Accumulation of Different Metals in Tomato (Lycopersicon esculentum L.) Fruits Irrigated with Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling
2.3. Water Analysis
2.4. Soil Analysis
2.5. Plant Analysis
2.6. Statistical Analysis
3. Results
3.1. Mineral and Metal Contents in Soil and Water
3.2. Mineral and Metal Contents in Plant Organs and Fruit Parts
3.3. Heatmap Clustering
3.4. Pearson’s Correlation Coefficients
3.5. Principal Component Analysis (PCA)
4. Discussion
4.1. Soil and Water Analyses
4.2. Metal Uptake and Distribution within Plant Organs
4.3. Health Risk Assessment of Metals Accumulated in Plant Organs
4.4. Relationship between Soil and Water Metal Concentrations and Tomato Fruit Parts Based on Multivariate Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masindi, V.; Muedi, K.L. Environmental Contamination by Heavy Metals; IntechOpen: London, UK, 2018; Volume 10, pp. 115–132. [Google Scholar]
- Khan, M.J.; Jan, M.T.; Farhatullah; Khan, N.U.; Arif, M.; Perveen, S.; Alam, S.; Jan, A.U. The effect of using waste water for tomato. Pak. J. Bot. 2011, 43, 1033–1044. [Google Scholar]
- Tasrina, R.; Rowshon, A.; Mustafizur, A.; Rafiqul, I.; Ali, M. Heavy metals contamination in vegetables and its growing soil. J. Environ. Anal. Chem. 2015, 2, 2. [Google Scholar]
- Javed, T.; Ahmad, N.; Mashiatullah, A. Heavy Metals Contamination and Ecological Risk Assessment in Surface Sediments of Namal Lake, Pakistan. Pol. J. Environ. Stud. 2018, 27, 675–688. [Google Scholar] [CrossRef]
- van der Hoek, W.; Hassan, M.; Ensink, J.; Feenstra, S.; Raschid-Sally, L.; Munir, S.; Aslam, R.; Ali, N.; Hussain, R.; Matsuno, Y. Urban Wastewater: A Valuable Resource for Agriculture A Case Study from Haroonabad, Pakistan; IWMI Research Report no. 63; International Water Management Institute: Colombo, Sri Lanka, 2002; p. 14. [Google Scholar]
- Pirasteh-Anosheh, H.; Hedayati-Firoozabadi, A. Sorghum [Soghum bicolor (L.) Moench.] growth, and soil moisture and salt content as affected by irrigation water salinity. Int. J. Appl. Exp. Biol. 2022, 1, 33–37. [Google Scholar] [CrossRef]
- Murtaza, G.; Ghafoor, A.; Qadir, M.; Owens, G.; Aziz, M.; Zia, M. Disposal and use of sewage on agricultural lands in Pakistan: A review. Pedosphere 2010, 20, 23–34. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, R.K.; Agrawal, M.; Marshall, F.M. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Trop. Ecol. 2010, 51, 375–387. [Google Scholar]
- Lacatusu, R.; Lacatusu, A.R.; Lungu, M.; Breaban, I.G. Macro- and microelements abundance in some urban soils from Romania. Carpath. J. Earth Environ. Sci. 2008, 3, 75–83. [Google Scholar]
- Kumar, A.; Bohra, C.; Singh, L. Environment, Pollution and Management; APH Publishing: Delhi, India, 2003. [Google Scholar]
- Bounar, A.; Boukaka, K.; Leghouchi, E. Determination of heavy metals in tomatoes cultivated under green houses and human health risk assessment. Qual. Assur. Saf. Crops Foods 2020, 12, 76–86. [Google Scholar] [CrossRef]
- Kaya, C.; Okant, M.; Ugurlar, F.; Alyemeni, M.N.; Ashraf, M.; Ahmad, P. Melatonin-mediated nitric oxide improves tolerance to cadmium toxicity by reducing oxidative stress in wheat plants. Chemosphere 2019, 225, 627–638. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress. Physiol. Plant. 2020, 168, 345–360. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Krijger, G.C.; Van Vliet, P.M.; Wolterbeek, H.T. Metal speciation in xylem exudate of Lycopersicon esculentum Mill-technetium. Plant Soil 1999, 212, 165–173. [Google Scholar] [CrossRef]
- Zheljazkov, V.D.; Nielsen, N.E. Effect of heavy metals on peppermint and cornmint. Plant Soil 1996, 178, 59–66. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.; Khan, M.N.; Corpas, F.J.; Al-Amri, A.A.; Alsubaie, Q.D.; Ali, H.M.; Kalaji, H.M.; Ahmad, P. Melatonin and calcium function synergistically to promote the resilience through ROS metabolism under arsenic-induced stress. J. Hazard. Mater. 2020, 398, 122882. [Google Scholar] [CrossRef]
- Jan, S.; Alyemeni, M.N.; Wijaya, L.; Alam, P.; Siddique, K.H.; Ahmad, P. Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol. 2018, 18, 146. [Google Scholar] [CrossRef]
- Jayarathne, A.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Assessment of ecological and human health risks of metals in urban road dust based on geochemical fractionation and potential bioavailability. Sci. Total Environ. 2018, 635, 1609–1619. [Google Scholar] [CrossRef]
- Khan, S.; Cao, Q.; Zheng, Y.M.; Huang, Y.Z.; Zhu, Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008, 152, 686–692. [Google Scholar] [CrossRef]
- Parker, C. Water Analysis by Atomic Absorption Spectroscopy; Varian Techtron: Baden, Switzerland, 1972. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Constable and Co. Ltd.: London, UK, 1962. [Google Scholar]
- Bremner, J.M. Total nitrogen and inorganic forms of nitrogen. In Methods of Soil Analysis; Black, C.A., Ed.; American Society of Agronomy: Madison, WI, USA, 1965; Volume 2. [Google Scholar]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988, 333, 134–139. [Google Scholar] [CrossRef]
- Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 1982, 13, 1035–1059. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics, a Biometrical Approach, 2nd ed.; McGraw-Hill Kogakusha, Ltd.: New York, NY, USA, 1980. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985. [Google Scholar]
- WWF. Report on national surface water classification criteria, irrigation water quality guidelines for Pakistan. In Proceedings of the Waste Water Forum Pakistan (WWF), Lahore, Pakistan, February 2007. [Google Scholar]
- USEPA. Quality Criteria for Water; EPA 440/5-86-001; USEPA (United States Environmental Protection Agency): Washington, DC, USA, 1986. [Google Scholar]
- Rowell, R. Soil Science: Method and Applications: Pesticides and Metals; Longman Singapore Publisher (Pte) Ltd.: Singapore, 1994. [Google Scholar]
- ECC. Council directive on the protection of the environment, and in particular of the soil, when sewage sludge is used in Agriculture. Off. J. Eur. Communities 1986, 181, 6–12. [Google Scholar]
- Awasthi, S. Prevention of Food Adulteration Act No. 37 of 1954, Central and State Rules as Amended for 1999; Ashoka Law House: Delhi, India, 2000. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Marshall, F. Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol. Environ. Saf. 2007, 66, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Ghafoor, A.; Qadir, M. Accumulation and implications of cadmium, cobalt and manganese in soils and vegetables irrigated with city effluent. J. Sci. Food Agric. 2008, 88, 100–107. [Google Scholar] [CrossRef]
- Mushtaq, N.; Khan, K.S. Heavy metals contamination of soils in response to wastewater irrigation in Rawalpindi region. Pak. J. Agric. Sci. 2010, 47, 215–224. [Google Scholar]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Khan, Z.I.; Ahmad, K.; Bibi, H.F.; Ahmad, I.; Muhammad, F.G.; Ashfaq, A.; Ejaz, A.; Sameen, A.; Nadeem, M.; Ugulu, I. Heavy metals and proximate analysis of Sihar (Rhazya stricta Decne) collected from different sites of Warcha salt mine, Salt Range, Pakistan. Int. J. Appl. Exp. Biol. 2023, 2, 47–57. [Google Scholar] [CrossRef]
- Alirzayeva, E.; Shirvani, T.; Yazici, M.; Alverdiyeva, S.; Hukurov, E.; Ozturk, L.; Ali-Zade, V.; Cakmak, I. Heavy metal accumulation in Artemisia and foliaceous lichen species from the Azerbaijan flora. For. Snow Landsc. Res. 2006, 80, 339–348. [Google Scholar]
- Ahmad, M.S.A.; Hussain, M.; Saddiq, R.; Alvi, A.K. Mungbean: A nickel indicator, accumulator or excluder? Bull. Environ. Contam. Toxicol. 2007, 78, 319–324. [Google Scholar] [CrossRef]
- Paivoke, A.E.A. Mineral elements and phytase activity in Pisum sativum grown at different Zn supply levels in the greenhouse. Environ. Exp. Bot. 2003, 49, 285–294. [Google Scholar] [CrossRef]
- Essien, O.; Douglass, E. Heavy metal transfer to vegetables from contaminated farmland adjoining sub urban animal park/market, Uyo. Afr. J. Agric. Res 2012, 7, 1268–1275. [Google Scholar] [CrossRef]
- Ahmad, M.S.A.; Hussain, M.; Ijaz, S.; Alvi, A.K. Photosynthetic performance of two Mung bean (Vigna radiata (L.) Wilczek) cultivars under lead and copper application. Int. J. Agric. Biol. 2008, 10, 167–172. [Google Scholar]
- Adhikari, S.; Mitra, A.; Gupta, S.; Banerjee, S. Pollutant metal contents of vegetables irrigated with sewage water. J. Indian Soc. Soil Sci. 1998, 46, 153–155. [Google Scholar]
- Kansal, B.D.; Singh, J. Influence of municipal waste water and soil properties on accumulation of heavy metals in plants. J. Environ. Pollut. 1983, 6, 13–16. [Google Scholar]
- Schirado, T.; Pratt, P. Evidence for movement of heavy metals in a soil irrigated with untreated wastewater. J. Environ. Qual. 1986, 15, 9–12. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004.
- WHO. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture; Technical Report Series 778; World Health Organization: Geneva, Switzerland, 1998.
- Asaolu, S. Lead content of vegetables and tomatoes at Erekesan market, Ado-Ekiti [Nigeria]. Pak. J. Sci. Ind. Res. 1995, 38, 399–401. [Google Scholar]
- Kim, J.Y.; Kim, K.W.; Lee, J.U.; Lee, J.S.; Cook, J. Assessment of As and heavy metal contamination in the vicinity of Duckum Au-Ag mine, Korea. Environ. Geochem. Health 2002, 24, 213–225. [Google Scholar] [CrossRef]
- Haiyan, W.; Stuanes, A.O. Heavy metal pollution in air-water-soil-plant system of Zhuzhou City, Hunan Province, China. Water Air Soil Pollut. 2003, 147, 79–107. [Google Scholar] [CrossRef]
- Amiri, S.S.; Maralian, H.; Aghabarati, A. Heavy metal accumulation in Melilotus officinalis under crown Olea europaea L. forest irrigated with wastewater. Afr. J. Biotechnol. 2008, 7, 3912–3916. [Google Scholar]
- Ahmad, M.S.A.; Ashraf, M.; Tabassam, Q.; Hussain, M.; Firdous, H. Lead (Pb)-induced regulation of growth, photosynthesis, and mineral nutrition in maize (Zea mays L.) plants at early growth stages. Biol. Trace Elem. Res. 2011, 144, 1229–1239. [Google Scholar] [CrossRef]
- Monnett, G.T.; Reneau, R.B.; Hagedorn, C. Evaluation of spray irrigation for on-site wastewater treatment and disposal on marginal soils. Water Environ. Res. 1996, 68, 11–18. [Google Scholar] [CrossRef]
- Burns, J.; King, L.; Westerman, P. Long-term swine lagoon effluent applications on ‘Coastal’bermudagrass: I. Yield, quality, and element removal. J. Environ. Qual. 1990, 19, 749–756. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Mazahreh, N. Changes in soil fertility parameters in response to irrigation of forage crops with secondary treated wastewater. Commun. Soil Sci. Plant Anal. 2003, 34, 1281–1294. [Google Scholar] [CrossRef]
- Baldantoni, D.; Morra, L.; Zaccardelli, M.; Alfani, A. Cadmium accumulation in leaves of leafy vegetables. Ecotoxicol. Environ. Saf. 2016, 123, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Edelstein, M.; Ben-Hur, M. Heavy metals and metalloids: Sources, risks and strategies to reduce their accumulation in horticultural crops. Sci. Hort. 2018, 234, 431–444. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Ashraf, M.A. Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi J. Biol. Sci. 2016, 23, S32–S44. [Google Scholar] [CrossRef]
- Mashavira, M.; Chitata, T.; Mhindu, R.L.; Muzemu, S.; Kapenzi, A.; Manjeru, P. The effect of water hyacinth (Eichhornia crassipes) compost on tomato (Lycopersicon esculentum) growth attributes, yield potential and heavy metal levels. Am. J. Plant Sci. 2015, 6, 545. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
Attribute | Water (mg L−1) | Permissible Limit in Water (mg L−1) | Soil (mg kg−1) | Permissible Limits in Soil (mg kg−1) | ||||
---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | |||
EC (dS m−1) | 2.5 | 0.7 | 1.5 | n.a. | 1.9 | n.a. | n.a. | n.a. |
pH | 7.11 | 6.5-8.4 | 6.5-8.4 | n.a. | 7.41 | n.a. | n.a. | n.a. |
Co | 0.00 | - | - | - | ND | - | - | - |
Cd | 0.00 | - | - | - | ND | - | - | - |
Mn | 0.16 | 0.20 | n.a. | 0.05 | 19.00 | n.a. | n.a. | n.a. |
Cu | 0.10 | - | - | - | ND | - | - | - |
Ni | 0.05 | - | - | - | ND | - | - | - |
Fe | 0.46 | 5.0 | 5.0 | 1.0 | 35.88 | n.a. | n.a. | n.a. |
Zn | 0.77 | 2.0 | 2.0 | 1.0 | 28.84 | 80.0 | 150–300 | 300–600 |
Pb | 0.44 | 5.0 | 0.1 | 0.05 | 29.62 | 50.0 | 300–600 | 250–500 |
Plant Organs | Mn | Fe | Zn | Pb |
---|---|---|---|---|
Roots | 16.5 | 137.32 | 26.13 | 28.5 |
Stem | 7.7 | 65.03 | 12.78 | 22.7 |
Leaves | 13.99 | 121.03 | 33.03 | 39.08 |
Pericarp | 7.08 | 13.6 | 16.35 | 30.05 |
Mesocarp | 7.75 | 32.3 | 12.98 | 29.42 |
Endocarp | 4.6 | 63.43 | 23.85 | 34.95 |
WHO limit [47] | 5 | 150 | 5 | 5 |
Revised limit | 5 WHO/FAO | 1 WHO/FAO | 50 is | 0.1 ell, 2.5 is |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tabassam, Q.; Ahmad, M.S.A.; Alvi, A.K.; Awais, M.; Kaushik, P.; El-Sheikh, M.A. Accumulation of Different Metals in Tomato (Lycopersicon esculentum L.) Fruits Irrigated with Wastewater. Appl. Sci. 2023, 13, 9711. https://doi.org/10.3390/app13179711
Tabassam Q, Ahmad MSA, Alvi AK, Awais M, Kaushik P, El-Sheikh MA. Accumulation of Different Metals in Tomato (Lycopersicon esculentum L.) Fruits Irrigated with Wastewater. Applied Sciences. 2023; 13(17):9711. https://doi.org/10.3390/app13179711
Chicago/Turabian StyleTabassam, Qaisra, Muhammad Sajid Aqeel Ahmad, Ambreen Khadija Alvi, Muhammad Awais, Prashant Kaushik, and Mohamed A. El-Sheikh. 2023. "Accumulation of Different Metals in Tomato (Lycopersicon esculentum L.) Fruits Irrigated with Wastewater" Applied Sciences 13, no. 17: 9711. https://doi.org/10.3390/app13179711
APA StyleTabassam, Q., Ahmad, M. S. A., Alvi, A. K., Awais, M., Kaushik, P., & El-Sheikh, M. A. (2023). Accumulation of Different Metals in Tomato (Lycopersicon esculentum L.) Fruits Irrigated with Wastewater. Applied Sciences, 13(17), 9711. https://doi.org/10.3390/app13179711