Trends and Recommendations for Enhancing Maturity Models in Supply Chain Management and Logistics
Abstract
:1. Introduction
- (RQ1)
- What are the main research contributions to MMs for SCML?
- (RQ2)
- How have the topics evolved and related to each other over time?
- (RQ3)
- What are the key decision criteria for defining, designing, and applying MMs for SCML?
- (RQ4)
- What are the potential future developments for MMs for SCML?
2. Materials and Methods
2.1. Literature Search
( “maturity model” OR “maturity framework” OR “maturity roadmap” OR “maturity grid” OR “maturity assessment” OR “maturity level” OR “maturity index”) AND (“supply chain*” OR “supply chain* management” OR logistic*)
2.2. Bibliometric Analysis
- Time series analysis: This analysis represents the trend of publications over time and the source types (articles, conference papers, reviews). A spreadsheet was used to analyze the total number of publications per year, which is visualized in a time histogram.
- Journal analysis: This analysis identifies the most relevant journals by examining the total number of publications, the total number of citations, and citations per publication per year per journal. Bibliometrix software was used for this analysis.
- Geographical distribution analysis: This analysis identifies the most active countries in terms of publishing MMs for SCML. The analysis used the geographical location of the research affiliations as a metric, and the results are presented on a geographical map.
- Authors analysis: This analysis identifies the most relevant and productive scholars. A spreadsheet was used to analyze the total number of publications, the total number of citations, and citations per publication per individual author (Equation (1)). The Qualitative Author’s Relevance Assessment (QARA) visualization tool was utilized to present the results [55].
- Keywords analysis: This analysis examines the relevance, evolution, and ranking of keywords used by authors [60]. The analysis was performed using Bibliometrix and VOSviewer software, and the results are presented through co-occurrence, co-citation, bibliographic coupling networks, trend topics, and thematic maps [61].
2.3. Content Analysis
- Scope criteria: This sub-phase involves identifying and classifying the domains of interest of MMs. It includes determining which level of the supply chain the MMs address [39], the focus of the MMs, the type of maturity considered, and the operational processes involved.
3. Results
3.1. Bibliometric Results
Authors Analysis and Keywords Analysis
3.2. Content Results
3.2.1. Scope Criteria of MMs for SCML
3.2.2. Design Criteria of MMs for SCML
3.2.3. Application Criteria of MMs for SCML
4. Discussion and Future Enhancements
- MMs for SCML: Santos-Neto and Costa’s research [146] revealed that MMs for SCML constitute only about 5% of the total MMs analyzed. This percentage is still low, indicating a need for further studies, particularly in the field of logistics. Logistics is relatively underexplored compared to the broader domain of supply chain management, especially in terms of process and network considerations. The content analysis results also indicate an emerging interest in logistics, warranting increased attention.
- MMs for sustainable development: Boullauazan et al.’s work [16] highlights that MMs can serve as tools for measuring sustainability. However, most research in this area primarily emphasizes economic goals, overlooking environmental and social objectives. While there is a growing body of research on environmental sustainability, social sustainability has received less attention. To address this imbalance, it is essential to propose MMs that integrate all three sustainability goals based on the Triple Bottom Line framework.
- MMs for reverse and closed-loop supply chains: Many existing MMs predominantly focus on information and physical product flows in a forward logic. However, MMs for SCML rarely consider the return process or the integration of forward and reverse logistics (RL) [113]. An example that considers the return process is mentioned in [147] for the proposal of a reverse logistics MM. Incorporating these elements is crucial for defining closed-loop supply chains (CLSCs) and embracing the circular economy paradigm, which aligns with current sustainable goals [74]. Future research should address this gap.
- MMs for 5.0 readiness: The concept of Industry 5.0 extends the principles of Industry 4.0 by emphasizing a more human-centric approach. Recognizing the increasing importance of operators and their interactions with technologies and organizational processes from a social standpoint, future MMs should integrate process-oriented, object-oriented, and people-oriented attributes. This approach enables the assessment of performance efficiency based on the maturity of operators, the utilization of advanced technologies, and optimized processes.
- MMs for multi-attribute SCML: Recent disruptive events, such as the pandemic, have exposed the insufficient preparedness of supply chains and the inefficiency of logistics networks in responding to unpredictable situations. In the current dynamic, uncertain, and complex environment, lean, flexible, resilient, and sustainable approaches are vital. Relying solely on single attributes is risky, necessitating the integration of multiple attributes. For example, incorporating lean and agile paradigms has been proposed [148]. Future research should focus on developing multi-attribute MMs to enhance SCML practices.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Source | Publication Year | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | Total | |
IFIP Advances in Information and Communication Technology | 2 | 1 | 1 | 2 | 6 | |||||||||||||
Procedia Manufacturing | 2 | 2 | 2 | 6 | ||||||||||||||
International Journal of Production Economics | 3 | 1 | 1 | 5 | ||||||||||||||
LogForum | 1 | 3 | 1 | 5 | ||||||||||||||
Sustainability (Switzerland) | 1 | 3 | 1 | 5 | ||||||||||||||
Benchmarking | 1 | 1 | 2 | 4 | ||||||||||||||
Production Planning and Control | 1 | 2 | 1 | 4 | ||||||||||||||
Supply Chain Management | 1 | 1 | 1 | 1 | 4 | |||||||||||||
Advances in Intelligent Systems and Computing | 2 | 1 | 3 | |||||||||||||||
Applied Sciences (Switzerland) | 1 | 2 | 3 | |||||||||||||||
Business Process Management Journal | 1 | 2 | 3 | |||||||||||||||
International Journal of Quality and Reliability Management | 1 | 2 | 3 | |||||||||||||||
Proceedings of the International Conference of Industrial Engineering and Operations Management | 1 | 2 | 3 | |||||||||||||||
Total | 1 | 2 | 3 | 4 | 3 | 9 | 8 | 13 | 7 | 4 | 54 |
Source | Reference | Number of Publications | Number of Citations | Number of CPP |
---|---|---|---|---|
Journal of Manufacturing Systems | [42] | 1 | 528 | 528 |
Transportation Research Part E: Logistics and Transportation Review | [75] | 1 | 266 | 266 |
International Journal of Production Economics | [10,17,88,109,149] | 5 | 1102 | 220.4 |
Supply Chain Management: an International Journal | [35,36] | 2 | 403 | 201.5 |
Data Base for Advances in Information Systems | [62] | 1 | 129 | 129 |
Business Horizons | [108,150] | 2 | 237 | 118.5 |
Journal of Management Engineering | [151] | 1 | 106 | 106 |
Technovation | [152] | 1 | 76 | 76 |
International Journal of Operations and Production Management | [136,153] | 2 | 145 | 72.5 |
Expert Systems with Applications | [140] | 1 | 71 | 71 |
Supply Chain Management | [80,110,126,133] | 4 | 275 | 68.75 |
Journal of Modelling in Management | [118] | 1 | 65 | 65 |
Clusters | Keywords | Occurrences | TLS |
---|---|---|---|
Cluster 1 | supply chains | 26 | 91 |
industry 4.0 | 9 | 32 | |
competition | 8 | 31 | |
maturity levels | 7 | 33 | |
digital transformation | 7 | 27 | |
automotive industry | 5 | 23 | |
industrial research | 5 | 24 | |
manufacture | 5 | 24 | |
manufacturing industries | 4 | 16 | |
maturity | 4 | 16 | |
industrial management | 3 | 13 | |
readiness assessment | 3 | 13 | |
Cluster 2 | industry | 4 | 14 |
process maturity | 4 | 19 | |
societies and institutions | 4 | 13 | |
business analytics | 3 | 14 | |
information management | 3 | 13 | |
information systems | 3 | 15 | |
mathematical models | 3 | 12 | |
performance | 3 | 17 | |
supply chain performance | 3 | 15 | |
Cluster 3 | supply chain management | 27 | 88 |
software engineering | 11 | 44 | |
sustainability | 4 | 4 | |
benchmarking | 3 | 10 | |
capability maturity models | 3 | 9 | |
knowledge management | 3 | 11 | |
logistics | 3 | 7 | |
chains | 3 | 9 | |
Cluster 4 | sustainable development | 11 | 43 |
life cycle | 5 | 25 | |
capability maturity model integration | 4 | 22 | |
sustainable supply chains | 4 | 21 | |
integration | 4 | 17 | |
decision making | 3 | 11 | |
literature reviews | 3 | 9 | |
Cluster 5 | maturity model | 31 | 109 |
maturity assessment | 8 | 30 | |
roadmap | 4 | 17 | |
warehouses | 3 | 6 | |
conceptual frameworks | 3 | 8 | |
Cluster 6 | project management | 4 | 15 |
construction industry | 4 | 12 |
Appendix B
Reference | Scope | Design | Application | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Domain | SC Level | Type | Process | Ass. Tool | Design Process | Lv. | Dim. | Sub. | Phase | Purpose | Sector | |
Correia et al. [99] | Sustainability | O | M | SCM | L | H | 5 | 4 | 22 | D + V | C | Manufacturing (5) |
Demir et al. [154] | Industry 4.0, Sustainability | O | R | SCM | L | H | 5 | 2 | 6 | D + V | D | Automotive (1) |
Hajoary et al. [132] | Industry 4.0 | O | R | M | L | H | 4 | 6 | 31 | D + V | D | Manufacturing (1) |
Hellweg et al. [155] | Industry 4.0 | O | M | SCM | L | H | 2 | 3 | 18 | D + V | D | Aerospace (1) |
Pereira et al. [156] | Industry 4.9, Logistics | P | M | L | CMM | H | 5 | 6 | 14 | D + I | D | - |
Tiss and Orellano [157] | Industry 4.0 | P | M | SCM | L | H | 4 | 3 | 14 | D + V | D | Engineering (1) |
Balouei Jamkhaneh and Safaei Ghadikolaei [125] | Service, Supply Chain | N | C | SCM | L | H | 4 | 4 | 19 | D + V | D | Service (1) |
Behrendt et al. [90] | Industry 4.0 | N | M | L, M | MG | T | - | 3 | 18 | A | D | - |
Bui et al. [104] | Industry 4.0, Supply Chain | N | M | SCM | MG | T | 4 | 4 | - | D | C | - |
Boullauazan et al. [16] | Industry 4.0 | N | M | L | L | H | 5 | 5 | - | D + V | D | Retail (11) |
Hongxiong and Xiaowen [69] | Industry 4.0 | N | T | SCM | MG | H | 5 | 3 | D | P | - | |
Gallego-García et al. [158] | Industry 4.0 | O | C | M | O | T | 5 | 8 | D + V | P | - | |
Kayikci et al. [73] | Industry 4.0, Circular Economy | N | R | SCM | L | H | 6 | 8 | 117 | D + V | D | Textile (4) |
Lookman et al. [79] | Innovation | O | C | L | MG | 5 | 4 | 22 | D + V | D | Transportation (52) | |
Tetik et al. [137] | Logistics | O | M | L | L | T | 3 | 5 | - | D + V | C | Construction (3) |
Uhlenkamp et al. [117] | Industry 4.0 | O | M | L | T | 3 | 6 | 27 | D + V | - | ||
Uhrenholt et al. [101] | Circular Economy | O | T | MG | T | 6 | 6 | - | D | D | - | |
Weerabahu et al. [30] | Industry 4.0 | N | T | SCM | MG | T | 4 | 4 | - | D | D | - |
Zoubek et al. [22] | Industry 4.0 | P | R | L | 6 | 5 | 14 | A | C | Automotive (13), Engineering (16) | ||
Barbalho and Dantas [27] | Industry 4.0 | P | M | L | L | H | 5 | 6 | 37 | A | P | Food and Beverage (1) |
Caiado et al. [109] | Industry 4.0 | O | R | L, SCM | L | H | 5 | 3 | 7 | D + V | P | Manufacturing (1) |
Cavalcante de Souza Feitosa et al. [105] | Risk | O | M | SCM | MG | T | 4 | 3 | D + V | D | Fashion (4) | |
Chalmeta and Barqueros-muñoz [93] | Big Data Analytics, Sustainability | P | M | SCM | H | 5 | 6 | - | D + V | P | Transportation (1) | |
Çınar et al. [68] | Industry 4.0 | O | R | L, M, SCM | T | 5 | 4 | D + V | D | Automotive (1) | ||
Cubo et al. [121] | Quality, Supply Chain | P | M | L, SCM | L | T | 5 | 5 | 20 | D + I | D | - |
Deniaud et al. [86] | Industry 4.0, Sustainability | O | T | SCM | MG | T | 6 | 4 | 24 | D | D | - |
Ehrensperger et al. [70] | Industry 4.0, Information Technology | N | T | MG | H | 5 | 7 | - | D + V | D | Telecommunication (1) | |
Gunduz et al. [87] | Industry 4.0, Sustainability | P | T | SCM | L | H | 5 | 10 | 24 | D + V | D | Automotive (1) |
Hansali et al. [9] | Sales and Operation Planning | P | M | S&OP | T | A | D | Automotive (1) | ||||
Modica et al. [82] | Industry 4.0 | O | M | L | T | 4 | 7 | 22 | D | D | - | |
Peña Orozco et al. [144] | Integration, Supply Chain | P | M | SCM | L | H | 5 | 9 | 20 | D + I + V | P | Agrifood (99) |
Peng et al. [28] | Information Technology, Sustainability | O | C | SCM | L | T | 5 | 7 | 4 | D + I + V | D | Food and Beverage (1) |
Saari et al. [31] | Circular Economy, Sustainability | P | R | M | MG | H | 5 | 7 | - | D | D | - |
Santos et al. [78] | Alignment, Supply Chain | O | C | SCM | F | T | 5 | 4 | 21 | D + I + V | P | General (3) |
Soares et al. [100] | Lean | P | M | SCM | MG | H | 5 | 7 | D + V | D | General (3) | |
Trisnawati and Pujawan [3] | Supply Chain | N | M | M, SCM | L | H | - | 5 | - | A | Manufacturing (57) | |
Uraipan et al. [76] | Cybersecurity | O | C | SCM | L | T | - | 6 | 32 | D + I + V | D | General (9) |
Wagire et al. [130] | Industry 4.0 | O | R | M | L | H | 4 | 7 | 38 | D + V | D | Automotive (1) |
Wehner et al. | Sustainability | O | M | L | MG | H | 5 | 3 | 14 | D | D | - |
Werner-Lewandowska and Golinska-Dawson [21] | Sustainability | O | C | L | L | P | 5 | 3 | 36 | D + V | C | Transportation (199) |
Wijbenga et al. [126] | Supply Chain | P | M | L, SCM | MG | H | 5 | 4 | 14 | D + V | D | General (1) |
Zoubek and Simon [83] | Industry 4.0 | P | R | L | MG | H | 5 | 5 | 14 | D | D | - |
Büyüközkan et al. [81] | Big Data Analytics | O | M | SCM | L | H | 5 | 5 | 15 | D + V | C | Transportation (1) |
Caiado et al. [8] | Industry 4.0 | P | M | M | MG | H | 4 | 4 | - | D | P | - |
Frederico et al. [80] | Industry 4.0 | N | M | SCM | MG | T | 4 | 4 | 40 | D | D | - |
Grest et al. [103] | Disaster/Emergency | N | M | SCM | MG | T | 4 | 3 | 11 | D + V | D | Humanitarian (1) |
Ho et al. [2] | Collaboration | N | M | SCM | L | 5 | 16 | A + V | D | Textile (2) | ||
Márquez-Gutiérrez et al. [91] | Logistics | O | IM | L, M | L | T | 3 | - | D + V | C | Furniture (1) | |
Peukert et al. [92] | Industry 4.0 | N | M | L, M | F | T | 2 | 12 | - | D + I + V | P | Automotive (1) |
Unny and Lal [95] | Blockchain | O | C | SCM | MG | T | 5 | 5 | - | A | D | - |
Werner-Lewandowska [13] | Logistics | O | M | L | L | T | 6 | 5 | 65 | D + A | C | Service (2000) |
Werner-Lewandowska and Kosacka-Olejnik [120] | Logistics | O | M | L | L | 6 | 5 | 65 | D + V + A | P | Transportation | |
Yigit Ozkan et al. [141] | Cybersecurity | N | C | L | T | 4 | 4 | 13 | I + V + A | D | General (9) | |
Zwetsloot et al. [29] | Safety | O | M | L | H | 5 | 14 | - | A | C | General (19) | |
Bastas and Liyanage [127] | Quality, Supply Chain, Sustainability | O | M | SCM | H | 6 | 8 | 58 | D + V | P | Chemical (1) | |
Batista et al. [142] | Knowledge, Sustainability | O | C | SCM | MG | T | 4 | 3 | 12 | D + I + V | D | Food (6) |
Beelaerts van Blokland et al. [135] | Supply Chain | O | C | SCM | H | 4 | 2 | 3 | I + V | C | Automotive (16) | |
Ellefsen et al. [74] | Artificial Intelligence, Industry 4.0 | O | R | L | L | T | 5 | 3 | - | I + V | C | Fashion (2), Transportation (2) |
Gaur and Ramakrishnan [129] | Internet of Things | P | M | M | L | H | 5 | 9 | 45 | D + V | D | General (8) |
Gustafsson et al. [133] | Product fitting | P | M | SCM | MG | H | 3 | 2 | 7 | D + V | D | Retail (13) |
Krowas and Riedel [138] | Industry 4.0 | O | M | L | L | T | 5 | 4 | 12 | D + V | C | Ceramic (1) |
Marco-Ferreira and Jabbour [84] | Sustainability | N | M | SCM | MG | T | 3 | 8 | - | D + V | C | Automotive (1), Agrifood (2), Batteries (2) |
Oleśków-Szłapka and Stachowiak [159] | Industry 4.0 | P | M | L | MG | H | 5 | 3 | - | D | C | General (17) |
Oleśków-Szłapka et al. [116] | Industry 4.0 | O | M | L | L | T | 5 | 3 | - | A | C | General (17) |
Stachowiak et al. [102] | Knowledge, Industry 4.0 | P | D | L | L | H | 5 | 3 | - | D | - | |
Stiles et al. [97] | Safety | N | R | SCM | L | T | 5 | - | - | A | C | Construction |
Werner-Lewandowska and Kosacka-Olejnik [7] | Logistics | O | M | L | L | T | 6 | 5 | 111 | D | C | - |
Werner-Lewandowska and Kosacka-Olejnik [20] | Industry 4.0, Information Technology | O | M | L | MG | H | 6 | 1 | 15 | D + A | C | Service (2000) |
Yahiaoui et al. [143] | Supply Chain | O | M | L, SCM | MG | T | 3 | 4 | 14 | D + V | D | Automotive (1) |
Arunachalam et al. [75] | Big Data Analytics | P | C | SCM | T | 4 | 5 | 32 | D | C | - | |
Asdecker and Felch [118] | Industry 4.0 | O | M | L | L | H | 5 | 3 | 15 | D + V | C | - |
Olejnik and Werner-Lewandowska [147] | Reverse Logistics | P | M | L | MG | T | 5 | 6 | 25 | D | C | - |
Salvadó et al. [94] | Disaster/Emergency, Sustainability | P | M | SCM | MG | T | 5 | 3 | 7 | D + V | C | Humanitarian (1) |
Siebelink et al. [134] | Building Information Modelling | O | M | SCM | MG | T | 6 | 6 | 16 | D + I + V | C | Construction (53) |
Werner-Lewandowska et al. [114] | Logistics | P | M | L | MG | T | 6 | 5 | 81 | D | C | - |
De Carolis et al. [34] | Industry 4.0 | P | R | M | L | H | 5 | 5 | 18 | D | D | - |
Ferreira et al. [85] | Sustainability | O | M | SCM | L | T | 3 | 8 | 45 | D + V | C | Pesticides (2), Battery (2), Automotive (1) |
Johansen et al. [96] | Collaboration, Sustainability | O | M | SCM | L | H | 5 | 2 | 18 | D | D | - |
Klötzer and Pflaum [19] | Industry 4.0 | O | M | M | MG | H | 5 | 9 | - | D | D | - |
Machado et al. [88] | Sustainability | O | C | OM | CMM | H | 5 | 8 | D | P | - | |
Razik et al. [160] | Warehousing | P | M | L | MG | T | 3 | 4 | 21 | D + V | C | Steel (1) |
Umeda [161] | Supply Chain | O | M | SCM | MG | T | 5 | 3 | - | D | D | - |
Bueno and Alencar [124] | Logistics | O | M | L, SCM | L | H | 5 | 6 | 170 | I + A | C | Transportation (3) |
Fischer et al. [77] | Flexibility | N | M | SCM | MG | T | 5 | 5 | - | D | D | - |
Ho et al. [24] | Collaboration | O | M | SCM | CMM | T | 5 | 3 | 16 | D | C | - |
Mendes et al. [10] | Supply Chain | N | M | SCM | L | H | 5 | 3 | 15 | D + V | C | Beverage (1) |
Oliva [149] | Risk | P | M | SCM | L | H | 5 | 4 | 8 | D + V | D | General (168) |
Radosavljevic et al. [18] | Supply Chain | O | M | SCM | L | H | 5 | 8 | - | D + V | D | General (132) |
Wang et al. [17] | Big Data Analytics | P | M | L, SCM | F | T | 5 | 2 | - | D | D | - |
Huang and Handfield [136] | ERP | P | M | SCM | L | H | 5 | 4 | - | A | C | Manufacturing (111), Finance (33), Retail (29) |
Rendon [106] | Contracting | P | M | SCM | L | P | 5 | 5 | 62 | A | D | - |
Souza et al. [4] | Business Process | O | M | SCM | L | 5 | 13 | I + A | D | General (288) | ||
Boyson [152] | Cybersecurity, Risk | N | C, M | SCM | MG | H | 3 | 3 | 14 | D | D | - |
Hermans et al. [162] | Commissioning | P | M | SCM | MG | H | 5 | 8 | - | D | C | - |
Poli et al. [25] | Sustainability | O | M | SCM | CMM | H | 5 | 5 | 43 | D + V | D | Pharma (1) |
Reefke et al. [98] | Sustainability | N | M | SCM | MG | H | 6 | - | - | D + V | P | - |
Battista and Schiraldi [113] | Logistics | P | M | L | CMM | T | 5 | 5 | 13 | D + V | D | Fashion (1) |
Cuenca et al. [163] | Coordination | N | M | S&OP | MG | T | 5 | 9 | - | D + V | C | Ceramic (1) |
Foerstl et al. [153] | Coordination, Integration | O | M | SCM | L | H | 3 | 4 | 12 | D + I + V | C | General (148) |
Jin et al. [164] | Integration | O | M | SCM | MG | H | 4 | 4 | - | D + V | D | General (60) |
Okongwu et al. [131] | Sustainability | O | M | SCM | L | H | 5 | 4 | 8 | D + V | C | Aerospace (5), Automotive (5), Construction (5), Electronics (5), Energy (5), Food (5), Chemical (5), Pharma (5), Retail (5), Telecommunications (5) |
Srai et al. [14] | Sustainability | N | C, M | SCM | L | T | 5 | 5 | 24 | D + I + V | C | Aerospace (1), Energy (1), Pharma (1), Automotive (1), Retail (1), Electronics (1), Chemical (1), Service (4), Engineering (1) |
Fawcett et al. [150] | Trust | N | C | SCM | MG | H | 4 | 3 | 3 | D | D | - |
Lu et al. [128] | Service, Warehousing | P | C, M | L | L | H | 5 | 3 | 14 | D | D | - |
Oliveira et al. [140] | Business Analytics, Business Process | N | M | SCM | L | 5 | 13 | A | D | General (788) | ||
Trkman et al. [139] | Business Analytics, Business Process | N | M | SCM | L | 5 | 13 | A | D | General (788) | ||
Frick and Schubert [26] | Information System, Integration | O | M | SCM | CMM | T | 3 | - | - | D | D | - |
Meng et al. [151] | Construction, Relationship | N | M | SCM | MG | H | 4 | 8 | 24 | D + V | D | Construction (1) |
Mettler [123] | Information Technology, Relationship, Service | P | M | SCM | MG | H | 5 | 4 | 36 | D + I + V | D | Healthcare (15) |
Netland and Alfnes [165] | Supply Chain | P | M | SCM | L | H | 5 | 7 | 48 | D + V | D | General (11) |
Schubert and Legner [26] | Information Systems, Integration | O | C | SCM | MG | H | 5 | 3 | D + V | D | General (112) | |
Xing et al. [89] | Construction, Procurement | P | M | P | L | H | 5 | 6 | 14 | D + I + V | D | - |
Bauernschmitt and Conradie [107] | Knowledge, Service | N | M | SCM | MG | P | 4 | 12 | - | D + I | D | - |
Garcia Reyes and Giachetti [36] | Supply Chain | O | C, M | SCM | L | H | 5 | 2 | 10 | D + V | D | General (2) |
Niemi et al. [166] | Knowledge | P | M | SCM | MG | T | 5 | 4 | - | D + I + A | P | General (2) |
Söderberg and Bengtsson [112] | Supply Chain | N | M | SCM | L | H | 5 | 4 | - | A | D | Manufacturing (15) |
Lahti et al. [111] | Supply Chain | N | M | SCM | L | T | 4 | 5 | 16 | D | D | - |
Lin et al. [119] | Lean | P | M | SCM | F | T | 5 | 23 | 11 | D + I + V | D | Automotive (1) |
Lockamy et al. [11] | Business Process | N | M | SCM | L | H | 5 | 4 | - | V + A | P | General (18) |
McCormack et al. [110] | Supply Chain | N | M | SCM | L | H | 5 | 4 | - | V + A | D | General (478) |
Qiao and Zhao [167] | Logistics | O | C | L | T | 5 | 4 | 13 | D + I + V | D | Transportation (1) | |
Vaidyanathan and Howell [168] | Supply Chain | N | M | SCM | MG | T | 4 | 3 | - | D | D | - |
Zhao et al. [148] | Agile, Lean, Supply Chain | O | M | SCM | MG | H | 4 | D | D | - | ||
Fawcett and Magnan [108] | Supply Chain | N | M | SCM | MG | P | 4 | 2 | 10 | D | D | - |
Lockamy [35] | Business Process | N | M | SCM | MG | H | 5 | 4 | - | D | D | - |
Holland and Light [62] | ERP | O | M | S&OP | H | 3 | 5 | - | D + I + V | C | General (24) |
References
- Hansali, O.; Elrhanimi, S.; Elabbadi, L. Supply chain maturity models: A comparative review. LogForum 2022, 18, 435–450. [Google Scholar] [CrossRef]
- Ho, T.; Kumar, A.; Shiwakoti, N. Supply chain collaboration and performance: An empirical study of maturity model. SN Appl. Sci. 2020, 2, 726. [Google Scholar] [CrossRef]
- Trisnawati, N.; Pujawan, I.N. Analysis of supply chain performance based on the supply Chain management maturity level in manufacturing industry. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Sao Paulo, Brazil, 5–8 April 2021; pp. 2152–2161. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85121153235&partnerID=40&md5=fbdab1c9248ee601dada79fbfe87bfb1 (accessed on 7 November 2022).
- Souza, R.P.; Guerreiro, R.; Oliveira, M.P.V. Relationship between the maturity of supply chain process management and the organisational life cycle. Bus. Process Manag. J. 2015, 21, 466–481. [Google Scholar] [CrossRef]
- Estampe, D.; Lamouri, S.; Paris, J.-L.; Brahim-Djelloul, S. A framework for analysing supply chain performance evaluation models. Int. J. Prod. Econ. 2013, 142, 247–258. [Google Scholar] [CrossRef]
- Benmoussa, R.; Abdelkabir, C.; Abd, A.; Hassou, M. Capability/maturity based model for logistics processes assessment: Application to distribution processes. Int. J. Product. Perform. Manag. 2015, 64, 28–51. [Google Scholar] [CrossRef]
- Werner-Lewandowska, K.; Kosacka-Olejnik, M. Logistics maturity model for engineering management—Method proposal. Manag. Syst. Prod. Eng. 2019, 27, 33–39. [Google Scholar] [CrossRef]
- Caiado, R.G.G.; Scavarda, L.F.; Nascimento, D.L.M.; Ivson, P.; Cunha, V.H.C. A Maturity Model for Manufacturing 4.0 in Emerging Countries. In Operations Management for Social Good, Proceedings of the International Conference on Production and Operations Management Society, Rio de Janiero, Brazil, 10–12 December 2018; Leiras, A., Gonzalez-Calderon, C.A., de Brito Junior, I., Villa, S., Yoshizaki, H.T., Eds.; Springer Science and Business Media B.V.: Cham, Switzerland, 2020; pp. 393–402. [Google Scholar] [CrossRef]
- Hansali, O.; Elrhanimi, S.; El Abbadi, L. Evaluation of Sales and Operations Planning Process Using Maturity Models-Case Study. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Rome, Italy, 2–5 August 2021; pp. 1503–1513. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126215764&partnerID=40&md5=45286430d1e79ecfff21a6bf52da833e (accessed on 7 November 2022).
- Mendes, P., Jr.; Leal, J.E.; Thomé, A.M.T. A maturity model for demand-driven supply chains in the consumer product goods industry. Int. J. Prod. Econ. 2016, 179, 153–165. [Google Scholar] [CrossRef]
- Lockamy, A., III; Childerhouse, P.; Disney, S.M.; Towill, D.R.; McCormack, K. The impact of process maturity and uncertainty on supply chain performance: An empirical study. Int. J. Manuf. Technol. Manag. 2008, 15, 12–27. [Google Scholar] [CrossRef]
- Childerhouse, P.; Deakins, E.; Böhme, T.; Towill, D.R.; Disney, S.M.; Banomyong, R. Supply chain integration: An international comparison of maturity. Asia Pac. J. Mark. Logist. 2011, 23, 531–552. [Google Scholar] [CrossRef]
- Werner-Lewandowska, K. Logistics maturity of the polish service sector-research results. LogForum 2020, 16, 561–571. [Google Scholar] [CrossRef]
- Srai, J.S.; Alinaghian, L.S.; Kirkwood, D.A. Understanding sustainable supply network capabilities of multinationals: A capability maturity model approach. Proc. Inst. Mech. Eng. J. Eng. Manuf. 2013, 227, 595–615. [Google Scholar] [CrossRef]
- Mettler, T. Maturity assessment models: A design science research approach. Int. J. Soc. Syst. Sci. 2011, 3, 81. [Google Scholar] [CrossRef]
- Boullauazan, Y.; Sys, C.; Vanelslander, T. Developing and demonstrating a maturity model for smart ports. Marit. Policy Manag. 2022, 50, 447–465. [Google Scholar] [CrossRef]
- Wang, G.; Gunasekaran, A.; Ngai, E.W.T.; Papadopoulos, T. Big data analytics in logistics and supply chain management: Certain investigations for research and applications. Int. J. Prod. Econ. 2016, 176, 98–110. [Google Scholar] [CrossRef]
- Radosavljevic, M.; Barac, N.; Jankovic-Milic, V.; Andjelkovic, A. Supply chain management maturity assessment: Challenges of the enterprises in Serbia. J. Bus. Econ. Manag. 2016, 17, 848–864. [Google Scholar] [CrossRef]
- Klötzer, C.; Pflaum, A. Toward the development of a maturity model for digitalization within the manufacturing industry’s supply chain. In Proceedings of the 50th Annual Hawaii International Conference on System Sciences, HICSS 2017, Big Island, HI, USA, 1–7 January 2017; pp. 4210–4219. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85090854131&partnerID=40&md5=cad98c1d4d15f79aecea6102ce5b1bb0 (accessed on 7 November 2022).
- Werner-Lewandowska, K.; Kosacka-Olejnik, M. Logistics 4.0 maturity in service industry: Empirical research results. Procedia Manuf. 2019, 38, 1058–1065. [Google Scholar] [CrossRef]
- Werner-Lewandowska, K.; Golinska-Dawson, P. Sustainable Logistics Management Maturity—The Theoretical Assessment Framework and Empirical Results from Poland. Sustainability 2021, 13, 5102. [Google Scholar] [CrossRef]
- Zoubek, M.; Simon, M.; Poor, P. Overall Readiness of Logistics 4.0: A Comparative Study of Automotive, Manufacturing, and Electronics Industries in the West Bohemian Region (Czech Republic). Appl. Sci. 2022, 12, 7789. [Google Scholar] [CrossRef]
- Paulk, M.C.; Curtis, B.; Chrissis, M.B. Capability Maturity Model for Software; Carnegie Mellon University, Software Engineering Institute: Pittsburgh, PA, USA, 1991. [Google Scholar]
- Ho, D.; Kumar, A.; Shiwakoti, N. Maturity model for supply chain collaboration: CMMI approach. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Bali, Indonesia, 4–7 December 2016; pp. 845–849. [Google Scholar] [CrossRef]
- Poli, F.; Piermattei, L.; Schiraldi, M.M.; Spataro, C.; Uffreduzzi, S. Proposal of a framework for a Sustainability Maturity Model. In Proceedings of the XIX Summer School “Francesco Turco”, Senigallia, Italy, 9–12 September 2014; pp. 367–372. [Google Scholar]
- Frick, N.; Schubert, P. A maturity model for B2B integration (BIMM). In Proceedings of the 24th Bled eConference—eFuture: Creating Solutions for the Individual, Organisations and Society, Proceedings, Bled, Slovenia, 12–15 June 2011; pp. 465–477. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926020369&partnerID=40&md5=30414bc61b2e791382c561c3e44f003b (accessed on 7 November 2022).
- Barbalho, S.C.M.; Dantas, R.F. The effect of islands of improvement on the maturity models for industry 4.0: The implementation of an inventory management system in a beverage factory. Braz. J. Oper. Prod. Manag. 2021, 18, 1–17. [Google Scholar] [CrossRef]
- Peng, X.; Kurnia, S.; Cui, T. IT-Enabled Sustainable Supply Chain Management Capability Maturity. In Proceedings of the 54th Hawaii International Conference on System Sciences, Kauai, HI, USA, 5 January 2021; p. 4795. [Google Scholar]
- Zwetsloot, G.I.J.M.; van Middelaar, J.; van der Beek, D. Repeated assessment of process safety culture in major hazard industries in the Rotterdam region (Netherlands). J. Clean. Prod. 2020, 257, 120540. [Google Scholar] [CrossRef]
- Weerabahu, W.M.S.K.; Samaranayake, P.; Nakandala, D.; Hurriyet, H. Digital supply chain research trends: A systematic review and a maturity model for adoption. Benchmarking 2022. [Google Scholar] [CrossRef]
- Saari, L.; Järnefelt, V.; Valkokari, K.; Martins, J.T.; Acerbi, F. Towards Sustainable Manufacturing Through Collaborative Circular Economy Strategies. In Proceedings of the Working Conference on Virtual Enterprises, Saint-Étienne, France, 22–24 November 2021; pp. 362–373. [Google Scholar] [CrossRef]
- Wehner, J.; Taghavi Nejad Deilami, N.; Altuntas Vural, C.; Halldórsson, Á. Logistics service providers’ energy efficiency initiatives for environmental sustainability. Int. J. Logist. Manag. 2021, 33, 1–26. [Google Scholar] [CrossRef]
- De Bruin, T.; Rosemann, M.; Freeze, R.; Kaulkarni, U. Understanding the main phases of developing a maturity assessment model. In Proceedings of theAustralasian Conference on Information Systems (ACIS), Sydney, Australia, 29 November–2 December 2005; pp. 8–19. [Google Scholar]
- De Carolis, A.; Macchi, M.; Negri, E.; Terzi, S. A maturity model for assessing the digital readiness of manufacturing companies. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Hamburg, Germany, 3–7 September 2017; Springer New York LLC: New York, NY, USA, 2017; Volume 513, p. 20. [Google Scholar] [CrossRef]
- Lockamy, A., III; McCormack, K. The development of a supply chain management process maturity model using the concepts of business process orientation. Supply Chain Manag. Int. J. 2004, 9, 272–278. [Google Scholar] [CrossRef]
- Garcia Reyes, H.; Giachetti, R. Using experts to develop a supply chain maturity model in Mexico. Supply Chain Manag. Int. J. 2010, 15, 415–424. [Google Scholar] [CrossRef]
- Reefke, H.; Sundaram, D. Sustainable supply chain management: Decision models for transformation and maturity. Decis. Support Syst. 2018, 113, 56–72. [Google Scholar] [CrossRef]
- Vance, D.; Jin, M.; Price, C.; Nimbalkar, S.U.; Wenning, T. Smart manufacturing maturity models and their applicability: A review. J. Manuf. Technol. Manag. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Correia, E.; Carvalho, H.; Azevedo, S.; Govindan, K. Maturity Models in Supply Chain Sustainability: A Systematic Literature Review. Sustainability 2017, 9, 64. [Google Scholar] [CrossRef]
- Kosacka-Olejnik, M. Logistics maturity model in the service industry: State of art and research implications. LogForum 2020, 16, 261–269. [Google Scholar] [CrossRef]
- Hellweg, F.; Lechtenberg, S.; Hellingrath, B.; Thomé, A.M.T. Literature Review on Maturity Models for Digital Supply Chains. Braz. J. Oper. Prod. Manag. 2021, 18, 1–12. [Google Scholar] [CrossRef]
- Mittal, S.; Khan, M.A.; Romero, D.; Wuest, T. A critical review of smart manufacturing & Industry 4.0 maturity models: Implications for small and medium-sized enterprises (SMEs). J. Manuf. Syst. 2018, 49, 194–214. [Google Scholar]
- Bvuchete, M.; Grobbelaar, S.S.; van Eeden, J. A comparative review on supply chain maturity models. In Proceedings of the International Conference on Industrial Engineering and Operations Management Pretoria, Johannesburg, South Africa, 29 October–1 November2018; Volume 2018, pp. 1443–1454. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067183999&partnerID=40&md5=c9df9e09fab2f91387f7c0cd23026353 (accessed on 7 November 2022).
- Cheshmberah, M.; Beheshtikia, S. Supply chain management maturity: An all-encompassing literature review on models, dimensions and approaches. LogForum 2020, 16, 103–116. [Google Scholar] [CrossRef]
- Angreani, L.S.; Vijaya, A.; Wicaksono, H. Systematic Literature Review of Industry 4.0 Maturity Model for Manufacturing and Logistics Sectors. Procedia Manuf. 2020, 52, 337–343. [Google Scholar] [CrossRef]
- Pavan, R.O.; Ferreira-Marco, A.; Stefanelli, N.O.; Leal, G.C.L. Maturity models in SSCM: A systematic review aimed at consolidating models and outlining possibilities for future research. Benchmarking Int. J. 2022. [Google Scholar] [CrossRef]
- Kucińska-Landwójtowicz, A.; Czabak-Górska, I.D.; Domingues, P.; Sampaio, P.; Ferradaz de Carvalho, C. Organizational maturity models: The leading research fields and opportunities for further studies. Int. J. Qual. Reliab. Manag. 2023; ahead-of-print. [Google Scholar] [CrossRef]
- Ferraro, S.; Cantini, A.; Leoni, L.; De Carlo, F. Sustainable Logistics 4.0: A Study on Selecting the Best Technology for Internal Material Handling. Sustainability 2023, 15, 7067. [Google Scholar] [CrossRef]
- Mongeon, P.; Paul-Hus, A. The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics 2016, 106, 213–228. [Google Scholar] [CrossRef]
- Alfaro Santa Cruz, A.K.; Valverde Torres, F.H.; Ibanez, C.R. Sales and Operation Planning Model to Improve Inventory Management in Peruvian SMEs. In Proceedings of the 2019 8th International Conference on Industrial Technology and Management (ICITM), Cambridge, UK, 2–4 March 2019; pp. 65–68. [Google Scholar] [CrossRef]
- Jäger, A.; Bauer, J.; Hummel, V.; Sihn, W. LOPEC—Logistics personal excellence by continuous self-assessment. Procedia CIRP 2014, 25, 69–74. [Google Scholar] [CrossRef]
- Kraus, S.; Breier, M.; Lim, W.M.; Dabić, M.; Kumar, S.; Kanbach, D.; Mukherjee, D.; Corvello, V.; Piñeiro-Chousa, J.; Liguori, E.; et al. Literature reviews as independent studies: Guidelines for academic practice. Rev. Manag. Sci. 2022, 16, 2577–2595. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Ferraro, S.; De Carlo, F.; Cantini, A.; Leoni, L. Green Logistics for Heavy Equipment: A bibliometric analysis. In Proceedings of the XXVII Summer School “Francesco Turco”, Sanremo, Italy, 7–9 September 2022. [Google Scholar]
- Cantini, A.; Ferraro, S.; Leoni, L.; Tucci, M. Inventory centralization and decentralization in spare parts supply chain configuration: A bibliometric review. In Proceedings of the XXVII Summer School “Francesco Turco”, Sanremo, Italy, 7–9 September 2022. [Google Scholar]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social Media, San Jose, CA, USA, 17–20 May 2009; Volume 3, pp. 361–362. [Google Scholar]
- Sharma, R.; Gulati, S.; Kaur, A.; Sinhababu, A.; Chakravarty, R. Research discovery and visualization using ResearchRabbit: A use case of AI in libraries. COLLNET J. Scientometr. Inf. Manag. 2022, 16, 215–237. [Google Scholar] [CrossRef]
- Tripathi, M.; Kumar, S.; Sonker, S.K.; Babbar, P. Occurrence of author keywords and keywords plus in social sciences and humanities research: A preliminary study. COLLNET J. Scientometr. Inf. Manag. 2018, 12, 215–232. [Google Scholar] [CrossRef]
- Cobo, M.J.; López-Herrera, A.G.; Herrera-Viedma, E.; Herrera, F. An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field. J. Informetr. 2011, 5, 146–166. [Google Scholar] [CrossRef]
- Holland, C.P.; Light, B. A Stage Maturity Model for Enterprise Resource Planning Systems Use. Data Base Adv. Inf. Syst. 2001, 32, 34–45. [Google Scholar] [CrossRef]
- Bradford, S.C. Sources of information on specific subjects. Engineering 1934, 137, 85–86. [Google Scholar]
- Röglinger, M.; Pöppelbuß, J.; Becker, J. Maturity models in business process management. Bus. Process Manag. J. 2012, 18, 328–346. [Google Scholar] [CrossRef]
- Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. J. Clean. Prod. 2008, 16, 1699–1710. [Google Scholar] [CrossRef]
- Sharifi, A.; Simangan, D.; Kaneko, S. Three decades of research on climate change and peace: A bibliometrics analysis. Sustain. Sci. 2021, 16, 1079–1095. [Google Scholar] [CrossRef]
- Parlina, A.; Ramli, K.; Murfi, H. Theme mapping and bibliometrics analysis of one decade of big data research in the scopus database. Information 2020, 11, 69. [Google Scholar] [CrossRef]
- Çınar, Z.M.; Zeeshan, Q.; Korhan, O. A framework for industry 4.0 readiness and maturity of smart manufacturing enterprises: A case study. Sustainability 2021, 13, 6659. [Google Scholar] [CrossRef]
- Hongxiong, Y.; Xiaowen, X. Research on Computer Evaluation Index System of Digital Maturity of Automotive Supply Chain. In Proceedings of the 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA), Changchun, China, 25–27 February 2022; pp. 442–446. [Google Scholar] [CrossRef]
- Ehrensperger, R.; Sauerwein, C.; Breu, R. Toward a Maturity Model for Digital Business Ecosystems from an IT perspective. In Proceedings of the 2021 IEEE 25th International Enterprise Distributed Object Computing Conference (EDOC), Gold Coast, Australia, 25–29 October 2021; pp. 11–20. [Google Scholar] [CrossRef]
- Sun, X.; Yu, H.; Solvang, W.D.; Wang, Y.; Wang, K. The application of Industry 4.0 technologies in sustainable logistics: A systematic literature review (2012–2020) to explore future research opportunities. Environ. Sci. Pollut. Res. 2022, 29, 9560–9591. [Google Scholar] [CrossRef] [PubMed]
- Kohlegger, M.; Maier, R.; Thalmann, S. Understanding Maturity Models. In Results of a Structured Content Analysis. In Proceedings of the I-KNOW ’09 and I-SEMANTICS ’09, Graz, Austria, 2–4 September 2009. [Google Scholar]
- Kayikci, Y.; Kazancoglu, Y.; Gozacan-Chase, N.; Lafci, C.; Batista, L. Assessing smart circular supply chain readiness and maturity level of small and medium-sized enterprises. J. Bus. Res. 2022, 149, 375–392. [Google Scholar] [CrossRef]
- Ellefsen, A.P.T.; Oleśków-Szłapka, J.; Pawłowski, G.; Toboła, A. Striving for excellence in ai implementation: Ai maturity model framework and preliminary research results. LogForum 2019, 15, 363–376. [Google Scholar] [CrossRef]
- Arunachalam, D.; Kumar, N.; Kawalek, J.P. Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice. Transp. Res. Part E Logist. Transp. Rev. 2018, 114, 416–436. [Google Scholar] [CrossRef]
- Uraipan, N.; Praneetpolgrang, P.; Manisri, T. Application of a fuzzy analytic hierarchy process to select the level of a cyber resilient capability maturity model in digital supply chain systems. ECTI Trans. Comput. Inf. Technol. 2021, 15, 198–207. [Google Scholar] [CrossRef]
- Fischer, J.-H.; Thomé, A.M.T.; Scavarda, L.F.; Hellingrath, B.; Martins, R. Development and Application of a Maturity Measurement Framework for Supply Chain Flexibility. Procedia CIRP 2016, 41, 514–519. [Google Scholar] [CrossRef]
- Santos, I.M.; Mota, C.M.M.; Alencar, L.H. The strategic alignment between supply chain process management maturity model and competitive strategy. Bus. Process Manag. J. 2021, 27, 742–778. [Google Scholar] [CrossRef]
- Lookman, K.; Pujawan, N.; Nadlifatin, R. Measuring innovative capability maturity model of trucking companies in Indonesia. Cogent Bus. Manag. 2022, 9, 2094854. [Google Scholar] [CrossRef]
- Frederico, G.F.; Garza-Reyes, J.A.; Anosike, A.; Kumar, V. Supply Chain 4.0: Concepts, maturity and research agenda. Supply Chain Manag. 2020, 25, 262–282. [Google Scholar] [CrossRef]
- Büyüközkan, G.; Güler, M.; Mukul, E. Evaluation of supply chain analytics maturity level with a hesitant fuzzy MCDM technique. In Proceedings of the International Conference on Intelligent and Fuzzy Systems, Istanbul, Turkey, 23–25 July 2019; Volume 1029, p. 1084. [Google Scholar] [CrossRef]
- Modica, T.; Colicchia, C.; Tappia, E.; Melacini, M. Empowering freight transportation through Logistics 4.0: A maturity model for value creation. Prod. Plan. Control 2021, 34, 1149–1164. [Google Scholar] [CrossRef]
- Zoubek, M.; Simon, M. A framework for a logistics 4.0 maturity model with a specification for internal logistics. MM Sci. J. 2021, 2021, 4264–4274. [Google Scholar] [CrossRef]
- Marco-Ferreira, A.; Jabbour, C.J.C. Relating maturity levels in environmental management by adopting Green Supply Chain Management practices: Theoretical convergence and multiple case study. Gestao E Prod. 2019, 26, 1–17. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Jabbour, C.J.C.; de Sousa Jabbour, A.B.L. Maturity levels of material cycles and waste management in a context of green supply chain management: An innovative framework and its application to Brazilian cases. J. Mater. Cycles Waste Manag. 2017, 19, 516–525. [Google Scholar] [CrossRef]
- Deniaud, I.; Marmier, F.; Michalak, J.-L. 4.0 Transition Methodology for Sustainable Supply Chain Management. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Nantes, France, 5–9 September 2021; Volume 634, p. 633. [Google Scholar] [CrossRef]
- Gunduz, M.A.; Demir, S.; Paksoy, T. Matching functions of supply chain management with smart and sustainable Tools: A novel hybrid BWM-QFD based method. Comput. Ind. Eng. 2021, 162, 107676. [Google Scholar] [CrossRef]
- Machado, C.G.; Pinheiro de Lima, E.; Gouvea da Costa, S.E.; Angelis, J.J.; Mattioda, R.A. Framing maturity based on sustainable operations management principles. Int. J. Prod. Econ. 2017, 190, 3–21. [Google Scholar] [CrossRef]
- Xing, X.; Versendaal, J.; Van Den Akker, M.; De Bevere, B. Maturity of operational procurement in the construction industry: A business/IT-alignment perspective. In Proceedings of the 24th Bled eConference—eFuture: Creating Solutions for the Individual, Organisations and Society, Bled, Slovenia, 12–15 June 2011; pp. 373–386. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84926058676&partnerID=40&md5=d0b25b57faebfd8f2680f42221cb4258 (accessed on 7 November 2022).
- Behrendt, F.; Lehner, O.; Rettmann, A.; Schmidtke, N.; Wollert, T. Process analysis of a teaching and learning factory environment to demonstrate Industry 4.0 solutions by using the Smart Logistics Zone approach. In Proceedings of the 2022 IEEE 6th International Conference on Logistics Operations Management (GOL), Strasbourg, France, 29 June 2022–1 July 2022. [Google Scholar]
- Márquez-Gutiérrez, M.; Carmona-Gonzalez, G.; Castro-Zuluaga, C. A logistic process immaturity model proposal. Found. Manag. 2020, 12, 61–70. [Google Scholar] [CrossRef]
- Peukert, S.; Treber, S.; Balz, S.; Haefner, B.; Lanza, G. Process model for the successful implementation and demonstration of SME-based industry 4.0 showcases in global production networks. Prod. Eng. 2020, 14, 275–288. [Google Scholar] [CrossRef]
- Chalmeta, R.; Barqueros-muñoz, J.-E. Using big data for sustainability in supply chain management. Sustainability 2021, 13, 7004. [Google Scholar] [CrossRef]
- Salvadó, L.L.; Lauras, M.; Comes, T. A Sustainability maturity assessment method for the humanitarian supply chain. In Proceedings of the 15th International Conference on Information Systems for Crisis Response and Management, ISCRAM 2018, Rochester, NY, USA, 20–23 May 2018; pp. 277–290. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060700090&partnerID=40&md5=78145e139227bf1c874414f65a05bac8 (accessed on 7 November 2022).
- Unny, R.B.; Lal, B. Blockchain in Supply Chain Management: A Review of the Capability Maturity Model. In Proceedings of the International Working Conference on Transfer and Diffusion of IT, Tiruchirappalli, India, 18–19 December 2020; Volume 617, p. 158. [Google Scholar] [CrossRef]
- Johansen, J.B.; Jensen, P.A.; Thuesen, C. Maturity model for strategic collaboration in sustainable building renovation. In Proceedings of the 33rd Annual Association of Researchers in Construction Management Conference, ARCOM 2017, Cambridge, UK, 4–6 September 2017; pp. 259–268. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85035315032&partnerID=40&md5=886b995248503b82bd2a2ee13959602e (accessed on 7 November 2022).
- Stiles, S.; Ryan, B.; Golightly, D. Readiness to Change: Perceptions of Safety Culture up and down the Supply Chain. In Proceedings of the Congress of the International Ergonomics Association, Florence, Italy, 26–30 August 2018; Volume 819, p. 223. [Google Scholar] [CrossRef]
- Reefke, H.; Ahmed, M.D.; Sundaram, D. Sustainable supply chain management—Decision making and support: The SSCM maturity model and system. Glob. Bus. Rev. 2014, 15, 1S–12S. [Google Scholar] [CrossRef]
- Correia, E.; Garrido-Azevedo, S.; Carvalho, H. Supply Chain Sustainability: A Model to Assess the Maturity Level. Systems 2023, 11, 98. [Google Scholar] [CrossRef]
- Soares, G.P.; Tortorella, G.; Bouzon, M.; Tavana, M. A fuzzy maturity-based method for lean supply chain management assessment. Int. J. Lean Six Sigma 2021, 12, 1017–1045. [Google Scholar] [CrossRef]
- Uhrenholt, J.N.; Kristensen, J.H.; Rincón, M.C.; Adamsen, S.; Jensen, S.F.; Waehrens, B.V. Maturity Model as a Driver for Circular Economy Transformation. Sustainability 2022, 14, 7483. [Google Scholar] [CrossRef]
- Stachowiak, A.; Adamczak, M.; Hadas, L.; Domański, R.; Cyplik, P. Knowledge absorption capacity as a factor for increasing logistics 4.0 maturity. Appl. Sci. 2019, 9, 5365. [Google Scholar] [CrossRef]
- Grest, M.; Lauras, M.; Montreuil, B. A humanitarian supply chain maturity model. In Proceedings of the 17th Annual International Conference on Information Systems for Crisis Response and Management, ISCRAM, 2020, Blacksburg, VA, USA, 23 May 2021; pp. 613–621. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85120920186&partnerID=40&md5=3ac7ca91b080c3bc9c7b3531dc4c7158 (accessed on 7 November 2022).
- Bui, L.T.C.; Carvalho, M.; Pham, H.T.; Nguyen, T.T.B.; Duong, A.T.B.; Truong Quang, H. Supply chain quality management 4.0: Conceptual and maturity frameworks. Int. J. Qual. Reliab. Manag. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Cavalcante de Souza Feitosa, I.S.; Ribeiro Carpinetti, L.C.; de Almeida-Filho, A.T. A supply chain risk management maturity model and a multi-criteria classification approach. Benchmarking 2021, 28, 2636–2655. [Google Scholar] [CrossRef]
- Rendon, R.G. Benchmarking contract management process maturity: A case study of the US Navy. Benchmarking 2015, 22, 1481–1508. [Google Scholar] [CrossRef]
- Bauernschmitt, E.; Conradie, W. Investigation into current supply chain practices at a private healthcare provider in South Africa. In Proceedings of the European Conference on Knowledge Management, Vila Nova de Famalicao, Portugal, 2–3 September 2010; pp. 54–64. [Google Scholar]
- Fawcett, S.E.; Magnan, G.M. Ten guiding principles for high-impact SCM. Bus. Horiz. 2004, 47, 67–74. [Google Scholar] [CrossRef]
- Caiado, R.G.G.; Scavarda, L.F.; Gavião, L.O.; Ivson, P.; Nascimento, D.L.D.M.; Garza-Reyes, J.A. A fuzzy rule-based industry 4.0 maturity model for operations and supply chain management. Int. J. Prod. Econ. 2021, 231, 107883. [Google Scholar] [CrossRef]
- McCormack, K.; Ladeira, M.B.; Valadares De Oliveira, M.P. Supply chain maturity and performance in Brazil. Supply Chain Manag. 2008, 13, 272–282. [Google Scholar] [CrossRef]
- Lahti, M.; Shamsuzzoha, A.H.M.; Helo, P. Developing a maturity model for Supply Chain Management. Int. J. Logist. Syst. Manag. 2009, 5, 654–678. [Google Scholar] [CrossRef]
- Söderberg, L.; Bengtsson, L. Supply chain management maturity and performance in SMEs. Oper. Manag. Res. 2010, 3, 90–97. [Google Scholar] [CrossRef]
- Battista, C.; Schiraldi, M.M. The logistic maturity model: Application to a fashion company. Int. J. Eng. Bus. Manag. 2013, 5, 5–29. [Google Scholar] [CrossRef]
- Werner-Lewandowska, K.; Kosacka-Olejnik, M. Logistics maturity model for service company—Theoretical background. Procedia Manuf. 2018, 17, 791–802. [Google Scholar] [CrossRef]
- Fraser, P.; Moultrie, J.; Gregory, M. The use of maturity models/grids as a tool in assessing product development capability. In Proceedings of the IEEE International Engineering Management Conference, Cambridge, UK, 18–20 August 2002; Volume 1, pp. 244–249. [Google Scholar] [CrossRef]
- Oleśków-Szłapka, J.; Wojciechowski, H.; Domański, R.; Pawłowski, G. Logistics 4.0 Maturity Levels Assessed Based on GDM (Grey Decision Model) and Artificial Intelligence in Logistics 4.0-Trends and Future Perspective. Procedia Manuf. 2019, 39, 1734–1742. [Google Scholar] [CrossRef]
- Uhlenkamp, J.-F.; Hauge, J.B.; Broda, E.; Lutjen, M.; Freitag, M.; Thoben, K.-D. Digital Twins: A Maturity Model for Their Classification and Evaluation. IEEE Access 2022, 10, 69605–69635. [Google Scholar] [CrossRef]
- Asdecker, B.; Felch, V. Development of an Industry 4.0 maturity model for the delivery process in supply chains. J. Model. Manag. 2018, 13, 840–883. [Google Scholar] [CrossRef]
- Lin, L.-C.; Li, T.-S.; Kiang, J.P. A continual improvement framework with integration of CMMI and six-sigma model for auto industry. Qual. Reliab. Eng. Int. 2009, 25, 551–569. [Google Scholar] [CrossRef]
- Werner-Lewandowska, K.; Kosacka-Olejnik, M. How to improve logistics maturity?—A roadmap proposal for the service industry. Procedia Manuf. 2020, 51, 1650–1656. [Google Scholar] [CrossRef]
- Cubo, C.; Oliveira, R.; Fernandes, A.C.; Sampaio, P.; Carvalho, M.S.; Afonso, P.S. An innovative maturity model to assess supply chain quality management. Int. J. Qual. Reliab. Manag. 2021, 40, 103–123. [Google Scholar] [CrossRef]
- Fernandes, A.C.; Oliveira, R.; Cubo, C.; Sampaio, P.; Carvalho, M.S.; Afonso, P.; Roque, J.; Rebelo, M.; Brandão, J. Towards an approach to assess Supply Chain Quality Management maturity. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; pp. 1445–1449. [Google Scholar] [CrossRef]
- Mettler, T. Transformation of the hospital supply chain: How to measure the maturity of supplier relationship management systems in hospitals? Int. J. Healthc. Inf. Syst. Inform. 2011, 6, 1–13. [Google Scholar] [CrossRef]
- Bueno, A.F.; Alencar, L.H. The maturity of rail freight Logistics Service Providers in Brazil. Producao 2016, 26, 359–372. [Google Scholar] [CrossRef]
- Balouei Jamkhaneh, H.; Safaei Ghadikolaei, A.H. Measuring the maturity of service supply chain process: A new framework. Int. J. Product. Perform. Manag. 2022, 71, 245–288. [Google Scholar] [CrossRef]
- Wijbenga, H.S.; van Fenema, P.C.; Faber, N. Diagnosing recurrent logistics problems: A combined SCM disciplines and maturity perspective. Supply Chain Manag. 2021, 28, 122–139. [Google Scholar] [CrossRef]
- Bastas, A.; Liyanage, K. Setting a framework for organisational sustainable development. Sustain. Prod. Consum. 2019, 20, 207–229. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, W.; Zhang, W.; Zhang, X. Armored materiel warehouse logistics capability maturity model based on ANN. In Proceedings of the 2012 IEEE Symposium on Electrical & Electronics Engineering (EEESYM), Kuala Lumpur, Malaysia, 24–27 June 2012; pp. 144–147. [Google Scholar] [CrossRef]
- Gaur, L.; Ramakrishnan, R. Developing internet of things maturity model (IoT-MM) for manufacturing. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 2473–2479. [Google Scholar] [CrossRef]
- Wagire, A.A.; Joshi, R.; Rathore, A.P.S.; Jain, R. Development of maturity model for assessing the implementation of Industry 4.0: Learning from theory and practice. Prod. Plan. Control 2021, 32, 603–622. [Google Scholar] [CrossRef]
- Okongwu, U.; Morimoto, R.; Lauras, M. The maturity of supply chain sustainability disclosure from a continuous improvement perspective. Int. J. Product. Perform. Manag. 2013, 62, 827–855. [Google Scholar] [CrossRef]
- Hajoary, P.K.; Balachandra, P.; Garza-Reyes, J.A. Industry 4.0 maturity and readiness assessment: An empirical validation using Confirmatory Composite Analysis. Prod. Plan. Control 2023, 1–18. [Google Scholar] [CrossRef]
- Gustafsson, E.; Jonsson, P.; Holmström, J. Digital product fitting in retail supply chains: Maturity levels and potential outcomes. Supply Chain Manag. 2019, 24, 574–589. [Google Scholar] [CrossRef]
- Siebelink, S.; Voordijk, J.T.; Adriaanse, A. Developing and Testing a Tool to Evaluate BIM Maturity: Sectoral Analysis in the Dutch Construction Industry. J. Constr. Eng. Manag. 2018, 144, 05018007. [Google Scholar] [CrossRef]
- Beelaerts van Blokland, W.; van de Koppel, S.; Lodewijks, G.; Breen, W. Method for performance measurement of car companies from a stability-value leverage perspective: The balancing act between investment in R&D, supply chain configuration and value creation. Int. J. Lean Six Sigma 2019, 10, 411–434. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Handfield, R.B. Measuring the benefits of erp on supply management maturity model: A “big data” method. Int. J. Oper. Prod. Manag. 2015, 35, 2–25. [Google Scholar] [CrossRef]
- Tetik, M.; Peltokorpi, A.; Seppänen, O.; Holmström, J. Defining the Maturity Levels for Implementing Industrial Logistics Practices in Construction. Front. Built Environ. 2022, 7, 740086. Available online: https://www.frontiersin.org/articles/10.3389/fbuil.2021.740086 (accessed on 7 November 2022). [CrossRef]
- Krowas, K.; Riedel, R. Planning Guideline and Maturity Model for Intra-logistics 4.0 in SME. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Austin, TX, USA, 1–5 September 2019; pp. 331–338. [Google Scholar] [CrossRef]
- Trkman, P.; Bronzo Ladeira, M.; De Oliveira, M.P.V.; McCormack, K. Business analytics, process maturity and supply chain performance. In Proceedings of the International Conference on Business Process Management, Clermont-Ferrand, France, 29 August 2011; Volume 99, p. 122. [Google Scholar]
- Oliveira, M.P.V.D.; McCormack, K.; Trkman, P. Business analytics in supply chains—The contingent effect of business process maturity. Expert Syst. Appl. 2012, 39, 5488–5498. [Google Scholar] [CrossRef]
- Yigit Ozkan, B.; Spruit, M.; Wondolleck, R.; Burriel Coll, V. Modelling adaptive information security for SMEs in a cluster. J. Intellect. Cap. 2020, 21, 235–256. [Google Scholar] [CrossRef]
- Batista, L.; Dora, M.; Toth, J.; Molnár, A.; Malekpoor, H.; Kumari, S. Knowledge management for food supply chain synergies–a maturity level analysis of SME companies. Prod. Plan. Control 2019, 30, 995–1004. [Google Scholar] [CrossRef]
- Yahiaoui, S.; Fedouaki, F.; Mouchtachi, A. A supply chain maturity model for automotive SMEs: A case study. IFAC-PapersOnLine 2019, 52, 2044–2049. [Google Scholar] [CrossRef]
- Peña Orozco, D.L.; Gonzalez-Feliu, J.; Rivera, L.; Mejía Ramirez, C.A. Integration maturity analysis for a small citrus producers’ supply chain in a developing country. Bus. Process Manag. J. 2021, 27, 836–867. [Google Scholar] [CrossRef]
- Phaal, R.; Muller, G. An architectural framework for roadmapping: Towards visual strategy. Technol. Forecast. Soc. Change 2009, 76, 39–49. [Google Scholar] [CrossRef]
- dos Santos-Neto, J.B.S.; Costa, A.P.C.S. Enterprise maturity models: A systematic literature review. Enterp. Inf. Syst. 2019, 13, 719–769. [Google Scholar] [CrossRef]
- Olejnik, M.K.; Werner-Lewandowska, K. The Reverse Logistics Maturity Model: How to determine reverse logistics maturity profile?—Method proposal. Procedia Manuf. 2018, 17, 1112–1119. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, L.; Liu, X.; Sun, J. A new Supply Chain Maturity Model with 3-dimension perspective. In Proceedings of the 2006 International Technology and Innovation Conference (ITIC 2006), Hangzhou, China, 6–7 November 2006; pp. 1732–1737. [Google Scholar]
- Oliva, F.L. A maturity model for enterprise risk management. Int. J. Prod. Econ. 2016, 173, 66–79. [Google Scholar] [CrossRef]
- Fawcett, S.E.; Jones, S.L.; Fawcett, A.M. Supply chain trust: The catalyst for collaborative innovation. Bus. Horiz. 2012, 55, 163–178. [Google Scholar] [CrossRef]
- Meng, X.; Sun, M.; Jones, M. Maturity model for supply chain relationships in construction. J. Manag. Eng. 2011, 27, 97–105. [Google Scholar] [CrossRef]
- Boyson, S. Cyber supply chain risk management: Revolutionizing the strategic control of critical IT systems. Technovation 2014, 34, 342–353. [Google Scholar] [CrossRef]
- Foerstl, K.; Hartmann, E.; Wynstra, F.; Moser, R. Cross-functional integration and functional coordination in purchasing and supply management: Antecedents and effects on purchasing and firm performance. Int. J. Oper. Prod. Manag. 2013, 33, 689–721. [Google Scholar] [CrossRef]
- Demir, S.; Gunduz, M.A.; Kayikci, Y.; Paksoy, T. Readiness and Maturity of Smart and Sustainable Supply Chains: A Model Proposal. Eng. Manag. J. 2023, 35, 181–206. [Google Scholar] [CrossRef]
- Hellweg, F.; Janhofer, D.; Hellingrath, B. Towards a Maturity Model for Digital Supply Chains. Logist. Res. 2023, 16, 76–110. [Google Scholar] [CrossRef]
- Pereira, G.R.B.; Guimarães, L.G.d.A.; Cimon, Y.; Da Silva Barreto, L.K.; Hermann Nodari, C. Conceptual Model for Assessing Logistics Maturity in Smart City Dimensions. Adm. Sci. 2023, 13, 114. [Google Scholar] [CrossRef]
- Tiss, S.; Orellano, M. A Maturity Model of Digital Transformation in Supply Chains: A Multi-dimensional Approach. In Proceedings of the 2023 27th International Conference on Information Technology (IT), Zabljak, Montenegro, 15–18 February 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Gallego-García, S.; Groten, M.; Halstrick, J. Integration of Improvement Strategies and Industry 4.0 Technologies in a Dynamic Evaluation Model for Target-Oriented Optimization. Appl. Sci. 2022, 12, 1530. [Google Scholar] [CrossRef]
- Oleśków-Szłapka, J.; Stachowiak, A. The framework of logistics 4.0 maturity model. Adv. Intell. Syst. Comput. 2019, 835, 771–781. [Google Scholar] [CrossRef]
- Razik, M.; Radi, B.; Okar, C. Maturity of the Warehousing function in Moroccan companies: A case study. In Proceedings of the International Workshop on Transportation and Supply Chain Engineering (IWTSCE’16), Rabat, Morocco, 29–30 November 2016; Volume 105. [Google Scholar] [CrossRef]
- Umeda, S. A system maturity model for supply chain management. In Proceedings of the IFIP International Conference on Advances in Production Management Systems, Hamburg, Germany, 3–7 September 2017; Volume 514, p. 10. [Google Scholar] [CrossRef]
- Hermans, M.; Volker, L.; Eisma, P. A public commissioning maturity model for construction clients. In Proceedings of the 30th Annual Association of Researchers in Construction Management Conference, ARCOM 2014, Portsmouth, UK, 1–3 September 2014; pp. 1305–1314. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84911428735&partnerID=40&md5=dd052b689a039a7ad8d5b2545a2b389a (accessed on 7 November 2022).
- Cuenca, L.; Boza, A.; Alemany, M.M.E.; Trienekens, J.J.M. Structural elements of coordination mechanisms in collaborative planning processes and their assessment through maturity models: Application to a ceramic tile company. Comput. Ind. 2013, 64, 898–911. [Google Scholar] [CrossRef]
- Jin, Y.H.; Fawcett, A.M.; Fawcett, S.E. Awareness is not enough: Commitment and performance implications of supply chain integration. Int. J. Phys. Distrib. Logist. Manag. 2013, 43, 205–230. [Google Scholar] [CrossRef]
- Netland, T.H.; Alfnes, E. Proposing a quick best practice maturity test for supply chain operations. Meas. Bus. Excell. 2011, 15, 66–76. [Google Scholar] [CrossRef]
- Niemi, P.; Huiskonen, J.; Kärkkäinen, H. Supply chain development as a knowledge development task. Int. J. Netw. Virtual Organ. 2010, 7, 132–149. [Google Scholar] [CrossRef]
- Qiao, H.; Zhao, Q. Research on third party logistics service capability maturity model. In Proceedings of the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics, Beijing, China, 12–15 October 2008; Volume 2, pp. 2858–2861. [Google Scholar] [CrossRef]
- Vaidyanathan, K.; Howell, G. Construction supply chain maturity model—Conceptual framework. In Proceedings of the 15th Annual Conference of the International Group for Lean Construction IGLC 15, East Lansing, MI, USA, 18–20 July 2007; pp. 170–180. Available online: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84866090147&partnerID=40&md5=16d7bea0141c83b893128efcb7e45c21 (accessed on 7 November 2022).
Paper | Research Method | Content Sample | Review Focus | |||
---|---|---|---|---|---|---|
Bibliometric Analysis | Content Analysis | Comparative Analysis | Horizon | Size | ||
Kucińska-Landwójtowicz et al. (2023) [47] | X | 1980–2019 | 597 | Organizational Maturity | ||
Vance et al. (2023) [38] | X | 2013–2022 | 19 | Smart Manufacturing | ||
Pavan et al. (2022) [46] | X | X | 2013–2021 | 19 | Sustainable Supply Chain Management | |
Hansali et al. (2022) [1] | X | 1989–2021 | 49 | Supply Chain | ||
Hellweng et al. (2021) [41] | X | 2014–2019 | 28 | Digital Supply Chain | ||
Angreani et al. (2020) [45] | X | X | 2011–2019 | 17 | Industry 4.0 for manufacturing and logistics | |
Kosacka-Olejnik (2020) [40] | X | 2010–2016 | 11 | Logistics in the service industry | ||
Cheshmberah and Beheshtikia (2020) [44] | X | 1995–2019 | 28 | Supply Chain Management | ||
Bvuchete et al. (2018) [43] | X | 1989–2016 | 13 | Supply Chain | ||
Mittal et al. (2018) [42] | X | 2015–2018 | 15 | Smart Manufacturing and Industry 4.0 | ||
Correia et al. (2017) [39] | X | 2006–2015 | 11 | Sustainable Supply Chain |
Criteria | Sub-Criteria | Analysis |
---|---|---|
Paper identification | Publication year | Time series analysis |
Source type | Source analysis | |
Publication country | Geographical distribution analysis | |
Authors | Authors analysis and citation analysis | |
Keywords | Keywords analysis | |
Scope | Domain | Technologies, operations, green, safety, attributes, other |
Supply Chain Level | Organization, process, network | |
Type of Maturity | Maturity, capability, readiness, diffusion, transformation | |
Process | Supply chain management, logistics, manufacturing, procurement, sales and operation planning | |
Design | Assessment Tool | Framework, CMM-based, Likert-like questionnaire, Maturity grid |
Design Process | Theory-driven, practitioner-based, mixed approach | |
Architecture | Number of levels, dimensions, and sub-dimensions | |
Application | Phase | Integration, design, validation, application |
Purpose | Descriptive, comparative, prescriptive | |
Sector | Number of evaluations per sector |
Operation/SC Level | Organization | Process | Network | Total |
---|---|---|---|---|
Supply Chain | 32 | 19 | 28 | 79 |
Logistics | 20 | 14 | 2 | 36 |
Manufacturing | 7 | 4 | 2 | 13 |
Sales and Operation Planning | 1 | 1 | 1 | 3 |
Operations Management | 1 | - | - | 1 |
Procurement | - | 1 | - | 1 |
General | 3 | - | 2 | 5 |
Total | 64 | 39 | 34 |
Assessment Tool/Design Process | Theory-Driven | Practitioner-Based | Mixed | Other | Total |
---|---|---|---|---|---|
Maturity grid | 24 | 2 | 23 | 1 | 50 |
Likert-like questionnaire | 20 | 2 | 38 | 3 | 63 |
Framework | 3 | - | - | - | 3 |
CMM | 3 | - | 3 | - | 6 |
Roadmap | - | - | - | 1 | 1 |
Other | 2 | - | - | 1 | 3 |
Total | 52 | 4 | 58 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraro, S.; Leoni, L.; Cantini, A.; De Carlo, F. Trends and Recommendations for Enhancing Maturity Models in Supply Chain Management and Logistics. Appl. Sci. 2023, 13, 9724. https://doi.org/10.3390/app13179724
Ferraro S, Leoni L, Cantini A, De Carlo F. Trends and Recommendations for Enhancing Maturity Models in Supply Chain Management and Logistics. Applied Sciences. 2023; 13(17):9724. https://doi.org/10.3390/app13179724
Chicago/Turabian StyleFerraro, Saverio, Leonardo Leoni, Alessandra Cantini, and Filippo De Carlo. 2023. "Trends and Recommendations for Enhancing Maturity Models in Supply Chain Management and Logistics" Applied Sciences 13, no. 17: 9724. https://doi.org/10.3390/app13179724
APA StyleFerraro, S., Leoni, L., Cantini, A., & De Carlo, F. (2023). Trends and Recommendations for Enhancing Maturity Models in Supply Chain Management and Logistics. Applied Sciences, 13(17), 9724. https://doi.org/10.3390/app13179724