Unveiling the Potential of Unexplored Winery By-Products from the Dão Region: Phenolic Composition, Antioxidants, and Antimicrobial Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Products
2.2. Sampling
2.3. Extracts Preparation for Phenolic Content Determination and for Antioxidant Capacity Evaluation
2.4. Extracts Preparation for Antimicrobial Activity Analysis
2.5. Determination of Phenolic Content
2.6. Determination of Antioxidant Capacity
2.7. Bacterial Isolates
2.8. Antimicrobial Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Total Phenols, Ortho-Diphenols, Flavonoids Content and Antioxidant Capacity
3.2. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Galanakis, C.M. Food Waste Recovery: Processing Technologies, Industrial Techniques, and Applications; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Strazza, C.; Magrassi, F.; Gallo, M.; del Borghi, A. Life Cycle Assessment from food to food: A case study of circular economy from cruise ships to aquaculture. Sustain. Prod. Consum. 2015, 2, 40–51. [Google Scholar] [CrossRef]
- Coelho, M.C.; Pereira, R.N.; Rodrigues, A.S.; Teixeira, J.A.; Pintado, M.E. The use of emergent technologies to extract added value compounds from grape by-products. Trends Food Sci. Technol. 2020, 106, 182–197. [Google Scholar] [CrossRef]
- Eusébio, A.; Mateus, M.; Baeta-Hall, L.; Almeida-Vara, E.; Duarte, J.C. Microflora evaluation of two agro-industrial effluents treated by the JACTO jet-loop type reactor system. Water Sci. Technol. 2005, 51, 107–112. [Google Scholar] [CrossRef]
- Oliveira, M.; Queda, C.; Duarte, E. Aerobic treatment of winery wastewater with the aim of water reuse. Water Sci. Technol. 2009, 60, 1217–1223. [Google Scholar] [CrossRef]
- Souquet, J.-M.; Labarbe, B.; Le Guernevé, C.; Chynier, V.; Moutounet, M. Phenolic Composition of Grape Stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [Google Scholar] [CrossRef]
- Ruíz-Moreno, M.J.; Raposo, R.; Cayuela, J.M.; Zafrilla, P.; Pineiro, Z.; Moreno-Rojas, J.M.; Mulero, J.; Puertas, B.; Giron, F.; Guerrero, R.F.; et al. Valorization of grape stems. Ind. Crops Prod. 2015, 63, 152–157. [Google Scholar] [CrossRef]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Ahmad, B.; Yadav, V.; Yadav, A.; Rahman, M.U.; Yuan, W.Z.; Li, Z.; Wang, X. Integrated biorefinery approach to valorize winery waste: A review from waste to energy perspectives. Sci. Total Environ. 2020, 719, 137315. [Google Scholar] [CrossRef]
- Cheng, V.J.; Bekhit, A.E.D.A.; McConnell, M.; Mros, S.; Zhao, J. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 2012, 134, 474–482. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Res. Int. 2014, 65, 375–384. [Google Scholar] [CrossRef]
- Noreen, H.; Semmar, N.; Farman, M.; McCullagh, J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2017, 10, 792–801. [Google Scholar] [CrossRef]
- Strabil, P.; Klejdus, B.; Kubán, V. Determination of total phenolic compounds and their antioxidant activityin vegetables—Evaluation of spectrophotometric methods J. Agric. Food Chem. 2006, 54, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Dias, C.; Domínguez-Perles, R.; Aires, A.; Teixeira, A.; Rosa, E.; Barros, A.; Saavedra, M.J. Phytochemistry and activity against digestive pathogens of grape (Vitis vinifera L.) stem’s (poly)phenolic extracts. LWT-Food Sci. Technol. 2015, 61, 25–32. [Google Scholar] [CrossRef]
- Machado, N.F.L.; Domínguez-Perles, R. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 2017, 22, 286. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Machado, N.; Carvalho, T.; Almeida, J.M.M.; Barros, A.I.R.N.A. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages. Talanta 2015, 132, 829–835. [Google Scholar] [CrossRef]
- Queiroz, M.; Oppolzer, D.; Gouvinhas, I.; Silva, A.M.; Barros, A.I.R.N.A.; Domínguez-Perles, R. New grape stems’ isolated phenolic compounds modulate reactive oxygen species, glutathione, and lipid peroxidation in vitro: Combined formulations with vitamins C and E. Fitoterapia 2017, 120, 146–157. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. BioMed 2020, 11, 405. [Google Scholar] [CrossRef] [PubMed]
- Galaon, T.; Banciu, A.; Chiriac, F.; Nita-Lazar, M. Biodegradation of Antibiotics: The Balance between Good and Bad. Rom. J. Ecol. Environm. Chem. 2019, 1, 16–25. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef]
- Bassetti, M.; Giacobbe, D.R. A look at the clinical, economic, and societal impact of antimicrobial resistance in 2020. Expert Opin. Pharmacother. 2020, 21, 2067–2071. [Google Scholar] [CrossRef] [PubMed]
- Årdal, C.; Balasegaram, M.; Laxminarayan, R.; McAdams, D.; Outterson, K.; Rex, J.H.; Sumpradit, N. Antibiotic development—Economic, regulatory and societal challenges. Nat. Rev. Microbiol. 2020, 18, 267–274. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Mattos, G.N.; Tonon, R.V.; Furtado, A.A.; Cabral, L.M. Grape by-product extracts against microbial proliferation and lipid oxidation: A review. J. Sci. Food Agric. 2017, 97, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Pisoschi, A.M.; Pop, A.; Georgescu, C.; Turcuş, V.; Olah, N.K.; Mathe, E. An overview of natural antimicrobials role in food. Eur. J. Med. Chem. 2018, 143, 922–935. [Google Scholar] [CrossRef]
- Corrales, M.; Fernandez, A.; Vizoso Pinto, M.G.; Butz, P.; Franz, C.M.A.P.; Schuele, E.; Tauscher, B. Characterization of phenolic content, in vitro biological activity, and pesticide loads of extracts from white grape skins from organic and conventional cultivars. Food Chem. Toxicol. 2010, 48, 3471–3476. [Google Scholar] [CrossRef] [PubMed]
- Butkhup, L.; Chowtivannakul, S.; Gaensakoo, R.; Prathepha, P.; Samappito, S. Study of the Phenolic Composition of Shiraz Red Grape Cultivar (Vitis vinifera L.) Cultivated in North-Eastern Thailand and Its Antioxidant and Antimicrobial Activity. J. Enol. Vitic. 2010, 31, 89–98. [Google Scholar] [CrossRef]
- Zambrano, C.; Kerekes, E.B.; Kotogán, A.; Papp, T.; Vágvölgyi, C.; Krisch, J.; Takó, M. Antimicrobial activity of grape, apple and pitahaya residue extracts after carbohydrase treatment against food-related bacteria. LWT-Food Sci. Technol. 2019, 100, 416–425. [Google Scholar] [CrossRef]
- Baenas, N.; Abellán, Á.; Rivera, S.; Moreno, D.A.; García-Viguera, C.; Domínguez-Perles, R. Foods and supplements. In Polyphenols: Properties, Recovery, and Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 327–362. [Google Scholar]
Bacterial Species | Strains Designation | Source |
---|---|---|
Escherichia coli | ATCC 25922 | American Type Culture Collection (control) |
Acinetobacter baumannii | MJMC 525 | Trochanteric ulcer |
Acinetobacter baumannii | MJMC 561 | Abscess |
Pseudomonas aeruginosa | MJMC 526 | Sacred ulcer |
Pseudomonas aeruginosa | MJMC 553 | Calcaneal ulcer |
Pseudomonas aeruginosa | MJMC 559 | Chronic left leg ulcer |
Staphylococcus aureus | ATCC 25923 | American Type Culture Collection (control) |
MRSA | MJMC 534-B | Sacred ulcer |
MRSA | MJMC 583 | Ulcer |
Pruning Firewood | Stems | |||||
---|---|---|---|---|---|---|
Samples | Total Phenols (mg GA g−1 DW) | Ortho-Diphenols (mg GA g−1 DW) | Flavonoids (mg CAT g−1 DW) | Total Phenols (mg GA g−1 DW) | Ortho-Diphenols (mg GA g−1 DW) | Flavonoids (mg CAT g−1 DW) |
Touriga Nacional | 18.57 ± 0.97 a | 19.72 ± 1.28 bc | 14.92 ± 0.60 a | 7.42 ± 0.14 ab | 5.95 ± 0.55 a | 4.86 ± 0.29 a |
Tinta Roriz | 20.77 ± 0.27 ab | 20.35 ± 0.85 c | 16.10 ± 0.16 a | 17.02 ± 0.40 c | 15.02 ± 0.68 c | 13.29 ± 0.50 c |
Alfrocheiro | 19.21 ± 1.29 a | 17.62 ± 0.77 ab | 16.42 ± 1.46 a | 11.46 ± 0.70 b | 9.77 ± 0.31 b | 7.99 ± 0.34 b |
Jaen | 23.62 ± 2.48 b | 23.73 ± 1.31 d | 21.98 ± 0.85 b | 39.12 ± 2.87 d | 20.65 ± 0.55 d | 21.97 ± 1.98 d |
Borrado das Moscas | 18.40 ± 0.43 a | 15.90 ± 0.59 a | 14.40 ± 0.62 a | 6.38 ± 0.36 a | 5.34 ± 0.10 a | 4.37 ± 0.06 a |
Encruzado | 24.01 ± 1.34 b | 20.24 ± 0.94 bc | 20.12 ± 1.77 b | - | - | - |
p-value | *** | *** | *** | *** | *** | *** |
Samples | Total Phenols (mg GA g−1 DW) | Ortho-Diphenols (mg GA g−1 DW) | Flavonoids (mg CAT g−1 DW) |
---|---|---|---|
White Wine Lees | 5.72 ± 0.39 a | 6.34 ± 0.25 a | 3.31 ± 0.041 a |
Red Wine Lees | 35.17 ± 1.68 b | 30.04 ± 0.33 b | 22.87 ± 2.70 b |
Pruning Firewood | Stems | |||||
---|---|---|---|---|---|---|
Samples | ABTS+• | DPPH• | FRAP | ABTS+• | DPPH• | FRAP |
Touriga Nacional | 0.23 ± 0.01 ab | 0.14 ± 0.01 ab | 0.01 ± 0.00 ab | 0.04 ± 0.00 a | 0.04 ± 0.00 ab | 0.04 ± 0.00 a |
Tinta Roriz | 0.22 ± 0.02 ab | 0.15 ± 0.01 bc | 0.02 ± 0.00 bc | 0.11 ± 0.01 c | 0.09 ± 0.00 c | 0.09 ± 0.00 c |
Alfrocheiro | 0.19 ± 0.02 a | 0.12 ± 0.01 ab | 0.01 ± 0.00 a | 0.07 ± 0.01 b | 0.05 ± 0.00 b | 0.05 ± 0.00 b |
Jaen | 0.25 ± 0.02 b | 0.18 ± 0.01 c | 0.02 ± 0.00 c | 0.16 ± 0.01 d | 0.18 ± 0.01 d | 0.18 ± 0.01 d |
Borrado das Moscas | 0.20 ± 0.00 ab | 0.11 ± 0.00 a | 0.01 ± 0.00 a | 0.04 ± 0.01 a | 0.03 ± 0.00 a | 0.03 ± 0.00 a |
Encruzado | 0.24 ± 0.02 b | 0.15 ± 0.01 bc | 0.02 ± 0.00 ab | - | - | - |
p-value | * | ** | *** | *** | *** | *** |
Samples | ABTS+• | DPPH• | FRAP |
---|---|---|---|
White Wine Lees | 0.05 ± 0.00 a | 0.05 ± 0.00 a | 0.03 ± 0.00 a |
Red Wine Lees | 0.25 ± 0.01 b | 0.23 ± 0.00 b | 0.23 ± 0.01 b |
Bacterial Isolates | ALF PF | BM PF | Jaen PF | ALF S | BM S | Jaen S | DMSO 10% | CN 10 µg |
---|---|---|---|---|---|---|---|---|
Escherichia coli ATCC | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
Acinetobacter baumannii MJMC 525 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10 |
Acinetobacter baumannii MJMC 561 | 7 | 0 | 7 | 0 | 0 | 0 | 0 | 0 |
Pseudomonas aeruginosa MJMC 526 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 25 |
Pseudomonas aeruginosa MJMC 553 | 11 | 10 | 12 | 10 | 0 | 0 | 0 | 25 |
Pseudomonas aeruginosa MJMC 559 | 12 | 10 | 13 | 11 | 0 | 0 | 0 | 26 |
Staphylococcus aureus ATCC | 12 | 10 | 12 | 10 | 7 | 9 | 0 | 21 |
MRSA MJMC 534-B | 12 | 10 | 12 | 7 | 0 | 11 | 0 | 23 |
MRSA MJMC 583 | 13 | 10 | 12 | 0 | 0 | 9 | 0 | 13 |
Antibiotic | CN 10 µg | |||||
---|---|---|---|---|---|---|
Bacterial Strains | ALF PF | BM PF | Jaen PF | ALF S | BM S | Jaen S |
Escherichia coli ATCC | 0 | 0 | 0 | 0 | 0 | 0 |
Acinetobacter baumannii MJMC 525 | 0 | 0 | 0 | 0 | 0 | 0 |
Acinetobacter baumannii MJMC 561 | 0 | 0 | 0 | 0 | 0 | 0 |
Pseudomonas aeruginosa MJMC 526 | - | - | - | - | 0 | 0 |
Pseudomonas aeruginosa MJMC 553 | 44 | 40 | 48 | 40 | 0 | 0 |
Pseudomonas aeruginosa MJMC 559 | 46 | 38 | 50 | 42 | 0 | 0 |
Staphylococcus aureus ATCC | 57 | 48 | 57 | 48 | 33 | 43 |
MRSA MJMC 534-B | 52 | 43 | 52 | 30 | 0 | 48 |
MRSA MJMC 583 | 100 | 77 | 92 | - | 0 | 69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.; Campos, J.; Gouvinhas, I.; Pinto, A.R.; Saavedra, M.J.; Novo Barros, A. Unveiling the Potential of Unexplored Winery By-Products from the Dão Region: Phenolic Composition, Antioxidants, and Antimicrobial Properties. Appl. Sci. 2023, 13, 10020. https://doi.org/10.3390/app131810020
Costa C, Campos J, Gouvinhas I, Pinto AR, Saavedra MJ, Novo Barros A. Unveiling the Potential of Unexplored Winery By-Products from the Dão Region: Phenolic Composition, Antioxidants, and Antimicrobial Properties. Applied Sciences. 2023; 13(18):10020. https://doi.org/10.3390/app131810020
Chicago/Turabian StyleCosta, Cátia, Joana Campos, Irene Gouvinhas, Ana Rita Pinto, Maria José Saavedra, and Ana Novo Barros. 2023. "Unveiling the Potential of Unexplored Winery By-Products from the Dão Region: Phenolic Composition, Antioxidants, and Antimicrobial Properties" Applied Sciences 13, no. 18: 10020. https://doi.org/10.3390/app131810020
APA StyleCosta, C., Campos, J., Gouvinhas, I., Pinto, A. R., Saavedra, M. J., & Novo Barros, A. (2023). Unveiling the Potential of Unexplored Winery By-Products from the Dão Region: Phenolic Composition, Antioxidants, and Antimicrobial Properties. Applied Sciences, 13(18), 10020. https://doi.org/10.3390/app131810020