Study of the Effect of Laser Radiation Parameters on the Efficiency of Lithotripsy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Prosperi, M.; Bird, V.Y. Prevalence of kidney stones in the USA: The National Health and Nutrition Evaluation Survey. J. Clin. Urol. 2018, 12, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Scales, C.D., Jr.; Smith, A.C.; Hanley, J.M.; Saigal, C.S.; Urologic Diseases in America Project. Prevalence of Kidney Stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [Green Version]
- Rubinov, N.S.; Rudakov, I.V.; Stroganov, I.V. Development of Specialized Software for Biomedical Research. In Proceedings of the 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg/Moscow, Russia, 27–30 January 2020. [Google Scholar]
- Prezioso, D.; Illiano, E.; Piccinocchi, G.; Cricelli, C.; Piccinocchi, R.; Saita, A.; Micheli, C.; Trinchieri, A. Urolithiasis in Italy: An epidemiological study. Arch. Ital. Urol. Androl. 2014, 86, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M.S.C.; Pearle, M.S. Medical management of renal stones. BMJ 2016, 352, i52. [Google Scholar] [CrossRef]
- Chaussy, C.G. The History of Shockwave Lithotripsy. In The History of Technologic Advancements in Urology; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 109–121. [Google Scholar] [CrossRef]
- Malinaric, R.; Mantica, G.; Martini, M.; Balzarini, F.; Mariano, F.; Marchi, G.; Tognoni, P.; Panarello, D.; Bottino, P.; Terrone, C. The Lifetime History of the First Italian Public Extra-Corporeal Shock Wave Lithotripsy (ESWL) Lithotripter as a Mirror of the Evolution of Endourology over the Last Decade. Int. J. Environ. Res. Public Health 2023, 20, 4127. [Google Scholar] [CrossRef]
- Thakore, P.; Liang, T.H. Urolithiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Liu, Y.-H.; Thomas, P.; Gedeon, T.; Rusnachenko, N. Search Interfaces for Biomedical Searching. In Proceedings of the CHIIR 2022—2022 Conference on Human Information Interaction and Retrieval, Regensburg, Germany, 14–18 March 2022; Association for Computing Machinery, Inc.: New York City, NY, USA, 2022; pp. 78–89. [Google Scholar] [CrossRef]
- Filimonov, V.B.; Vasin, R.V.; Sobennikov, I.S.; Shirobakina, E.Y. Comparative analysis of various surgical methods of urolithiasis treatment. Exp. Clin. Urol. 2022, 15, 88–93. [Google Scholar] [CrossRef]
- Romero, V.; Akpinar, H.; Assimos, D.G. Kidney stones: A global picture of prevalence, incidence, and associated risk factors. Rev. Urol. 2010, 12, 86–96. [Google Scholar] [CrossRef]
- Ebert, A.; Stangl, J.; Schafhauser, W. Der frequenzverdoppelte Doppelpuls-Neodym: YAG-Laser (FREDDY) bei Urolithiasis. Der Urol. Ausg. A 2003, 42, 825–833. [Google Scholar] [CrossRef]
- Helfmann, J.; Doerschel, K.; Mueller, G.J. Laser lithotripsy using double pulse technique. In Optical Fibers in Medicine V; SPIE: Bellingham, WA, USA, 1990; pp. 284–292. [Google Scholar] [CrossRef]
- Moe, O.W. Kidney stones: Pathophysiology and medical management. Lancet 2006, 367, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Xuan, J.R.; Yu, H.; Devincentis, D. Study of cavitation bubble dynamics during Ho: YAG laser lithotripsy by high-speed camera. In Photonic Therapeutics and Diagnostics XII; SPIE: Bellingham, WA, USA, 2016; p. 96891E. [Google Scholar] [CrossRef]
- Verret, D.J.; Jategaonkar, A.; Helman, S.; Kadakia, S.; Bahrami, A.; Gordin, E.; Ducic, Y. Holmium Laser for Endoscopic Treatment of Benign Tracheal Stenosis. Int. Arch. Otorhinolaryngol. 2017, 22, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.W.; Lee, H.; Teichman, J.H.; Welch, A.J. Comparison of urinary calculus fragmentation during Ho: YAG and Er: YAG lithotripsy. In Photonic Therapeutics and Diagnostics; SPIE: Bellingham, WA, USA, 2005; p. 159. [Google Scholar] [CrossRef]
- Lee, H.; Kang, H.W.; Teichman, J.M.; Oh, J.; Welch, A.J. Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy. Lasers Surg. Med. 2006, 38, 39–51. [Google Scholar] [CrossRef]
- Zhang, J.J.; Rajabhandharaks, D.; Xuan, J.R.; Wang, H.; Chia, R.W.; Hasenberg, T.; Kang, H.W. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy. J. Biomed. Opt. 2015, 20, 128001. [Google Scholar] [CrossRef]
- Fried, N.M.; Blackmon, R.L.; Irby, P.B. A review of Thulium fiber laser ablation of kidney stones. In Fiber Lasers VIII: Technology, Systems, and Applications; SPIE: Bellingham, WA, USA, 2011; p. 791402. [Google Scholar] [CrossRef]
- Chan, K.F.; Vargas, G.; Parker, P.J.; Teichman, J.M.H.; Glickman, R.D.; McGuff, H.S.; Welch, A.J. In-vitro Erbium: YAG laser lithotripsy. In Laser-Tissue Interaction XI: Photochemical, Photothermal, and Photomechanical; SPIE: Bellingham, WA, USA, 2000; p. 198. [Google Scholar] [CrossRef]
- Robertson, W.G.; Hughes, H. Epidemiology of Urinary Stone Disease in Saudi Arabia. Urolithiasis 1994, 2, 453–455. [Google Scholar] [CrossRef]
- Voronets, A.; Voropaev, V.; Donodin, A.; Dvoyrin, V.; Tarabrin, M.; Lazarev, V. Numerical simulation of an ultrafast Tm-doped fibre laser with third-order dispersion compensation. In Proceedings of the 2022 International Conference Laser Optics (ICLO), Saint Petersburg, Russia, 20–24 June 2022. [Google Scholar] [CrossRef]
- Voropaev, V.; Batov, D.; Voronets, A.; Vlasov, D.; Jafari, R.; Donodin, A.; Tarabrin, M.; Trebino, R.; Lazarev, V. All-fiber ultrafast amplifier at 1.9 μm based on thulium-doped normal dispersion fiber and LMA fiber compressor. Sci. Rep. 2021, 11, 23693. [Google Scholar] [CrossRef] [PubMed]
- Orekhov, I.O.; Dvoretskiy, D.A.; Sazonkin, S.G.; Ososkov, Y.Z.; Chernutsky, A.O.; Fedorenko, A.Y.; Denisov, L.K.; Karasik, V.E. Properties of Scalable Chirped-Pulse Optical Comb in Erbium-Doped Ultrafast All-Fiber Ring Laser. Fibers 2021, 9, 36. [Google Scholar] [CrossRef]
- Sazonkin, S.G.; Orekhov, I.O.; Dvoretskiy, D.A.; Lazdovskaia, U.S.; Ismaeel, A.; Denisov, L.K.; Karasik, V.E. Analysis of the Passive Stabilization Methods of Optical Frequency Comb in Ultrashort-Pulse Erbium-Doped Fiber Lasers. Fibers 2022, 10, 88. [Google Scholar] [CrossRef]
- Hofmann, R.; Hartung, R.; Schmidt-Kloiber, H.; Reichel, E. First Clinical Experience with a Q-Switched Neodymium: YAG Laser for Urinary Calculi. J. Urol. 1989, 141, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Teichman, J.M.H.; Qiu, J.; Wang, T.; Neev, J.; Glickman, R.D.; Chan, K.F.; Milner, T.E. Femtosecond laser lithotripsy: Feasibility and ablation mechanism. J. Biomed. Opt. 2010, 15, 028001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.J.; Xuan, R.J.; Hasenberg, T. Investigation of Laser Pulse-induced Calculus Damage Mechanism by a High-speed Camera. In Updates and Advances in Nephrolithiasis—Pathophysiology, Genetics, and Treatment Modalities; InTech: Sydney, Australia, 2017. [Google Scholar] [CrossRef] [Green Version]
- Gamaly, E.G.; Rode, A.V.; Luther-Davies, B.; Tikhonchuk, V.T. Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 2002, 9, 949–957. [Google Scholar] [CrossRef]
- Rink, K.; Delacrétaz, G.; Salathé, R.P. Fragmentation process of current laser lithotriptors. Lasers Surg. Med. 1995, 16, 134–146. [Google Scholar] [CrossRef]
- Gladyshev, A.; Yatsenko, Y.; Kosolapov, A.; Myasnikov, D.; Bufetov, I. Propagation of megawatt subpicosecond light pulses with the minimum possible shape and spectrum distortion in an air- or argon-filled hollow-core revolver fibre. Quantum Electron. 2019, 49, 1100–1107. [Google Scholar] [CrossRef]
- Böhle, F.; Kretschmar, M.; Jullien, A.; Kovacs, M.; Miranda, M.; Romero, R.; Crespo, H.; Morgner, U.; Simon, P.; Lopez-Martens, R.; et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 2014, 11, 095401. [Google Scholar] [CrossRef]
Super-Pulsed Tm-Fiber Laser (Microsecond) | Femtosecond Pulse Laser | |
---|---|---|
Active medium | Tm-doped fiber laser | Bulk Yb: YAG |
Wavelength, nm | 1940 | 1032 |
Pulse duration | ≥0.2 ms | 250 fs |
Pulse energy | 0.025–6 J | 400 μJ |
Repetition rate | 1–2400 Hz | 10 kHz |
Average power | ~60 W | 10 W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orekhov, I.O.; Krivosheev, A.V.; Kudashov, I.A.; Bogomolov, V.M.; Shupenev, A.E.; Sazonkin, S.G.; Prosiannikov, M.Y.; Anokhin, N.V.; Shcherbachev, A.V.; Apolikhin, O.I.; et al. Study of the Effect of Laser Radiation Parameters on the Efficiency of Lithotripsy. Appl. Sci. 2023, 13, 8565. https://doi.org/10.3390/app13158565
Orekhov IO, Krivosheev AV, Kudashov IA, Bogomolov VM, Shupenev AE, Sazonkin SG, Prosiannikov MY, Anokhin NV, Shcherbachev AV, Apolikhin OI, et al. Study of the Effect of Laser Radiation Parameters on the Efficiency of Lithotripsy. Applied Sciences. 2023; 13(15):8565. https://doi.org/10.3390/app13158565
Chicago/Turabian StyleOrekhov, Ilya O., Alexander V. Krivosheev, Ivan A. Kudashov, Vasily M. Bogomolov, Alexander E. Shupenev, Stanislav G. Sazonkin, Mikhail Y. Prosiannikov, Nikolay V. Anokhin, Andrew V. Shcherbachev, Oleg I. Apolikhin, and et al. 2023. "Study of the Effect of Laser Radiation Parameters on the Efficiency of Lithotripsy" Applied Sciences 13, no. 15: 8565. https://doi.org/10.3390/app13158565
APA StyleOrekhov, I. O., Krivosheev, A. V., Kudashov, I. A., Bogomolov, V. M., Shupenev, A. E., Sazonkin, S. G., Prosiannikov, M. Y., Anokhin, N. V., Shcherbachev, A. V., Apolikhin, O. I., Karasik, V. E., Grigoryants, A. G., & Pavlov, A. V. (2023). Study of the Effect of Laser Radiation Parameters on the Efficiency of Lithotripsy. Applied Sciences, 13(15), 8565. https://doi.org/10.3390/app13158565