Smart Firefighters PPE: Impact of Phase Change Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of PCM Thermal Performance—Preliminary Tests
2.2. Evaluation of PCM Integration According to Firefighters’ PPE Performance Tests
2.3. Proof-of-Concept Simulated Environment Validation
3. Results
3.1. Preliminary Tests of PCM Thermal Performance
3.2. Evaluation of PCM Integration According to Firefighters’ PPE Performance Requirements
3.3. Proof-of-Concept Simulated Environment Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desmond, M. Becoming a firefighter. Ethnography 2006, 7, 387–421. [Google Scholar] [CrossRef]
- Marszałek, A.; Młynarczyk, M. Physiological tests on firefighters whilst using protective clothing. Int. J. Occup. Saf. Ergon. 2021, 27, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.S.; Lee, J.K.W.; Oksa, J. Thermal stress, human performance, and physical employment standards. Appl. Physiol. Nutr. Metab. 2016, 41 (Suppl. 2), S148–S164. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Qin, Y.; Liu, J.; Wang, Y.; Wang, J.; Zhao, Y.; Zhu, Z.; Jiang, Q.; Wan, Y.; Qu, X.; et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing. Chem. Eng. J. 2023, 460, 141661. [Google Scholar] [CrossRef]
- Santos, G.; Marques, R.; Ribeiro, J.; Moreira, A.; Fernandes, P.; Silva, M.; Fonseca, A.; Miranda, J.M.; Campos, J.B.L.M.; Neves, S.F. Firefighting: Challenges of Smart PPE. Forests 2022, 13, 1319. [Google Scholar] [CrossRef]
- Santos, G.; Marques, R.; Marques, F.; Ribeiro, J.; Fonseca, A.; Miranda, J.M.; Campos, J.B.L.M.; Neves, S.F. An innovative thermal protective clothing system for firefighters. Commun. Dev. Assem. Text. Prod. 2022, 3, 146–155. [Google Scholar] [CrossRef]
- Gao, C.; Kuklane, K.; Wang, F.; Holmér, I. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air 2012, 22, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Lawag, R.A.; Ali, H.M. Phase change materials for thermal management and energy storage: A review. J. Energy Storage 2022, 55 Pt C, 105602. [Google Scholar] [CrossRef]
- Wang, F.; Pang, D.; Liu, X.; Liu, M.; Du, W.; Zhang, Y.; Cheng, X. Progress in application of phase-change materials to cooling clothing. J. Energy Storage 2023, 60, 106606. [Google Scholar] [CrossRef]
- Song, G.; Wang, F. Firefighters’ Clothing and Equipment, 1st ed.; CRC Press: New York, NY, USA, 2019. [Google Scholar]
- Mao, N. Textile materials for protective textiles. In High Performance Technical Textiles, 1st ed.; Paul, R., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 107–156. [Google Scholar]
- Bartkowiak, G.; Marszalek, A.; Dabrowska, A. Thermal load of mine rescuer in the underwear and protective clothing with phase change materials in simulated utility conditions. Materials 2020, 13, 4320. [Google Scholar] [CrossRef] [PubMed]
- Omara, A.A.; Mohammedali, A.A.; Dhivagar, R. Dhivagar, Helmets cooling with phase change materials: A systematic review. J. Energy Storage 2023, 72 Pt C, 108555. [Google Scholar] [CrossRef]
- Fonseca, A.; Neves, S.F.; Campos, J.B.L.M. Thermal performance of a PCM firefighting suit considering transient periods of fire exposure, post–fire exposure and resting phases. Appl. Therm. Eng. 2021, 182, 115769. [Google Scholar] [CrossRef]
- Onofrei, E.; Rocha, A.M.; Catarino, A. Textile Integrating PCMs—A Review. Bul. Inst. Politeh. Iaşi 2010, LVI, 99–110. [Google Scholar]
- CEN/TR17620:2021; Guidelines for Selection, Use, Care and Maintenance of Smart Garments Protecting against Heat and Flame. Comité Européen de Normalization: Brussels, Belgium, 2021.
- EN 469:2020; Protective Clothing for Firefighters–Performance Requirements for Protective Clothing for Firefighting Activities. European Committee for Standardization (CEN): Brussels, Belgium, 2020.
- EN ISO 15384:2020; Protective Clothing for Firefighters–Laboratory Test Methods and Performance Requirements for Wildland Firefighting Clothing. International Organization for Standardization: Geneva, Switzerland, 2020.
- EN ISO 15025:2016; Protective Clothing—Flame Protection—Standard Test for Limited Flame Spread. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
- ISO 6942:2002; Protective Clothing—Protection against Heat and Fire—Method of test: Evaluation of Materials and Material Assemblies When Exposed to a Source of Radiant Heat. International Organization for Standardization (ISO): Geneva, Switzerland, 2002.
- ISO 9151:2016; Protective Clothing against Heat and Flame—Determination of Heat Transmission on Exposure to Flame. International Organization for Standardization (ISO): Geneva, Switzerland, 2016.
PCM | Commercial Name | Melting/Freezing Temperature Range, °C | Heat Storage Capacity, kJ/kg | Form | Composition |
---|---|---|---|---|---|
PCM 1 | RUBITHERM® PX82 | 77-85/85-77 | 105 | Microencapsulated (powder) | ~60% organic material (PCM) 40% inorganic material (hydrophilic silica) |
PCM 2 | RUBITHERM® PX52 | 49-53/52-48 | 100 | Microencapsulated (powder) | ~60% organic material (PCM) 40% inorganic material (hydrophilic silica) |
PCM 3 | RUBITHERM® GR42 | 38-43/43-37 | 55 | Encapsulated (granulate) | ~30% organic material (PCM) 70% inorganic material (natural porous mineral particle) |
Standard | Description | Minimum Compliance Values | |
---|---|---|---|
EN ISO 15025:2016 | Flame spread test | A1 or A2 | |
ISO 6942:2002 | Heat transfer (radiation) | Level 1: | Level 2: |
RHTI 24 ≥ 10.0 s | RHTI 24 ≥ 18.0 s | ||
RHTI 24-RHTI 12 ≥ 3.0 s | RHTI 24-RHTI 12 ≥ 4.0 s | ||
ISO 9151:2016 | Heat transfer (flame) | Level 1: | Level 2: |
HTI 24 ≥ 9.0 s | HTI 24 ≥ 13.0 s | ||
HTI 24-HTI 12 ≥ 3.0 s | HTI 24-HTI 12 ≥ 4.0 s |
Vest | Design | Assembly |
---|---|---|
1 | Strap vest | Fabric 1 (external layer) |
Fabric 3 | ||
Cork matrix | ||
Fabric 1 (internal layer) | ||
2 | Strap vest | Fabric 2 (external layer) |
Fabric 3 | ||
Cork matrix | ||
Fabric 2 (internal layer) | ||
3 | Vest with shoulder protection | Fabric 2 (external layer) |
Fabric 3 | ||
Cork matrix | ||
Fabric 2 (internal layer) |
Layer | Composition | Position in the Vest | Thickness, mm | Emissivity | Thermal Resistance, m2·K·W−1 | Evaporative Resistance, m2·Pa·W−1 |
---|---|---|---|---|---|---|
Fabric 1 | Nomex® special blend | Outer and inner layer | 0.42 | 0.70 | 0.026 | 1.520 |
Fabric 2 | 98% aramid, 2% others | Outer and inner layer | 0.35 | 0.76 | 0.033 | 4.841 |
Fabric 3 | 100% Polyester | Middle layer | 3.50 | - | 0.092 | 7.987 |
Required Parameters | Assembly without PCM Pouch | Assembly with PCM Pouch |
---|---|---|
Flame reached the top or the hedge of the specimen | No | No |
Flame propagation time (s) | 0 | 0 |
The residual glow spreads beyond the burnt area to the undamaged area | No | No |
Occurrence of fusion | No | No |
Residual glow time (s) | 0 | 0 |
Occurrence of flaming debris | No | No |
Flaming debris burns or perforates the filter paper | No | No |
Hole formation | No | No |
Sample | HTI 24 (s) | HTI 12 (s) | HTI 24–HTI 12 (s) |
---|---|---|---|
Assembly 1 without PCM pouch | 47 | 33 | 14 |
Assembly 1 with PCM pouch | 104 | 78 | 26 |
Sample | RHTI 24 (s) | RHTI 12 (s) | RHTI 24–RHTI 12 (s) |
---|---|---|---|
Assembly 1 without PCM pouch | 60.6 | 43.5 | 17.1 |
Assembly 1 with PCM pouch | 124.1 | 88.6 | 35.6 |
Assembly 2 with PCM pouch | 145.5 | 105.6 | 39.9 |
Assembly 2 with PCM pouch empty | 78.2 | 55.7 | 22.5 |
Test | Measuring Area | Temperature (°C) | Thermal Photograph |
---|---|---|---|
Control (Urban PPE) | Above head | >130 | |
Shoulder | 52.1 | ||
Back (above SCBA) | 37.3 | ||
Vest 1 | Above head | >130 | |
Shoulder | 52.4 | ||
Back (above SCBA) | 49.5 | ||
Vest 2 | Above head | >130 | |
Shoulder | 90.4 | ||
Back (above SCBA) | 50.3 | ||
Vest 3 | Above head | >130 | |
Shoulder | 70.0 | ||
Back (above SCBA) | 59.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, G.; Neves, S.F.; Silva, M.; Miranda, J.M.; Campos, J.B.L.M.; Ribeiro, J.; Moreira, A.; Fernandes, P.; Miranda, F.; Marques, R. Smart Firefighters PPE: Impact of Phase Change Materials. Appl. Sci. 2023, 13, 10318. https://doi.org/10.3390/app131810318
Santos G, Neves SF, Silva M, Miranda JM, Campos JBLM, Ribeiro J, Moreira A, Fernandes P, Miranda F, Marques R. Smart Firefighters PPE: Impact of Phase Change Materials. Applied Sciences. 2023; 13(18):10318. https://doi.org/10.3390/app131810318
Chicago/Turabian StyleSantos, Gilda, Soraia F. Neves, Margarida Silva, João M. Miranda, João B. L. M. Campos, João Ribeiro, Adriana Moreira, Patrícia Fernandes, Francisca Miranda, and Rita Marques. 2023. "Smart Firefighters PPE: Impact of Phase Change Materials" Applied Sciences 13, no. 18: 10318. https://doi.org/10.3390/app131810318
APA StyleSantos, G., Neves, S. F., Silva, M., Miranda, J. M., Campos, J. B. L. M., Ribeiro, J., Moreira, A., Fernandes, P., Miranda, F., & Marques, R. (2023). Smart Firefighters PPE: Impact of Phase Change Materials. Applied Sciences, 13(18), 10318. https://doi.org/10.3390/app131810318