Mechanical Properties of Slag-Based Geopolymer Grouting Material for Homogenized Micro-Crack Crushing Technology
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Geopolymer
2.3. Testing Methods
2.3.1. Compressive and Flexural Strength Tests
2.3.2. Bonding Strength Test
2.3.3. Microscopic Test
3. Results and Discussion
3.1. Compressive Strength of Geopolymer
3.2. Flexural Strength of Geopolymer
3.3. Flexural Strength of New and Old Bonding Beams
3.4. Compressive Shear Bonding Strength
3.5. Microscopic Test
4. Practical Application
4.1. Homogenized Micro-Crack Crushing
4.2. Practical Grouting Test of Geopolymer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davidovits, J. Geopolymers: Inorganic polymer new materials. J. Therm. Anal. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.; Palomo, A.; Criado, M. Microstructure development of alkali-activated fly ash cement descriptive model. Cem. Concr. Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Park, S.S.; Kang, H.Y. Strength and microscopic characteristics of alkali-activated fly ash-cement. Korean J. Chem. Eng. 2006, 23, 367–373. [Google Scholar] [CrossRef]
- Fernandez-Jimenez, A.; Garcia-Lodeiro, L.; Palomo, A. Durability of alkali-activated fly ash cementitious materials. J. Mater. Sci. 2007, 42, 3055–3065. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, J.; Ye, G. The effect of activating solution on the mechanical strength, reaction rate, mineralogy, and microstructure of alkali-activated fly ash. J. Mater. Sci. 2012, 47, 4568–4578. [Google Scholar] [CrossRef] [Green Version]
- Nath, S.K.; Kumar, S. Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr. Build. Mater. 2013, 38, 924–930. [Google Scholar] [CrossRef]
- Rashad, A.M. A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater. Design. 2014, 53, 1005–1025. [Google Scholar] [CrossRef]
- Law, D.W.; Adam, A.A.; Molyneaux, T.K.; Patnaikuni, I.; Wardhono, A. Long term durability properties of class F fly ash geopolymer concrete. Mater. Struct. 2015, 48, 721–731. [Google Scholar] [CrossRef]
- Khan, M.Z.N.; Shaikh, F.U.A.; Hao, Y.F.; Hao, H. Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Constr. Build. Mater. 2016, 125, 809–820. [Google Scholar] [CrossRef]
- Ding, Y.C.; Cheng, T.W.; Dai, Y.S. Application of geopolymer paste for concrete repair. Struct. Concrete 2017, 18, 561–570. [Google Scholar] [CrossRef]
- Rakhimova, N.R.; Rakhimov, R.Z. Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials-a review. J. Mater. Res. Technol. 2019, 8, 1522–1531. [Google Scholar] [CrossRef]
- Katpady, D.N.; Takewaka, K.; Yamaguchi, T.; Akira, Y. Performance of slag based Shirasu geopolymer cured under ambient condition. Constr. Build. Mater. 2020, 234, 117210. [Google Scholar] [CrossRef]
- Guo, X.L.; Pan, X.J. Effects of steel slag on mechanical properties and mechanism of fly ash-based geopolymer. J. Mater. Civil. Eng. 2020, 32, 04019348. [Google Scholar] [CrossRef]
- Ng, Y.S.; Liew, Y.M.; Heah, C.Y.; Abdullah, M.M.A.; Chan, L.W.L.; Ng, H.T.; Ong, S.W.; Ooi, W.E.; Hang, Y.J. Evaluation of flexural properties and characterisation of 10-mm thin geopolymer based on fly ash and ladle furnace slag. J. Mater. Res. Technol. 2021, 15, 163–176. [Google Scholar]
- Stankiewicz, N. Effect of Admixtures on Selected Properties of Fly Ash-Based Geopolymer Composites. Appl. Sci. 2023, 13, 1803. [Google Scholar] [CrossRef]
- Wang, C.H.; Wen, P.H.; Wang, M.H.; Fan, Q.J.; Wang, X.Q. Preparation and characterization of road alkali-activated blast furnace slag paste. Constr. Build. Mater. 2018, 181, 175–184. [Google Scholar] [CrossRef]
- Xiang, J.C.; Liu, L.P.; Cui, X.M.; He, Y.; Zheng, G.J.; Shi, C.J. Effect of Fuller-fine sand on rheological, drying shrinkage, and microstructural properties of metakaolin-based geopolymer grouting materials. Cement Concrete Comp. 2019, 104, 103381. [Google Scholar] [CrossRef]
- Liu, F.Q.; Zheng, M.L.; Ye, Y.S. Formulation and properties of a newly developed powder geopolymer grouting material. Constr. Build. Mater. 2020, 258, 120304. [Google Scholar] [CrossRef]
- Xu, J.; Kang, A.H.; Wu, Z.G.; Xiao, P.; Gong, Y.F. Effect of high-calcium basalt fiber on the workability, mechanical properties and microstructure of slag-fly ash geopolymer grouting material. Constr. Build. Mater. 2021, 302, 124089. [Google Scholar] [CrossRef]
- Xu, J.; Kang, A.H.; Wu, Z.G.; Xiao, P.; Li, B.; Lu, Y.M. Research on the Formulation and Properties of a High-Performance Geopolymer Grouting Material Based on Slag and Fly Ash. KSCE J. Civ. Eng. 2021, 25, 3437–3447. [Google Scholar] [CrossRef]
- Zhou, S.Q.; Yang, Z.N.; Zhang, R.R.; Li, F. Preparation, characterization and rheological analysis of eco-friendly road geopolymer grouting materials based on volcanic ash and metakaolin. J. Clean. Prod. 2021, 312, 127822. [Google Scholar] [CrossRef]
- Zeng, Q.W.; Gao, P.W.; Li, K.; Dong, G.Q.; Jin, G.L.; Sun, X.W.; Zhao, J.W.; Chen, L.F. Experimental Research on the Properties and Formulation of Fly Ash Based Geopolymer Grouting Material. Buildings 2022, 12, 503. [Google Scholar] [CrossRef]
- Liu, J.W.; Feng, H.; Zhang, Y.X.; Zheng, K.Q. Performance Investigation of Geopolymer Grouting Material with Varied Mix Proportions. Sustainability 2022, 14, 13046. [Google Scholar] [CrossRef]
- Yue, J.C.; Nie, X.F.; Wang, Z.R.; Liu, J.L.; Huang, Y.C. Research on the Pavement Performance of Slag/Fly Ash-Based Geopolymer-Stabilized Macadam. Appl. Sci. 2022, 12, 10000. [Google Scholar] [CrossRef]
- Sofri, L.A.; Abdullah, M.M.A.; Sandu, A.V.; Imjai, T.; Vizureanu, P.; Hasan, M.R.M.; Almadani, M.; Ab Aziz, I.H.; Rahman, F.A. Mechanical Performance of Fly Ash Based Geopolymer (FAG) as Road Base Stabilizer. Materials 2022, 15, 7242. [Google Scholar] [CrossRef]
- Wu, D.Z.; Zhang, Z.L.; Chen, K.Y.; Xia, L.L. Experimental Investigation and Mechanism of Fly Ash/Slag-Based Geopolymer-Stabilized Soft Soil. Appl. SCI-Basel. 2022, 12, 7438. [Google Scholar] [CrossRef]
- Li, J.; Dang, X.T.; Zhang, J.W.; Yi, P.; Li, Y.M. Mechanical Properties of Fly Ash-Slag Based Geopolymer for Repair of Road Subgrade Diseases. Polymers 2023, 15, 309. [Google Scholar] [CrossRef]
- GB/T 18046-2017; Ground Granulated Blast Furnace Slag Used for Cement, Mortar and Concrete. Standards Press of China: Beijing, China, 2017.
- JTG 3420-2020; Testing Methods of Cement and Concrete for Highway Engineering. China Communications Press: Beijing, China, 2020.
Material | CaO | SiO2 | Al2O3 | MgO | SO3 | TiO2 | FexOy | Na2O | K2O | MnO |
---|---|---|---|---|---|---|---|---|---|---|
slag | 39.46 | 26.01 | 13.24 | 8.41 | 2.25 | 1.04 | 0.68 | 0.60 | 0.60 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Liang, B.; Yue, J. Mechanical Properties of Slag-Based Geopolymer Grouting Material for Homogenized Micro-Crack Crushing Technology. Appl. Sci. 2023, 13, 8353. https://doi.org/10.3390/app13148353
Li W, Liang B, Yue J. Mechanical Properties of Slag-Based Geopolymer Grouting Material for Homogenized Micro-Crack Crushing Technology. Applied Sciences. 2023; 13(14):8353. https://doi.org/10.3390/app13148353
Chicago/Turabian StyleLi, Wenjie, Bin Liang, and Jinchao Yue. 2023. "Mechanical Properties of Slag-Based Geopolymer Grouting Material for Homogenized Micro-Crack Crushing Technology" Applied Sciences 13, no. 14: 8353. https://doi.org/10.3390/app13148353
APA StyleLi, W., Liang, B., & Yue, J. (2023). Mechanical Properties of Slag-Based Geopolymer Grouting Material for Homogenized Micro-Crack Crushing Technology. Applied Sciences, 13(14), 8353. https://doi.org/10.3390/app13148353