Numerical Investigation of Existing Tunnel Deformation Induced by Basement Excavation Considering the Unloading Ratio
Abstract
:1. Introduction
2. Numerical Model of Centrifuge Test
2.1. Description of the Centrifuge Test
2.2. Numerical Model
2.3. Constitutive Models and Model Parameters
2.4. Modeling Procedure
2.5. Numerical Results
3. Analysis of Influencing Factors
3.1. Influences of Basement Plan Dimensions
3.2. Influence of the Tunnel Cover Depth, Hc, and the Basement Excavation Depth, He
3.3. Influence of Tunnel Diameter D
3.4. Influence of Basement Length L
3.5. Influence of Basement Width B
3.6. Influence of Distance between Tunnel Axis and Basement Center F
4. Conclusions
- (1)
- The vertical deformation of the tunnel is greatly affected by the basement length, the basement width, the excavation depth, the tunnel cover depth, and the distance between the tunnel axis and the basement center, but is little affected by the tunnel diameter. When the ratio of basement length or width to tunnel cover depth is less than 3, the maximum vertical deformation of the tunnel increases rapidly with increasing basement length or width.
- (2)
- The vertical deformation of the tunnel increases linearly with the unloading ratio, which describes the degree of excavation depth above the tunnel. But there exists a critical unloading ratio of 0.6, beyond which the vertical deformation of the tunnel increases significantly. On this basis, an empirical model is proposed to predict the vertical deformation of the tunnel considering the unloading ratio.
- (3)
- The vertical deformation decreases with an increasing offset ratio, which describes the degree of tunnel offset from the basement center. But there exists a critical offset ratio of 0.4, below which the maximum vertical deformation of the tunnel decreases slightly. The maximum reduction in deformation is about 30%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.W.; Ng, C.W.W.; Liu, G.B. Characteristics of wall deflections and ground surface settlements in Shanghai. Can. Geotech. J. 2005, 42, 1243–1254. [Google Scholar] [CrossRef]
- Zhang, J.F.; Chen, J.J.; Wang, J.H.; Zhu, Y.F. Prediction of tunnel displacement induced by adjacent excavation in soft soil. Tunn. Undergr. Space Technol. 2013, 36, 24–33. [Google Scholar] [CrossRef]
- Chen, R.P.; Meng, F.Y.; Li, Z.C.; Ye, Y.H.; Ye, J.N. Investigation of response of metro tunnels due to adjacent large excavation and protective measures in soft soils. Tunn. Undergr. Space Technol. 2016, 58, 224–235. [Google Scholar] [CrossRef]
- Chang, C.-T.; Sun, C.-W.; Duann, S.W.; Hwang, R.N. Response of a Taipei Rapid Transit System (TRTS) tunnel to adjacent excavation. Tunn. Undergr. Space Technol. 2001, 16, 151–158. [Google Scholar] [CrossRef]
- Chai, J.C.; Shen, S.L.; Ding, W.Q.; Zhu, H.H.; Carter, J. Numerical investigation of the failure of a building in Shanghai, China. Comput. Geotech. 2014, 55, 482–493. [Google Scholar] [CrossRef]
- Li, M.G.; Xiao, X.; Wang, J.H.; Chen, J.J. Numerical study on responses of an existing metro line to staged deep excavations. Tunn. Undergr. Space Technol. 2019, 85, 268–281. [Google Scholar] [CrossRef]
- Liu, B.; Shao, C.M.; Wang, N.N.; Zhang, D.W. Influenced Zone of Deep Excavation and a Simplified Prediction Method for Adjacent Tunnel Displacement in Thick Soft Soil. Appl. Sci. 2023, 13, 4647. [Google Scholar] [CrossRef]
- Hu, Z.F.; Yue, Z.Q.; Zhou, J.; Tham, L.G. Design and construction of a deep excavation in soft soils adjacent to the Shanghai Metro tunnels. Can. Geotech. J. 2003, 40, 933–948. [Google Scholar] [CrossRef]
- Lo, K.Y.; Ramsay, J.A. The effect of construction on existing subway tunnels—A case study from Toronto. Tunn. Undergr. Space Technol. 1991, 6, 287–297. [Google Scholar] [CrossRef]
- Sharma, J.S.; Hefny, A.M.; Zhao, J.; Chan, C.W. Effect of large excavation on deformation of adjacent MRT tunnels. Tunn. Undergr. Space Technol. 2001, 16, 93–98. [Google Scholar] [CrossRef]
- Ayasrah, M.; Qiu, H.S.; Zhang, X.D. Influence of Cairo Metro Tunnel Excavation on Pile Deep Foundation of the Adjacent Underground Structures: Numerical Study. Symmetry 2021, 13, 426. [Google Scholar] [CrossRef]
- Burford, D. No AccessHeave of tunnels beneath the Shell Centre, London, 1959–1986. Géotechnique 1988, 38, 135–137. [Google Scholar] [CrossRef]
- Bahri, M.; Mascort-Albea, E.J.; Romero-Hernandez, R.; Koopialipoor, M.; Soriano-Cuesta, C.; Jaramillo-Morilla, A. Numerical Model Validation for Detection of Surface Displacements over Twin Tunnels from Metro Line 1 in the Historical Area of Seville (Spain). Symmetry 2022, 14, 1263. [Google Scholar] [CrossRef]
- Simpson, B.; Vardanega, P.J. Results of monitoring at the British Library excavation. Proc. Inst. Civ. Eng.-Geotech. Eng. 2014, 167, 99–116. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Shi, J.W.; Hong, Y. Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand. Can. Geotech. J. 2013, 50, 874–888. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Shi, J.W.; Masin, D.; Sun, H.S.; Lei, G.H. Influence of sand density and retaining wall stiffness on three-dimensional responses of tunnel to basement excavation. Can. Geotech. J. 2015, 52, 1811–1829. [Google Scholar] [CrossRef]
- Doležalová, M. Tunnel complex unloaded by a deep excavation. Comput. Geotech. 2001, 28, 469–493. [Google Scholar] [CrossRef]
- Liao, S.M.; Wei, S.F.; Shen, S.L. Structural Responses of Existing Metro Stations to Adjacent Deep Excavations in Suzhou, China. J. Perform. Constr. Facil. 2016, 30, 11. [Google Scholar] [CrossRef]
- Liu, H.L.; Li, P.; Liu, J.Y. Numerical investigation of underlying tunnel heave during a new tunnel construction. Tunn. Undergr. Space Technol. 2011, 26, 276–283. [Google Scholar] [CrossRef]
- Chen, J.J.; Zhu, Y.F.; Li, M.G.; Wen, S.L. Novel Excavation and Construction Method of an Underground Highway Tunnel above Operating Metro Tunnels. J. Aerosp. Eng. 2015, 28, 7. [Google Scholar] [CrossRef]
- Li, M.G.; Chen, J.J.; Wang, J.H.; Zhu, Y.F. Comparative study of construction methods for deep excavations above shield tunnels. Tunn. Undergr. Space Technol. 2018, 71, 329–339. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Zhou, Y.L.; Zhang, H.; Chen, S.G.; Xiang, L.; Wang, L. Effects of Foundation Excavation on Metro Tunnels at Different Locations and Performance of Corresponding Reinforcement Measures: A Case of Shenzhen Metro Line 11, China. Symmetry 2022, 14, 2561. [Google Scholar] [CrossRef]
- Huang, X.; Schweiger, H.F.; Huang, H.W. Influence of Deep Excavations on Nearby Existing Tunnels. Int. J. Geomech. 2013, 13, 170–180. [Google Scholar] [CrossRef]
- Yang, T.; Tong, L.Y.; Pan, H.S.; Wang, Z.S.; Chen, X.M.; Li, H.J. Effect of Excavation Sequence on Uplift Deformation of Underlying Existing Metro Tunnel. J. Perform. Constr. Facil. 2021, 35, 13. [Google Scholar] [CrossRef]
- Zheng, G.; Wei, S.W. Numerical analyses of influence of overlying pit excavation on existing tunnels. J. Cent. South Univ. Technol. 2008, 15, 69–75. [Google Scholar] [CrossRef]
- Lin, H.; Chen, J.Y.; Guo, C.; Liu, Q.Y. Numerical analysis on influence of foundation pit excavation on deformation of adjacent existing tunnel. J. Cent. South Univ. (Sci. Technol.) 2015, 46, 4240–4247. [Google Scholar]
- Liu, B.H.; Lin, H.; Chen, Y.F.; Liu, J.S.; Guo, C. Deformation Stability Response of Adjacent Subway Tunnels considering Excavation and Support of Foundation Pit. Lithosphere 2022, 2022, 9. [Google Scholar] [CrossRef]
- Zheng, G.; Du, Y.M.; Diao, Y.; Deng, X.; Zhu, G.P.; Zhang, L.M. Influenced zones for deformation of existing tunnels adjacent to excavations. Chin. J. Geotech. Eng. 2016, 38, 599–612. [Google Scholar]
- Fan, X.H.; Liu, B.; Wang, Y.Y.; Zhang, J.B.; Fan, Z.B.; Zhang, D.W. Influenced zones for deformation of underlying metro tunnels induced by braced deep excavation in soft strata. Chin. J. Geotech. Eng. 2021, 43, 217–220. [Google Scholar]
- Sun, H.S.; Wang, L.W.; Chen, S.W.; Deng, H.W.; Zhang, J.H. A Precise Prediction of Tunnel Deformation Caused by Circular Foundation Pit Excavation. Appl. Sci. 2019, 9, 2275. [Google Scholar] [CrossRef]
- Shi, J.W.; Fu, Z.Z.; Guo, W.L. Investigation of geometric effects on three-dimensional tunnel deformation mechanisms due to basement excavation. Comput. Geotech. 2019, 106, 108–116. [Google Scholar] [CrossRef]
- Shi, J.W.; Ng, C.W.W.; Chen, Y.H. Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel. Comput. Geotech. 2015, 63, 146–158. [Google Scholar] [CrossRef]
- Shi, J.W.; Ng, C.W.W.; Chen, Y.H. A simplified method to estimate three-dimensional tunnel responses to basement excavation. Tunn. Undergr. Space Technol. 2017, 62, 53–63. [Google Scholar] [CrossRef]
- Shi, J.W.; Zhang, X.; Chen, Y.H.; Chen, L. Numerical parametric study of countermeasures to alleviate basement excavation effects on an existing tunnel. Tunn. Undergr. Space Technol. 2018, 72, 145–153. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.W.; Dai, G.L.; Wang, H.X.; Yin, Z.W.; Cao, S.N. Numerical Study on the Effect of Large Deep Foundation Excavation on Underlying Complex Intersecting Tunnels. Appl. Sci. 2022, 12, 4530. [Google Scholar] [CrossRef]
- Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs, W.M.; Foria, F. Material Model Manual; Plaxis BV: Delft, The Netherlands, 2018. [Google Scholar]
- Diao, H.G.; Wang, X.Q.; Wei, G.; Cui, Y.L.; Zhang, T.C. Analysis of prediction ability of hypoplastic model for soil-structure interaction problem. J. Nat. Disasters 2022, 31, 210–218. [Google Scholar]
Parameters | Value |
---|---|
15.5 | |
20.0 | |
20.0 | |
60.0 | |
0.5 | |
0.2 | |
2 | |
35 | |
6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Huang, X.; Li, K.; Dai, Y.; Ma, W. Numerical Investigation of Existing Tunnel Deformation Induced by Basement Excavation Considering the Unloading Ratio. Appl. Sci. 2023, 13, 9457. https://doi.org/10.3390/app13169457
Liu J, Huang X, Li K, Dai Y, Ma W. Numerical Investigation of Existing Tunnel Deformation Induced by Basement Excavation Considering the Unloading Ratio. Applied Sciences. 2023; 13(16):9457. https://doi.org/10.3390/app13169457
Chicago/Turabian StyleLiu, Junxiu, Xuhui Huang, Kai Li, Yuntong Dai, and Wei Ma. 2023. "Numerical Investigation of Existing Tunnel Deformation Induced by Basement Excavation Considering the Unloading Ratio" Applied Sciences 13, no. 16: 9457. https://doi.org/10.3390/app13169457
APA StyleLiu, J., Huang, X., Li, K., Dai, Y., & Ma, W. (2023). Numerical Investigation of Existing Tunnel Deformation Induced by Basement Excavation Considering the Unloading Ratio. Applied Sciences, 13(16), 9457. https://doi.org/10.3390/app13169457