Phytochemical Analysis and Antioxidant Activity of Ethanolic Extracts from Different Parts of Dipteryx punctata (S. F. Blake) Amshoff
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection Areas
2.2. Description of the Collection Areas
2.3. Abiotic Factors in the Collection Areas
2.4. Collection of Plant Material
2.5. Obtaining and Plant Extracts and Yields from Leaves, Branches, and Fruits of Dipteryx Punctata
2.6. Thin-Layer Chromatography (TLC) for the Evaluation of the Main Classes of Compounds
2.7. Determination of Total Phenolics and Flavonoids
2.8. Gas Chromatography Coupled to Mass Spectrometry (GC-MS)
2.9. Antioxidant Activity of Dipteryx Punctata Extracts by TLC and DPPH Free Radical Scavenging
3. Results
3.1. Yield of Dipteryx punctata Ethanolic Extracts
3.2. Thin-Layer Chromatography (TLC) for the Evaluation of the Main Classes of Compounds
3.3. Determination of Total Phenolics and Flavonoids
3.4. Gas Chromatography Coupled to Mass Spectrometry (GC-MS)
3.5. Antioxidant Activity of Dipteryx punctata Extracts by TLC and DPPH Free Radical Scavenging
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- The Plant List. A Working List of All Plant Species. 2013. Available online: http://www.theplantlist.org (accessed on 22 December 2021).
- Carvalho, C.S.; Lima, H.C.; Cardoso, D.B.O.S. Dipteryx in Flora e Funga do Brasil. Rio de Janeiro Botanical Garden. 2020. Available online: https://floradobrasil.jbrj.gov.br/FB22952 (accessed on 7 April 2022).
- Tropicos.org. Missouri Botanical Garden. 2022. Available online: https://tropicos.org (accessed on 15 June 2022).
- WFO. World Flora Online. 2022. Available online: http://www.worldfloraonline.org (accessed on 6 April 2022).
- Carvalho, P.E.R. Cumaru-Ferro Dipteryx odorata, 225; Embrapa Florestas: Brasília, Brazil, 2009; 8p. [Google Scholar]
- Vieira, T.A.; Rosa, L.S.; Vasconcelos, P.C.S.; Santos, M.M.; Modesto, R.S. Sistemas agroflorestais em áreas de agricultores familiares em Igarapé-Açu, Pará: Caracterização florística, implantação e manejo. Acta Amaz. 2007, 37, 549–558. [Google Scholar] [CrossRef]
- Ohana, D.T. Anatomia de Sementes e Plântulas de Dipteryx odorata (Aubl.) Will. (Fabacea), Como Contribuição ao Estudo Farmacognóstico de Plantas da Região Amazônica. Master’s Thesis, University of Amazonas, Manaus, Brazil, 1998. [Google Scholar]
- Pesce, C. Oleaginosas da Amazônia, 2nd ed.; rev. and current; Museu Paraense Emílio Goeldi: Belém, Brazil, 2009; 334p. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística. 289—Quantidade Produzida e Valor da Produção na Extração Vegetal, Por Tipo de Produto Extrativo. 2021. Available online: https://sidra.ibge.gov.br/tabela/289 (accessed on 24 December 2021).
- Sousa, B.C.M.; Castro, S.P.; Lourido, K.A.; Kasper, A.A.M.; Paulino, G.S.; Delarmelina, C.; Duarte, M.C.T.; Sartoratto, A.; Vieira, T.A.; Lustosa, D.C.; et al. Identification of coumarins and antimicrobial potential of ethanolic extracts of Dipteryx odorata and Dipteryx punctata. Molecules 2020, 27, 5837. [Google Scholar] [CrossRef] [PubMed]
- Lima Júnior, A.F. Efeito de Diferentes Extratos Vegetais no Controle de Anthoscelides Obtectus e Sitophilus sp. Master’s Thesis, State University of Goiás, Anápolis, Brazil, 2011; 67p. [Google Scholar]
- Vizzotto, M.; Krolow, A.C.; Weber, G.E.B. Metabólitos secundários encontrados em plantas e sua importância. Doc. Embrapa Clima Temperado 2010, 316, 7–15. [Google Scholar]
- Sullivan, G. Occurrence of umbelliferone in the seeds of Dipteryx odorata (Aubl.) Willd. J. Agric. Food Chem. 1982, 30, 609–610. [Google Scholar] [CrossRef] [PubMed]
- Hoult, J.R.; Payá, M. Pharmacological and biochemical actions of simple coumarins: Natural products with therapeutic potential. Gen. Pharmacol. 1996, 27, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Santos, P.L.; Prando, M.B.; Morando, R.; Pereira, G.V.N.; Kronka, A.Z. Utilização de extratos vegetais em proteção de plantas. Enciclopédia Biosf. 2013, 9, 2562. [Google Scholar]
- Rajendran, P.; Nandakumar, N.; Rengarajan, T.; Palaniswami, R.; Gnanadhas, E.N.; Lakshminarasaiah, U.; Gopas, J.; Nishigaki, I. Antioxidants and human diseases. Clin. Chim. Acta 2014, 436, 332–347. [Google Scholar] [CrossRef]
- Ciesla, L.M.; Kryszén, J.; Stochmal, A.; Oleszek, W.; Waksmundzka-Hajnos, M. Approach to develop a standardized TLC-DPPH test for assessing free radical scavenging properties of selected phenolic compounds. J. Pharm. Biomed. Anal. 2012, 70, 126–135. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Antioxidant Assays for Plant and Food Components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Arnao, M.B. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Arbos, K.A.; Stevani, P.C.; Castanha, R.T. Atividade antimicrobiana, antioxidante e teor de compostos fenólicos em casca e amêndoa de frutos de manga. Rev. Ceres 2013, 60, 161–165. [Google Scholar] [CrossRef]
- Sousa, B.C.M.; Gomes, D.A.; Vieira, T.A.; Lustosa, D.C. Bioactivity of ethanolic extracts of Dipteryx punctata on Colletotrichum musae. Agronomy 2022, 12, 2215. [Google Scholar] [CrossRef]
- Silva, A.F.; Pauletto, D.; Capucho, H.L.V.; Sousa, V.S.; Silva, A.R.; Pimentel, C.R. Produção e Renda do Componente Arbóreo Cumaru (Dipteryx spp.) em Sistemas Agroflorestais na Região Oeste do Pará. In Caderno de Pesquisa Ciência e Inovação; Francisco, P.R.M., Sá, T.F.F., Braga Júnior, J.M., Eds.; EPGRAF: Campina Grande, Brazil, 2018; pp. 99–109. [Google Scholar]
- INMET. National Institute of Meteorology (Brazil). 2022. Available online: https://clima.inmet.gov.br/prec (accessed on 18 August 2022).
- Rocha, J.F.G. Solos da Região Sudeste do Município de Santarém, Estado do Pará: Mapeamento e Classificação. Master’s Thesis, Federal University of Western Pará, Santarém, Brazil, 2014; 61p. [Google Scholar]
- Agência Nacional de Vigilância Sanitária. Farmacopeia Brasileira, 6th ed.; Agência Nacional de Vigilância Sanitária: Brasília, Brazil, 2019. [Google Scholar]
- Ferreira, D.F. Software Estatístico SISVAR Versão, Version 5.6. CNPQ. Federal University of Lavras: Lavras, Brazil, 2010.
- Wagner, H.; Bladt, S. Plant Drug Analysis: A Thin Layer Chromatography Atlas, 2nd ed.; Springer: New York, NY, USA, 2001; 242p. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. FWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Viera, V.B. Compostos Bioativos, Atividade Antioxidante e Antimicrobiana na Casca de Cebola Roxa (Allium cepa L.) Submetidos a Diferentes Métodos de Extração. Ph.D. Thesis, Federal University of Santa Maria, Santa Maria, Brazil, 2016. [Google Scholar]
- Oliveira, V.B.; Zuchetto, M.; Oliveira, C.F.; Paula, C.S.; Duarte, A.F.S.; Miguel, M.D.; Miguel, O.G. Efeito de diferentes técnicas extrativas no rendimento, atividade antioxidante doseamentos totais e no perfil por CLAE-DAD de Dicksonia sellowiana (Presl.). Hook, Dicksoniaceae. Ver. Bras. Pl. Med. 2016, 18 (Suppl. S1), 230–239. [Google Scholar] [CrossRef]
- De Lima, J.C.; Pinto, L.F.; Giufrida, W.M.; Freitas, L.S.; Cardozo-Filho, L. Extração Supercrítica Com Utilização de Modificadores e caracterização a Partir da Semente de Cumaru (Dipteryx odorata). In Proceedings of the XX Congresso Brasileiro de Engenharia Química, Anais Florianópolis, Santa Catarina, Brazil, 19–22 October 2014. [Google Scholar]
- Yamashita, O.M.; Guimarães, S.C.; Silva, J.L.; Carvalho, M.A.C.; Camargo, M.F. Fatores ambientais sobre a germinação de Emilia sonchifolia. Planta Daninha 2009, 27, 673–681. [Google Scholar] [CrossRef]
- Souza, I.M.; Funch, L.S. Synchronization of leafing and reproductive phenological events in Hymenaea L. species (Leguminosae, Caesalpinioideae): The role of photoperiod as the trigger. Braz. J. Bot. 2017, 40, 125–136. [Google Scholar] [CrossRef]
- Klein, D.R.; Hess, A.F.; Krefta, S.M.; Vieira Filho, M.D.H.; Ciarnoscki, L.D.; Costa, E.A. Relações morfométricas para Araucaria angustifolia (Bertol.) Kuntze in Santa Catarina. Floresta 2017, 47, 501–512. [Google Scholar] [CrossRef]
- Dionísio, L.F.S.; Araújo, H.X.D.; Correia, R.G.; Martins, W.B.R.; Costa, J.S.D.; Maciel, F.C.D.S. Influência do Primeiro Desbaste na Morfometria de Tectona grandis L. f. em Roraima. Floresta E Ambient. 2018, 25, e00118214. [Google Scholar] [CrossRef]
- Oliveros-Bastidas, A.J.; Cordero, I.; Paredes, D.; Buendia, D.; Domínguez, F.A.M. Extracción y cuantificación de cumarina mediante HPLC-UV em extractos hidroetanolico de semillas de Dipteryx odorata. Ver. Lationoam. Quím. 2011, 39, 17–31. [Google Scholar]
- Cardoso, M.G.; Shan, A.Y.K.V.; Pinto, J.E.B.P.; Delú Filho, N.; Bertolucci, S.K.V. Metabólitos Secundários Vegetais: Visão Geral, Química e Medicinal; UFLA: Lavras, Brazil, 2001; 81p. [Google Scholar]
- Mairesse, L.A.S.E.C.C.; Farias, J.R.; Fiorin, R.A. Bioatividade de extratos vegetais sobre alface (Lactuca sativa L.). Rev. FZVA 2007, 14, 1–12. [Google Scholar]
- Cândido, A.C.d.S. Potencial Alelopático da Parte Aérea de Senna occidentalis (L.) Link (Leguminosae, Caesalpinioideae): Bioensaios em Laboratório e Casa de Vegetação. Master’s Thesis, Federal University of Mato Grosso do Sul, Campo Grande, Brazil, 2007; 99p. [Google Scholar]
- Silva, W.A. Potencial Alelopático de Extratos do Cumaru (Amburana cearenses A. C. Smith) e da Jurema-Preta (Mimosa tenuiflora (Willd.) Poir) na Germinação e Crescimento do Sorgo (Sorghum bicolor L.), Milho (Zea mays L.) e Feijão Guandu (Cajanus cajan L.). Master’s Thesis, Federal University of Campina Grande, Campina Grande, Brazil, 2007; 62p. [Google Scholar]
- Rice, E.L. Allelopathy, 2nd ed.; Academic Press: Orlando, FL, USA, 1984; 422p. [Google Scholar]
- Sakihama, Y.; Cohen, M.F.; Grace, S.C.; Yamasaki, H. Plant phenolic antioxidant and prooxidant activities: Phenolics-induced oxidative damage mediated by metals in plants. Toxicology 2002, 177, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Shimoji, H.; Yamasaki, H. Inhibitory effects of flavonoids on alternative respiration of plant mitochondria. Biol. Plant. 2005, 49, 117–119. [Google Scholar] [CrossRef]
- Ojala, T. Biological Screening of Plant Coumarins. Master’s Thesis, Division of Pharmacognosy, University of Helsinki, Helsinki, Finland, 2001; 62p. [Google Scholar]
- Alves, C.Q.; Brandão, H.N.; David, J.M.; David, J.P.; Lima, L.S. Avaliação da atividade antioxidante de flavonoides. Diálogos E Ciência Rev. Da Rede Ensino FTC 2007, 5, 7–8. [Google Scholar]
- Neves, L.C.; Alencar, S.M.; Carpes, S.T. Determinação da atividade antioxidante e do teor de compostos fenólicos e flavonoides totais em amostras de pólen apícola de Apis mellifera. Braz. J. Food Technol. 2008, 2, 15. [Google Scholar]
- Sousa, C.M.M.; Rocha e Silva, H.; Vieira, G.M., Jr.; Ayres, M.C.C.; Costa, C.L.S.; Araújo, D.S.; Cavalcante, L.C.D.; Barros, E.D.S.; Araújo, P.B.M.; Brandão, M.S.; et al. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quím. Nova 2007, 30, 351–355. [Google Scholar] [CrossRef]
- Silva, F.P.; Lima, S.Y.B.; Cavalcante, G.M. Atividade antioxidante de méis produzidos na região do Agreste e comercializados em uma feira do interior de Pernambuco. Rev. Artigos. Com 2020, 22, e5677. [Google Scholar]
- Ciesla, L.M.; Wojtunik-Kulesza, K.A.; Oniszczuk, A.; Waksmundzka-Hajnos, M. Antioxidant synergism and antagonism between selected monoterpenes using the 2, 2-diphenyl-1-picrylhydrazyl method. Flavour Fragr. J. 2016, 31, 412–419. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.A.; Ciesla, L.M.; Waksmundzka-Hajnos, M. Model studies on the antioxidant activity of common terpenoid constituents of essential oils means the 2,2-diphenil-1-picrylhydrazyl method. J. Agric. Food Chem. 2014, 62, 9088–9094. [Google Scholar] [CrossRef] [PubMed]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Hemamalini, K.; Bhargav, A. Evaluation of phytochemical and pharmacological activity of methanolic extract of Sophora interrupta. Indo Am. J. Pharm. Res. 2013, 3, 6381–6390. [Google Scholar]
- Barizão, E.O.; Boeing, J.S.; Rota, E.M.; Volpato, H.; Nakamura, C.V.; Maldaner, L.; Visentainer, J.V. Phenolic composition of Dipteryx alata Vogel pulp + peel and its antioxidant and cytotoxic properties. J. Braz. Chem. Soc. 2021, 32, 2206–2214. [Google Scholar] [CrossRef]
- Silvério, M.D.O.; Castro, C.F.S.; Miranda, A.R. Avaliação da atividade antioxidante e inibitória da tirosinase das folhas de Dipteryx alata Vogel (Baru). Rev. Bras. Pl. Med. 2013, 15, 59–65. [Google Scholar] [CrossRef]
- Knothe, G. “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels 2008, 22, 1358–1364. [Google Scholar] [CrossRef]
- Batista, E.S.; Costa, A.G.V.; Santa’Ana, H.M.P. Adição da vitamina e aos alimentos: Implicações para os alimentos e para a saúde humana. Rev. De Nutr. 2006, 20, 525–535. [Google Scholar] [CrossRef]
- Ischebeck, T.; Zbierzak, A.M.; Kanwischer, M.; Dörmann, P. A salvage pathway for phytol metabolism in Arabidopsis. J. Biol. Chem. 2006, 281, 2470–2477. [Google Scholar] [CrossRef]
- Gaude, N.; Bréhélin, C.; Tischendorf, G.; Kessler, F.; Dörmann, P. Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J. 2007, 49, 729–739. [Google Scholar] [CrossRef]
- Xu, F.; Huang, X.; Wu, H.; Wang, X. Beneficial health effects of lupenone triterpene: A review. Biomed. Pharmacother. 2018, 103, 198–203. [Google Scholar] [CrossRef]
- Mendes, A.; Leonardo, C. Triterpenoides e a sua Actividade Anti-Inflamatória; Faculty of Science and Technology, New University of Lisbon: Lisbon, Portugal, 2004; pp. 1–8. [Google Scholar]
- Magalhães, P.J.C.; Lahlou, S.; Jucá, D.M.; Coelho-de-Souza, L.N.; Frota, P.T.T.; Costa, A.M.G. Vasorelaxation induced by the essential oil of Croton nepetaefolius and its constituents in rat aorta are partially mediated by the endothelium. Fundam. Clin. Pharmacol. 2008, 22, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Cardoso-Lopes, E.M.; Paula, D.M.B.D.; Barbo, F.E.; Souza, A.D.; Blatt, C.T.T.; Torres, L.M.B. Chemical composition, acetylcholinesterase inhibitory and antifungal activities of Pera glabrata (Schott) Baill. (Euphorbiaceae). Rev. Bras. Bot. 2009, 32, 819–825. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant Products as Antimicrobial Agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Ogeda, T.L.; Petri, D.F.S. Hidrólise Enzimática de Biomassa. Quím. Nova 2010, 33, 1549–1558. [Google Scholar] [CrossRef]
- Keshwani, D.R. Biomass Chemistry. In Biomass to Renewable Energy Processes, 1st ed.; Cheng, J., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010; pp. 7–40. [Google Scholar]
- Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene, and phytosterol content of walnuts, almonds, peanuts, hazelnuts, and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, C.V.M.B.; Francki, V.M.; Gollücke, A.P.B. Alimentos Funcionais: Introdução às Principais Substâncias Bioativas em Alimentos; Varela: São Paulo, Brazil, 2005. [Google Scholar]
- Brufau, G.; Canela, M.A.; Rafecas, M. Phytosterols: Physiologic and metabolic aspects related to cholesterol-lowering properties. Nutr. Res. 2008, 28, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Assis, I.Z.; Marisutti, E.; Rossi, D.M. Produção biotecnológica de 2,3-butanodiol no contexto de Biorrefinaria. Rev. Ciência Tecnol. E Ambiente 2021, 11, e11197. [Google Scholar] [CrossRef]
- Vieira Júnior, G.M.; Silva, H.R.; Bittencourt, T.C.; Chaves, M.H. Terpenos e ácidos graxos de Dipteryx lacunifera Ducke. Quím. Nova 2007, 30, 1658–1662. [Google Scholar] [CrossRef]
- Andrade, E.H.A.; Zoghbi, M.G.B.; Carreira, L.M.M.; Maia, J.G.S. Volatile Constituents of the Flowers of Dipteryx odorata (Aubl.) Willd. J. Essent. Oil Res. 2003, 15, 211–212. [Google Scholar] [CrossRef]
- Medeiros, E.A. Separação de Ácidos Graxos via Programação Ótima de Destilação em Batelada. Master’s Thesis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 2013; 17p. [Google Scholar]
- Nakato, T.; Suarez, M. Studies on the neutral constituents of the bark of Dipteryx Odorata. Planta Med. 1970, 18, 79–83. [Google Scholar]
- Hayashi, T.; Thomson, R.H. Isoflavones from Dipteryx odorata. Phytochemistry 1974, 13, 1943–1946. [Google Scholar] [CrossRef]
- Nakato, T.; Alonso, J.; Grillet, R.; Martin, A. Isoflavonoids of the bark of Dipteryx odorata Willd. (Aubl.). J. Chem. Soc. 1979, 9, 2107–2112. [Google Scholar]
- Neta, N.S.; Cunha, J.A.C.; Sancho, S.O.; Abreu, R.F.A.; Pontes, D.F.; Carioca, J.O.B.; Rodrigues, L.R.; Teixeira, J.A. Produção enzimática do ester oleato de etila utilizando lipase a partir de Candida antarctica B. Holos 2012, 2, 28. [Google Scholar]
- Paula, F.G.F. Decomposição Térmica do Ácido Oleico na Presença de Sais de Ferro Para Obtenção de Biocombustível e Outros Produtos de Interesse Industrial. Ph.D. Thesis, Federal University of Minas Gerais, Belo Horizonte, Brazil, 2019; 116p. [Google Scholar]
- Bessa, D.T.O.; Mendonça, M.S.; Araújo, M.G.P. Morfoanatomia de sementes de Dipteryx odorata (Aubl) Will. (Fabaceae) como contribuição ao estudo farmacognóstico de plantas da região amazônica. Acta Amaz. 2001, 31, 357–365. [Google Scholar] [CrossRef]
- Sousa, B.C.M.; Barata, L.E.S.; Macêdo, C.G.; Fraga, S.S.; Kasper, A.A.M.; Lourido, K.A.; Paulino, G.S.; Almeida, E.C.; Sartoratto, A.; Lustosa, D.C. Avaliação do teor de cumarina e atividade antifúngica de frações de óleo de cumaru. Rev. Ibero-Am. De Ciências Ambient. 2018, 9, 63–69. [Google Scholar] [CrossRef]
- Dias, J.S.A. Potencial Antifúngico Dos Óleos Fixos de Copaifera sp., Carapa guianensis Aubl. e Dipteryx odorata (Aubl.) Willd. Sobre Aspergillus nomius Kurtzman, Horn & Hesseltine e Aspergillus Fumigatus Fresenius Isolados de Bertholletia excelsa Humb. & Bompland e Avaliação da Toxicidade Aguda em Danio rerio. Ph.D. Thesis, Federal University of Amapá, Macapá, Brazil, 2019; 216p. [Google Scholar]
- Araújo, F.D.S.; Moura, C.V.R.; Chaves, M.H. Biodiesel metílico de Dipteryx lacunifera: Preparação, caracterização e efeito de antioxidantes na estabilidade à oxidação. Quím. Nova 2010, 33, 1671–1676. [Google Scholar] [CrossRef]
- Queiroga Neto, V.; Bora, P.S.; Diniz, Z.N.; Cavalheiro, J.M.O.; Queiroga, K.F. Óleo de sementes de Dipteryx lacunifera: Caracterização e estabilidade térmica. Cienc. E Agrotecnologia 2009, 33, 1601–1607. [Google Scholar] [CrossRef]
- Siqueira, A.P.S.; Castro, C.F.S.; Silveira, E.V.; Lourenço, M.F.C. Chemical quality of baru almond (Dipteryx alata oil). Cienc. Rural 2016, 46, 1865–1867. [Google Scholar] [CrossRef]
- Ali, A.; Jameel, M.; Ali, M. Fatty acids analysis of Ficus religiosa stem bark by gas chromatography-mass spectrometry. Int. J. Adv. Pharm. Med. Bioallied Sci. 2017, 2017, 112. [Google Scholar]
- Ali, A.; Jameel, M.; Ali, M. Analysis of fatty acid composition of Withania coagulans fruits by gas chromatography/mass spectrometry. Res. J. Pharmacogn. 2017, 4, 1–6. [Google Scholar]
- Ali, A.; Jameel, M.; Ali, M. Fatty acids analysis of aerial parts of Phyllanthus fraternus Webster by gas chromatography-mass spectrometry. Int. J. Adv. Pharm. Med. Bioallied Sci. 2018, 6, 93–97. [Google Scholar]
- Alves, A.M.; Fernandes, D.C.; Borges, J.F.; Sousa, A.G.O.; Naves, M.M.V. Oilseeds native to the Cerrado have fatty acid profile beneficial for cardiovascular health. Rev. De Nutr. 2016, 29, 859–866. [Google Scholar] [CrossRef]
- Maham, L.K.; Escott-Stump, S. Krause: Alimentos, Nutrição e Dietoterapia, 12th ed.; Elsevier: Rio de Janeiro, Brazil, 2010. [Google Scholar]
Parts of Plant | Mean Yield of Extracts (%) | ||||
---|---|---|---|---|---|
Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | |
Leaves | 17.3 bA | 17.9 bA | 16.9 cA | 14.2 cA | 15.2 cA |
Branches | 7.9 cA | 7.1 cA | 5.8 dA | 9.1 dA | 8.6 dA |
Residues | 24.8 aAB | 18.6 bC | 26.1 bA | 23.3 bAB | 20.7 bBC |
Seeds | 28.4 aC | 32.0 aC | 47.2 aA | 37.1 aB | 39.7 aB |
CV (%) | 8.8 |
Plant Parts from All Areas | TLC | ||||
---|---|---|---|---|---|
Terpenes | Condensed Tannins | Hydrolysable Tannins | Flavonoids | Coumarin (1,2-Benzopyrone) | |
Leaves | + | + | + | + | − |
Branches | + | + | + | + | − |
Residues | + | + | + | + | + |
Seeds | − | − | − | − | + |
Plant Part from All Areas | Total Phenolics | Total Flavonoids |
---|---|---|
mg GAE g−1 Sample ± Standard Deviation | mg RE g−1 Sample ± Standard Deviation | |
Leaves Branches Residues Seeds | 51.76 ± 0.16 48.45 ± 0.50 39.97 ± 1.75 25.07 ± 0.20 | 115.40 ± 3.41 69.71 ± 0.51 71.86 ± 3.79 Not Found |
LEAVES EXTRACTS | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | |||
---|---|---|---|---|---|---|---|---|
Nº | IRT | FRT | COMPOUNDS | RC % | RC % | RC % | RC % | RC % |
01 | 22.47 | 22.48 | 2-Methoxy-4-vinylphenol | 2.5 | - | 1.7 | - | 3.0 |
02 | 32.88 | 33.22 | (-)-Spathulenol | 4.6 | 9.2 | 3.0 | 3.0 | 2.4 |
03 | 32.95 | 33.12 | Ethyl 3-(2-hydroxyphenyl) propanoate | - | - | 1.8 | - | - |
04 | 39.15 | 39.35 | (E)-4-(3-Hydroxyprop-1-en-1-yl)-2-methoxyphenol | - | - | - | - | 2.1 |
05 | 42.66 | 42.67 | Neophytadiene | 2.6 | 4.0 | 3.3 | 4.3 | 3.2 |
06 | 43.62 | 43.65 | (3S,3aS,6R,7R,9aS)-1,1,7-Trimethyldecahydro-3a,7-methanecyclopenta[8]anulene-3,6-diol | 2.1 | - | 1.9 | 2.9 | 2.1 |
07 | 46.77 | 47.04 | n-Hexadecanoic acid (palmitic acid) | 4.7 | 4.0 | 5.1 | 4.8 | 3.5 |
08 | 47.71 | 47.75 | Hexadecanoic acid ethyl ester (Palmitic acid ethyl ester) | 3.8 | 11.8 | 4.6 | 4.6 | 3.6 |
09 | 49.45 | 52.71 | (Z,Z)-9,12-octadecadienoic acid (linoleic acid) | 3.0 | 5.2 | - | - | - |
10 | 51.29 | 51.38 | Phytol | 8.0 | 9.8 | 11.1 | 10.2 | 9.0 |
11 | 52.25 | 52.37 | (Z,Z,Z)-9,12,15-octadecatrienoic acid (linolenic acid) | 3.5 | - | 4.9 | 5.0 | 3.8 |
12 | 52.72 | 52.74 | (Z,Z)-9,12-octadecadienoic acid ethyl ester (Linoleic acid ethyl ester) | 2.5 | - | 2.3 | 2.4 | 2.1 |
13 | 52.89 | 52.95 | (Z,Z,Z)-9,12,15-octadecatrienoic acid ethyl ester (Linolenic acid ethyl ester) | 7.4 | 10.6 | 9.2 | 7.2 | 7.5 |
14 | 53.71 | 53.75 | Octadecanoic acid ethyl ester (Stearic acid ethyl ester) | 3.2 | 7.5 | 3.3 | 3.3 | 2.7 |
15 | 54.57 | 54.82 | (E) -3-Methyl-5-((1R, 4aR, 8aR)-5,5,8a-trimethyl-2-methylenedeca-hydronaphthalen-1-yl) pent-2-en-1-ol (copalol) | - | - | 2.5 | - | - |
16 | 63.08 | 63.11 | Bis(2-ethylhexyl)phthalate | 2.2 | - | 2.4 | 2.2 | 1.7 |
17 | 67.80 | 67.99 | 1,4-Benzenedicarboxylic acid Bis(2-ethylhexyl) ester | - | - | 1.4 | - | 1.6 |
18 | 72.36 | 75.75 | δ-Tocopherol | - | - | 1.5 | - | 2.0 |
19 | 78.70 | 78.76 | Stigmasterol | 3.3 | 4.5 | 3.1 | 3.7 | 3.4 |
20 | 80.05 | 80.14 | γ-Sitosterol | 4.9 | 5.6 | 4.8 | 5.5 | 4.4 |
21 | 80.67 | 80.74 | 4, 4, 6a, 6b, 8a, 11, 11, 14b-Octamethyl-1, 4, 4a, 5, 6, 6a, 6b, 7, 8, 8a, 9, 10, 11, 12, 12a,14, 14a,14b-octadecahydro-2H-picen-3-one | 3.4 | 4.2 | 2.7 | 3.3 | 2.1 |
22 | 81.27 | 81.42 | Lup-20(29)-en-3-one | 11.0 | 7.8 | 6.4 | 8.5 | 5.0 |
23 | 81.87 | 82.15 | Lupeol | 24.6 | 15.9 | 22.8 | 27.0 | 34.4 |
24 | 83.71 | 83.72 | Stigmast-4-en-3-one | 2.6 | - | - | 2.4 | - |
Total % | 100 | 100 | 100 | 100 | 100 |
BRANCHES EXTRACTS | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | |||
---|---|---|---|---|---|---|---|---|
Nº | IRT | FRT | COMPOUNDS | RC % | RC % | RC % | RC % | RC % |
01 | 25.05 | 25.40 | Hydrocoumarin | 7.2 | 1.1 | 16.8 | 7.3 | 9.3 |
02 | 33.16 | 33.19 | (-)-Spathulenol | 8.3 | - | 16.9 | 4.5 | 3.4 |
03 | 39.06 | 46.19 | 4-O-Methylmannose | 18.1 | 85.5 | 25.4 | 4.2 | - |
04 | 46.79 | 47.04 | N-hexadecanoic acid (palmitic acid) | 8.9 | 1.3 | - | 9.0 | 9.5 |
05 | 47.63 | 47.87 | Hexadecanoic acid ethyl ester (Palmitic acid ethyl ester) | - | - | - | - | 4.0 |
06 | 51.96 | 52.11 | (Z,Z)-9,12-octadecadienoic acid (linoleic acid) | - | 1.0 | - | 4.5 | 4.5 |
07 | 52.02 | 52.47 | (Z)-9-octadecenoic acid (oleic acid) | 6.8 | - | - | - | - |
08 | 52.15 | 52.28 | (Z)-9-octadecenal | - | - | - | 5.4 | 5.1 |
09 | 52.63 | 52.87 | (Z,Z)-9,12-octadecadienoic acid ethyl ester (Linoleic acid ethyl ester) | - | - | - | - | 3.0 |
10 | 52.87 | 52.99 | Octadecanoic acid (stearic acid) | - | - | - | 5.3 | 5.2 |
11 | 63.08 | 63.12 | Bis(2-ethylhexyl)phthalate | 7.4 | - | 16.9 | 6.4 | 6.9 |
12 | 67.80 | 68.00 | 1,4-Benzenedicarboxylic acid Bis(2-ethylhexyl) ester | - | - | - | - | 3.4 |
13 | 78.69 | 78.75 | Stigmasterol | 7.1 | 1.4 | - | 5.4 | 4.8 |
14 | 80.05 | 80.13 | γ-Sitosterol | 8.4 | 1.6 | - | 6.9 | 7.1 |
15 | 81.29 | 81.35 | Lup-20(29)-en-3-one | 8.9 | 2.3 | - | 7.3 | 4.7 |
16 | 81.89 | 82.08 | Lupeol | 18.9 | 6.0 | 23.9 | 33.9 | 29.1 |
Total % | 100 | 100 | 100 | 100 | 100 |
RESIDUES EXTRACTS | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | |||
---|---|---|---|---|---|---|---|---|
N. | IRT | FRT | COMPOUNDS | RC % | RC % | RC % | RC % | RC % |
01 | 3.39 | 3.68 | 2-Propenoic acid methyl ester | - | - | 0.4 | - | 0.3 |
02 | 3.47 | 3.79 | 2,3-Butanediol | 7.3 | 5.0 | - | 8.0 | - |
03 | 3.50 | 3.72 | (S)-Isopropyl lactate | 6.5 | - | - | - | - |
04 | 3.56 | 3.83 | 2,3-Pentanedione | - | - | 0.3 | - | 0.2 |
05 | 3.79 | 4.05 | Pyruvic acid methyl ester | - | - | 1.3 | - | 0.8 |
06 | 4.13 | 4.19 | Furfural | - | - | 0.7 | 4.8 | 1.1 |
07 | 4.27 | 4.36 | 1,2-Diacetylhydrazine | - | - | 0.3 | - | - |
08 | 4.85 | 5.14 | 2-Furanomethanol | 3.9 | - | 0.5 | 4.8 | 0.5 |
09 | 5.42 | 5.49 | 4-Cyclopentene-1,3-dione | - | - | 0.4 | - | 0.3 |
10 | 6.82 | 6.99 | 1,2-Cyclopentanedione | - | - | 0.4 | - | 0.4 |
11 | 7.77 | 7.83 | 5-Methyl-2-Furanecarboxaldehyde | - | - | 0.3 | - | 0.2 |
12 | 8.35 | 8.51 | 2,4-Dihydroxy-2,5-dimethyl-3(2H)-furan-3-one | - | - | 0.3 | - | 0.2 |
13 | 15.91 | 15.95 | 2,3-Dihydro-benzofuran | - | - | 0.3 | - | 0.4 |
14 | 20.66 | 20.76 | Butanedioic acid hydroxy diethyl ester (+ /-) | - | 3.7 | - | 4.0 | - |
15 | 21.26 | 22.22 | 5-Hydroxymethylfurfural | - | - | - | - | 0.9 |
16 | 25.44 | 25.74 | Hydrocoumarin | 4.6 | 7.7 | 1.0 | 8.5 | 1.8 |
17 | 27.70 | 28.09 | Coumarin | 8.2 | 7.2 | 1.0 | 9.0 | 1.7 |
18 | 33.09 | 33.16 | Benzenepropanoic acid 2-hydroxyethyl ester | - | 4.6 | - | 4.5 | 0.2 |
19 | 33.25 | 33.34 | (-)-Spathulenol | 7.7 | 8.2 | 0.3 | 10.3 | - |
20 | 39.08 | 39.35 | 1-((1S,3aR,4R,7S,7aS)-4-Hydroxy-7-isopropyl-4-methyloctahydro-1H-inden-1-yl)ethanone | - | - | - | 3.4 | - |
21 | 43.18 | 43.22 | (-)-Globulol | 3.3 | 4.6 | - | 4.7 | - |
22 | 46.99 | 47.06 | n-Hexadecanoic acid (palmitic acid) | 5.1 | 5.2 | - | 4.2 | - |
23 | 47.74 | 47.78 | Hexadecanoic acid ethyl ester (palmitic acid ethyl ester) | 3.9 | 3.9 | - | 3.5 | - |
24 | 52.23 | 52.69 | (Z)-11-octadecenoic acid (cis-vaccenic acid) | 14.6 | 13.9 | 2.2 | 10.0 | 0.2 |
25 | 52.94 | 53.07 | (Z) -9-Octadecenoic acid ethyl ester (ethyl oleate) | 9.9 | 8.5 | - | 6.4 | - |
26 | 54.71 | 54.72 | Copalol | - | 3.8 | - | 3.3 | - |
27 | 61.44 | 63.20 | 4-O-Methylmannose | - | - | 81.7 | - | 90.6 |
28 | 62.09 | 62.57 | Hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester (beta-monoglyceride palmitic acid) | 5.5 | - | - | - | - |
29 | 66.71 | 66.91 | 9-Octadecenoic acid (E,E,E)-1,2,3-propanetriyl ester | 15.8 | 16.0 | 8.5 | 10.6 | - |
30 | 79.98 | 80.44 | γ-Sitosterol | - | 4.1 | - | - | - |
31 | 81.98 | 82.00 | Lupeol | 3.7 | 3.7 | - | - | - |
Total % | 100 | 100 | 100 | 100 | 100 |
SEEDS EXTRACTS | Area 1 | Area 2 | Area 3 | Area 4 | Area 5 | |||
---|---|---|---|---|---|---|---|---|
Nº | IRT | FRT | COMPOUNDS | RC % | RC % | RC % | RC % | RC % |
01 | 3.78 | 3.98 | O-Methylhydroxylamine | - | 1.0 | - | - | - |
02 | 6.10 | 6.11 | 1-Ethyl-1-methylcyclopropane | - | - | 0.7 | 2.6 | - |
03 | 25.30 | 25.76 | Hydrocoumarin | 3.3 | - | - | - | - |
04 | 27.52 | 28.04 | Coumarin | 5.4 | 98.1 | 99.3 | 97.4 | 93.8 |
05 | 28.86 | 29.09 | 4-Aminopyrido[3,2-c] pyridazine | - | 0.9 | - | - | - |
06 | 46.43 | 46.72 | n-Hexadecanoic acid (palmitic acid) | 6.1 | - | - | - | - |
07 | 47.48 | 48.33 | Hexadecanoic acid ethyl ester (palmitic acid ethyl ester) | 4.2 | - | - | - | - |
08 | 51.53 | 52.41 | (Z)-11-Octadecenoic acid (cis-vaccenic acid) | 8.5 | - | - | - | - |
09 | 52.85 | 53.03 | (Z)-9-Octadecenoic acid (oleic acid) | 32.5 | - | - | - | 6.2 |
10 | 53.28 | 53.63 | Octadecanoic acid (stearic acid) | 4.3 | - | - | - | - |
11 | 53.63 | 54.23 | Octadecanoic acid ethyl ester (stearic acid ethyl ester) | 3.5 | - | - | - | - |
12 | 57.63 | 58.08 | (Z)-13-Eicosenoic acid (cis-13-eicosenoic acid) | 1.3 | - | - | - | - |
13 | 58.96 | 59.46 | Eicosanoic acid ethyl ester | 1.3 | - | - | - | - |
14 | 61.93 | 62.63 | Hexadecanoic acid 2-hydroxy-1-(hydroxymethyl) ethyl ester (beta-monoglyceride palmitic acid) | 1.4 | - | - | - | - |
15 | 62.63 | 63.26 | Bis (2-ethylhexyl)phthalate | 1.4 | - | - | - | - |
16 | 63.26 | 64.18 | Docosanoic acid | 2.7 | - | - | - | - |
17 | 64.18 | 64.63 | Docosanoic acid ethyl ester | 4.1 | - | - | - | - |
18 | 66.03 | 67.21 | (Z)-9-Octadecenoic acid 2,3-dihydroxypropyl ester | 11.0 | - | - | - | - |
19 | 67.21 | 67.56 | Octadecanoic acid 2,3-dihydroxypropyl ester | 1.0 | - | - | - | - |
20 | 68.33 | 68.86 | Tetracosanoic acid | 1.0 | - | - | - | - |
21 | 68.86 | 69.38 | Ethyl tetracosanoate | 3.3 | - | - | - | - |
22 | 78.48 | 78.96 | Stigmasterol | 1.4 | - | - | - | - |
23 | 79.81 | 80.38 | γ-Sitosterol | 2.1 | - | - | - | - |
Total % | 100 | 100 | 100 | 100 | 100 |
DPPH (2,2-diphenyl-1-picrylhydrazyl) | ||||
---|---|---|---|---|
Data | Leaves | Branches | Residues | Seeds |
Formula | Y = 32.524 In (x) − 105.05 | Y = 27.812 ln (x) − 132.14 | Y = 29.355 ln (x) − 99.06 | Y = 25.813 ln (x) − 129.06 |
R2 | 97.47 | 98.18 | 94.64 | 93.61 |
CV% | 4.43 | 1.17 | 3.84 | 3.70 |
IC50 (µg.mL−1) | 117.6 | 698.5 | 160.4 | 1029.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, B.C.M.d.; Gomes, D.d.A.; Viana, A.F.d.S.; Silva, B.A.d.; Barata, L.E.S.; Sartoratto, A.; Lustosa, D.C.; Vieira, T.A. Phytochemical Analysis and Antioxidant Activity of Ethanolic Extracts from Different Parts of Dipteryx punctata (S. F. Blake) Amshoff. Appl. Sci. 2023, 13, 9600. https://doi.org/10.3390/app13179600
Sousa BCMd, Gomes DdA, Viana AFdS, Silva BAd, Barata LES, Sartoratto A, Lustosa DC, Vieira TA. Phytochemical Analysis and Antioxidant Activity of Ethanolic Extracts from Different Parts of Dipteryx punctata (S. F. Blake) Amshoff. Applied Sciences. 2023; 13(17):9600. https://doi.org/10.3390/app13179600
Chicago/Turabian StyleSousa, Bruna Cristine Martins de, Daniel do Amaral Gomes, Alciene Ferreira da Silva Viana, Bruno Alexandre da Silva, Lauro Euclides Soares Barata, Adilson Sartoratto, Denise Castro Lustosa, and Thiago Almeida Vieira. 2023. "Phytochemical Analysis and Antioxidant Activity of Ethanolic Extracts from Different Parts of Dipteryx punctata (S. F. Blake) Amshoff" Applied Sciences 13, no. 17: 9600. https://doi.org/10.3390/app13179600
APA StyleSousa, B. C. M. d., Gomes, D. d. A., Viana, A. F. d. S., Silva, B. A. d., Barata, L. E. S., Sartoratto, A., Lustosa, D. C., & Vieira, T. A. (2023). Phytochemical Analysis and Antioxidant Activity of Ethanolic Extracts from Different Parts of Dipteryx punctata (S. F. Blake) Amshoff. Applied Sciences, 13(17), 9600. https://doi.org/10.3390/app13179600