound fields based on a model of the auditory-brain system. J. Sound Vib. 2000, 232, 101–127. [Google Scholar] [CrossRef]
- Japan Audiological Society. Methods of speech audiometry. Audiol. Jpn. 2003, 46, 621–637. (In Japanese) [Google Scholar] [CrossRef]
- Kodera, K.; Hosoi, H.; Okamoto, M.; Manabe, T.; Kanda, Y.; Shiraishi, K.; Sugiuchi, T.; Suzuki, K.; Tauchi, H.; Nishimura, T.; et al. Guidelines for the evaluation of hearing aid fitting (2010). Auris Nasus Larynx 2016, 43, 217–228. [Google Scholar] [CrossRef]
- IEC 60645-1; Electroacoustics—Audiometric Equipment—Part 1: Equipment for Pure-Tone and Speech Audiometry. IEC: Geneva, Switzerland, 2001. Available online: https://webstore.iec.ch/publication/32370 (accessed on 10 May 2023).
- Meister, H.; Lausberg, I.; Kiessling, J.; Walger, M.; von Wedel, H. Determining the importance of fundamental hearing aid attributes. Otol. Neurotol. 2002, 23, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Prosser, S.; Turrini, M.; Arslan, E. Effects of different noises on speech discrimination by the elderly. Acta Oto-Laryngol. 1990, 476, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Summers, V.; Makashay, M.J.; Theodoroff, S.M.; Leek, M.R. Suprathreshold auditory processing and speech perception in noise: Hearing-impaired and normal-hearing listeners. J. Am. Acad. Audiol. 2013, 24, 274–292. [Google Scholar] [CrossRef] [PubMed]
- Kortlang, S.; Mauermann, M.; Ewert, S.D. Suprathreshold auditory processing deficits in noise: Effects of hearing loss and age. Hear. Res. 2016, 331, 27–40. [Google Scholar] [CrossRef]
- Gatehouse, S.; Noble, W. The speech, spatial and qualities of hearing scale (SSQ). Int. J. Audiol. 2004, 43, 85–99. [Google Scholar] [CrossRef]
/a/ | /ka/ | /sa/ | /ta/ | /na/ | /ha/ | /ma/ | /ya/ | /ra/ | /wa/ | /ga/ | /da/ | |
/i/ | /ki/ | /si/ | /ti/ | /ni/ | /hi/ | /mi/ | /ri/ | /zi/ | ||||
/u/ | /ku/ | /su/ | /ti/ | /hu/ | /mu/ | /yu/ | /ru/ | /zu/ | ||||
/e/ | /ke/ | /se/ | /te/ | /ne/ | /me/ | /re/ | /de/ | |||||
/o/ | /ko/ | /so/ | /to/ | /no/ | /ho/ | /mo/ | /yo/ | /ro/ | /go/ | /do/ |
Number | Age (years) | Average PTA (dB) | SRS (%) | Presentation Level of Speech Recognition Test (dB HL) | |
---|---|---|---|---|---|
High-SRS group | 47 | 67.0 ± 12.5 | 48.6 ± 11.0 | 81.6 ± 7.6 | 84.3 ± 8.8 |
Middle-SRS group | 53 | 73.3 ± 10.5 | 47.2 ± 5.2 | 59.3 ± 6.0 | 84.6 ± 8.7 |
Low-SRS group | 41 | 71.6 ± 15.3 | 50.1 ± 7.0 | 38.3 ± 9.7 | 88.0 ± 9.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akasaka, S.; Nishimura, T.; Shimokura, R.; Kitahara, T.; Hosoi, H. Relationship between Effective Duration and Intelligibility of Japanese Monosyllables in Individuals with Sensorineural Hearing Loss. Appl. Sci. 2023, 13, 8244. https://doi.org/10.3390/app13148244
Akasaka S, Nishimura T, Shimokura R, Kitahara T, Hosoi H. Relationship between Effective Duration and Intelligibility of Japanese Monosyllables in Individuals with Sensorineural Hearing Loss. Applied Sciences. 2023; 13(14):8244. https://doi.org/10.3390/app13148244
Chicago/Turabian StyleAkasaka, Sakie, Tadashi Nishimura, Ryota Shimokura, Tadashi Kitahara, and Hiroshi Hosoi. 2023. "Relationship between Effective Duration and Intelligibility of Japanese Monosyllables in Individuals with Sensorineural Hearing Loss" Applied Sciences 13, no. 14: 8244. https://doi.org/10.3390/app13148244
APA StyleAkasaka, S., Nishimura, T., Shimokura, R., Kitahara, T., & Hosoi, H. (2023). Relationship between Effective Duration and Intelligibility of Japanese Monosyllables in Individuals with Sensorineural Hearing Loss. Applied Sciences, 13(14), 8244. https://doi.org/10.3390/app13148244