Non-Uniform-Illumination Image Enhancement Algorithm Based on Retinex Theory
Abstract
:1. Introduction
2. Proposed Method
2.1. Color Balance Correction
2.2. HSV Space Conversion
2.3. Estimation of the Illumination Components
2.4. Improved Adaptive Region Correction
2.4.1. Low-Light Area Enhancement
2.4.2. High-Light Area Enhancement
2.5. Weighted Fusion and Saturation Improvement
- Brightness compensation processing is performed on different blocks in Section 2.4 to obtain the enhancement results of different block regions, which are defined as F1, F2, F3,……, Fn.
- The weighted fusion formula calculates the image result after fusion processing, which is expressed as follows:
3. Results
3.1. Illumination Components
3.2. Regional Enhancement Effect
3.3. Image Fusion
3.4. Image Quality Metrics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhuo, L.; Hu, X.; Li, J.; Zhang, J.; Li, X. A Naturalness-Preserved Low-Light Enhancement Algorithm for Intelligent Analysis. Chin. J. Electron. 2019, 28, 316–324. [Google Scholar] [CrossRef]
- Mu, Q.; Wang, X.; Wei, Y.; Li, Z. Low and non-uniform illumination color image enhancement using weighted guided image filtering. Comput. Vis. Media 2021, 7, 529–546. [Google Scholar] [CrossRef]
- Wang, D.; Yan, W.; Zhu, T.; Xie, Y.; Song, H.; Hu, X. An Adaptive Correction Algorithm for Non-Uniform Illumination Panoramic Images Based on the Improved Bilateral Gamma Function. In Proceedings of the DICTA 2017—2017 International Conference on Digital Image Computing: Techniques and Applications, Sydney, Australia, 29 November–1 December 2017. [Google Scholar] [CrossRef]
- Rivera, A.R.; Ryu, B.; Chae, O. Content-Aware Dark Image Enhancement Through Channel Division. IEEE Trans. Image Process. 2012, 21, 3967–3980. [Google Scholar] [CrossRef] [PubMed]
- Jmal, M.; Souidene, W.; Attia, R. Efficient cultural heritage image restoration with nonuniform illumination enhancement. J. Electron. Imaging 2017, 26, 11020. [Google Scholar] [CrossRef]
- Shi, Z.; Zhu, M.M.; Guo, B.; Zhao, M.; Zhang, C. Nighttime low illumination image enhancement with single image using bright/dark channel prior. EURASIP J. Image Video Process. 2018, 2018, 13. [Google Scholar] [CrossRef]
- Lu, H.; Li, Y.; Uemura, T.; Kim, H.; Serikawa, S. Low illumination underwater light field images reconstruction using deep convolutional neural networks. Futur. Gener. Comput. Syst. 2018, 82, 142–148. [Google Scholar] [CrossRef]
- Alismail, H.; Browning, B.; Lucey, S. Robust tracking in low light and sudden illumination changes. In Proceedings of the 2016 4th International Conference on 3D Vision, 3DV 2016, Stanford, CA, USA, 25–28 October 2016. [Google Scholar]
- Zhi, N.; Mao, S.; Li, M. Enhancement algorithm based on illumination adjustment for non-uniform illuminance video images in coal mine. Meitan Xuebao/J. China Coal Soc. 2017, 42, 2190–2197. [Google Scholar]
- Coelho, L.d.S.; Sauer, J.G.; Rudek, M. Differential evolution optimization combined with chaotic sequences for image contrast enhancement. Chaos Solitons Fractals 2009, 42, 522–529. [Google Scholar] [CrossRef]
- Oktay, O.; Ferrante, E.; Kamnitsas, K.; Heinrich, M.; Bai, W.; Caballero, J.; Cook, S.A.; De Marvao, A.; Dawes, T.; O’Regan, D.P.; et al. Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation. IEEE Trans. Med. Imaging 2018, 37, 384–395. [Google Scholar] [CrossRef]
- Nickfarjam, A.M.; Ebrahimpour-Komleh, H. Multi-resolution gray-level image enhancement using particle swarm optimization. Appl. Intell. 2017, 47, 1132–1143. [Google Scholar] [CrossRef]
- He, X.; Huang, R.; Yu, M.; Zeng, W.; Zhang, S. Multi-State Recognition Method of Substation Switchgear Based on Image Enhancement and Deep Learning. Adv. Transdiscipl. Eng. 2022, 33, 572–577. [Google Scholar] [CrossRef]
- Jeon, J.-J.; Park, T.-H.; Eom, I.-K. Sand-Dust Image Enhancement Using Chromatic Variance Consistency and Gamma Correction-Based Dehazing. Sensors 2022, 22, 9048. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Lai, H.; Wang, L.; Jia, Z. Color balance and sand-dust image enhancement in lab space. Multimed. Tools Appl. 2022, 81, 15349–15365. [Google Scholar] [CrossRef]
- Ancuti, C.O. Color Balance and Fusion for Underwater Image Enhancement. IEEE Trans. Image Process. 2018, 27, 379–393. [Google Scholar] [CrossRef]
- Zhi, S.; Cui, Y.; Deng, J.; Du, W. An FPGA-Based Simple RGB-HSI Space Conversion Algorithm for Hardware Image Processing. IEEE Access 2020, 8, 173838–173853. [Google Scholar] [CrossRef]
- Niu, H.; Wang, C. Sand-dust image enhancement algorithm based on HSI space. J. Beijing Jiaotong Univ. 2022, 46, 1–8. [Google Scholar]
- Rahman, S.; Rahman, M.; Abdullah-Al-Wadud, M.; Al-Quaderi, G.D.; Shoyaib, M. An adaptive gamma correction for image enhancement. EURASIP J. Image Video Process. 2016, 2016, 35. [Google Scholar] [CrossRef]
- Lyu, J. Detection model for tea buds based on region brightness adaptive correction. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2021, 37, 278–285. [Google Scholar]
- Jiang, L.; Yuan, H.; Li, C. Circular hole detection algorithm based on image block. Multimed. Tools Appl. 2018, 78, 29659–29679. [Google Scholar] [CrossRef]
- Perlmutter, D.S.; Kim, S.M.; Kinahan, P.E.; Alessio, A.M. Mixed Confidence Estimation for Iterative CT Reconstruction. IEEE Trans. Med. Imaging 2016, 35, 2005–2014. [Google Scholar] [CrossRef]
- Kim, Y.; Koh, Y.J.; Lee, C.; Kim, S.; Kim, C.-S. Dark image enhancement based onpairwise target contrast and multi-scale detail boosting. In Proceedings of the International Conference on Image Processing, ICIP, Quebec City, QC, Canada, 27–30 September 2015. [Google Scholar] [CrossRef]
- Majeed, S.H.; Isa, N.A.M. Adaptive Entropy Index Histogram Equalization for Poor Contrast Images. IEEE Access 2021, 9, 6402–6437. [Google Scholar] [CrossRef]
- Rahman, Z.; Yi-Fei, P.; Aamir, M.; Wali, S.; Guan, Y. Efficient Image Enhancement Model for Correcting Uneven Illumination Images. IEEE Access 2020, 8, 109038–109053. [Google Scholar] [CrossRef]
- Cao, G.; Huang, L.; Tian, H.; Huang, X.; Wang, Y.; Zhi, R. Contrast enhancement of brightness-distorted images by improved adaptive gamma correction. Comput. Electr. Eng. 2018, 66, 569–582. [Google Scholar] [CrossRef]
- Setiadi, D.R.I.M. PSNR vs. SSIM: Imperceptibility quality assessment for image steganography. Multimed. Tools Appl. 2021, 80, 8423–8444. [Google Scholar] [CrossRef]
- Guo, X.; Li, Y.; Ling, H. LIME: Low-Light Image Enhancement via Illumination Map Estimation. IEEE Trans. Image Process. 2017, 26, 982–993. [Google Scholar] [CrossRef]
- Petro, A.B.; Sbert, C.; Morel, J.-M. Multiscale Retinex. Image Process. Line 2014, 4, 71–88. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Wang, L.; Huang, C.; Luo, X. A Hybrid Retinex-Based Algorithm for UAV-Taken Image Enhancement. IEICE Trans. Inf. Syst. 2021, E104.D, 2024–2027. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, X.; Guo, S.; Zhang, H.; Xu, W. Non-Uniform-Illumination Image Enhancement Algorithm Based on Retinex Theory. Appl. Sci. 2023, 13, 9535. https://doi.org/10.3390/app13179535
Ji X, Guo S, Zhang H, Xu W. Non-Uniform-Illumination Image Enhancement Algorithm Based on Retinex Theory. Applied Sciences. 2023; 13(17):9535. https://doi.org/10.3390/app13179535
Chicago/Turabian StyleJi, Xiu, Shuanghao Guo, Hong Zhang, and Weinan Xu. 2023. "Non-Uniform-Illumination Image Enhancement Algorithm Based on Retinex Theory" Applied Sciences 13, no. 17: 9535. https://doi.org/10.3390/app13179535
APA StyleJi, X., Guo, S., Zhang, H., & Xu, W. (2023). Non-Uniform-Illumination Image Enhancement Algorithm Based on Retinex Theory. Applied Sciences, 13(17), 9535. https://doi.org/10.3390/app13179535