Effect of Fireproof Coatings on the Post-Fire Behavior of CFRP Composite Sheets
Abstract
:1. Introduction
2. Experimental Program
2.1. Test Material and Specimen
2.2. Test Equipment
2.3. Specimen Conditions
2.4. Test Procedure
3. Experimental Results and Discussion
3.1. Large-Space Fire Condition
3.2. Standard Fire Condition
3.3. Comparison with Previous Studies
4. Conclusions
- After fire exposure, the post-fire flexural properties of uncoated CFRP sheets experience a significant reduction.
- The proposed fireproof coatings significantly enhance the post-fire flexural strength and modulus of CFRP sheets up to a maximum achievable enhancement level of approximately 95% of the initial performance before fire exposure, with the coating thickness, type, and CFRP sheet thickness influencing the enhancement effect.
- CFRP sheets coated with Type C1 and C2 coatings of more than 25 mm thickness demonstrate a fire-resistance duration of up to 2 h under the large-space fire condition. According to the Chinese specification GB50016-2014, under the large-space fire condition, CFRP sheets coated with Type C1 and C2 coatings of over 25 mm thickness meet the requirements of fire-resistance class III (columns), class I (beams), and class I (floor slabs), respectively.
- CFRP sheets coated with Type C1 and C2 coatings of 35 mm thickness demonstrate a fire-resistance duration of up to 0.75 h under standard fire conditions. According to the Chinese specification GB50016-2014, under the standard fire condition, CFRP sheets coated with Type C1 and C2 coatings of 35 mm thickness meet the requirements of fire resistance class IV (columns), class IV (beams), and class III (floor slabs), respectively.
- Additional experimental studies are required to comprehensively assess the impact of these coatings on the mechanical performance of CFRP composites across a broader spectrum of fire conditions, providing guidance for the safe fire protection design of CFRP in new infrastructure and structural reinforcement applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiang, X.; Chen, L.; Jiang, X. Experimental and Theoretical Study on Flexural Behavior of Steel–Concrete Composite Beams Strengthened by CFRP Plates with Unbonded Retrofit Systems. Compos. Struct. 2023, 309, 116763. [Google Scholar] [CrossRef]
- Nigro, E.; Cefarelli, G.; Bilotta, A.; Manfredi, G.; Cosenza, E. Fire Resistance of Concrete Slabs Reinforced with FRP Bars. Part I: Experimental Investigations on the Mechanical Behavior. Compos. Part B Eng. 2011, 42, 1739–1750. [Google Scholar] [CrossRef]
- Kandare, E.; Kandola, B.K.; Myler, P.; Edwards, G. Thermo-Mechanical Responses of Fiber-Reinforced Epoxy Composites Exposed to High Temperature Environments. Part I: Experimental Data Acquisition. J. Compos. Mater. 2010, 44, 3093–3114. [Google Scholar] [CrossRef]
- Bisby, L.A.; Green, M.F.; Kodur, V.K.R. Response to Fire of Concrete Structures That Incorporate FRP. Prog. Struct. Eng. Mater. 2005, 7, 136–149. [Google Scholar] [CrossRef]
- Hamad, R.J.A.; Megat Johari, M.A.; Haddad, R.H. Mechanical Properties and Bond Characteristics of Different Fiber Reinforced Polymer Rebars at Elevated Temperatures. Constr. Build. Mater. 2017, 142, 521–535. [Google Scholar] [CrossRef]
- Naguib, H.M.; Zhang, X.H. Advanced Recycled Polyester Based on PET and Oleic Acid. Polym. Test. 2018, 69, 450–455. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L. State-of-the-Art Review on FRP Strengthened Steel Structures. Eng. Struct. 2007, 29, 1808–1823. [Google Scholar] [CrossRef]
- Bazli, M.; Abolfazli, M. Mechanical Properties of Fibre Reinforced Polymers under Elevated Temperatures: An Overview. Polymers 2020, 12, 2600. [Google Scholar] [CrossRef] [PubMed]
- Haroon, M.; Moon, J.S.; Kim, C. Performance of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Strips. Materials 2021, 14, 5866. [Google Scholar] [CrossRef]
- Alhassan, M.; Al-Rousan, R.; Ababneh, A. Flexural Behavior of Lightweight Concrete Beams Encompassing Various Dosages of Macro Synthetic Fibers and Steel Ratios. Case Stud. Constr. Mater. 2017, 7, 280–293. [Google Scholar] [CrossRef]
- Al-Rousan, R. Influence of Polypropylene Fibers on the Flexural Behavior of Reinforced Concrete Slabs with Different Opening Shapes and Sizes. Struct. Concr. 2017, 18, 986–999. [Google Scholar] [CrossRef]
- Ababneh, A.; Al-Rousan, R.; Alhassan, M.; Alqadami, M. Influence of Synthetic Fibers on the Shear Behavior of Lightweight Concrete Beams. Adv. Struct. Eng. 2017, 20, 1671–1683. [Google Scholar] [CrossRef]
- Qiang, X.; Bijlaard, F.S.K.; Kolstein, H. Post-Fire Mechanical Properties of High Strength Structural Steels S460 and S690. Eng. Struct. 2012, 35, 1–10. [Google Scholar] [CrossRef]
- Qiang, X.; Bijlaard, F.S.K.; Kolstein, H. Post-Fire Performance of Very High Strength Steel S960. J. Constr. Steel Res. 2013, 80, 235–242. [Google Scholar] [CrossRef]
- Qiang, X.; Jiang, X.; Bijlaard, F.S.K.; Kolstein, H.; Luo, Y. Post-Fire Behaviour of High Strength Steel Endplate Connections—Part 2: Numerical Study. J. Constr. Steel Res. 2015, 108, 94–102. [Google Scholar] [CrossRef]
- Rosa, I.; Firmo, J.; Correia, J.; Mazzuca, P. Influence of Elevated Temperatures on the Bond Behaviour of GFRP Bars to Concrete—Pull-out Tests. In Proceedings of the IABSE Symposium 2019 Guimaraes: Towards a Resilient Built Environment-Risk and Asset Management, Guimaraes, Portugal, 27–29 March 2019; IABSE C/O ETH Zurich: Zurich, Switzerland, 2019; pp. 861–868. [Google Scholar] [CrossRef]
- Wang, K.; Young, B.; Smith, S.T. Mechanical Properties of Pultruded Carbon Fibre-Reinforced Polymer (CFRP) Plates at Elevated Temperatures. Eng. Struct. 2011, 33, 2154–2161. [Google Scholar] [CrossRef]
- Wong, P.M.H.; Davies, J.M.; Wang, Y.C. An Experimental and Numerical Study of the Behaviour of Glass Fibre Reinforced Plastics (GRP) Short Columns at Elevated Temperatures. Compos. Struct. 2004, 63, 33–43. [Google Scholar] [CrossRef]
- Jarrah, M.; Najafabadi, E.P.; Khaneghahi, M.H.; Oskouei, A.V. The Effect of Elevated Temperatures on the Tensile Performance of GFRP and CFRP Sheets. Constr. Build. Mater. 2018, 190, 38–52. [Google Scholar] [CrossRef]
- Hajiloo, H.; Green, M.F.; Gales, J. Mechanical Properties of GFRP Reinforcing Bars at High Temperatures. Constr. Build. Mater. 2018, 162, 142–154. [Google Scholar] [CrossRef]
- Robert, M.; Benmokrane, B. Behavior of GFRP Reinforcing Bars Subjected to Extreme Temperatures. J. Compos. Constr. 2010, 14, 353–360. [Google Scholar] [CrossRef]
- Kodur, V.K.R.; Bisby, L.A.; Foo, S.H.C. Thermal Behavior of Fire-Exposed Concrete Slabs Reinforced with Fiber-Reinforced Polymer Bars. ACI Struct. J. 2005, 102, 799–807. [Google Scholar] [CrossRef]
- Bai, Y.; Vallée, T.; Keller, T. Modeling of Thermal Responses for FRP Composites under Elevated and High Temperatures. Compos. Sci. Technol. 2008, 68, 47–56. [Google Scholar] [CrossRef]
- Wang, Y.C.; Wong, P.M.H.; Kodur, V. An Experimental Study of the Mechanical Properties of Fibre Reinforced Polymer (FRP) and Steel Reinforcing Bars at Elevated Temperatures. Compos. Struct. 2007, 80, 131–140. [Google Scholar] [CrossRef]
- Yu, B.; Kodur, V. Effect of Temperature on Strength and Stiffness Properties of Near-Surface Mounted FRP Reinforcement. Compos. Part B Eng. 2014, 58, 510–517. [Google Scholar] [CrossRef]
- Katsoulis, C.; Kandola, B.K.; Myler, P.; Kandare, E. Post-Fire Flexural Performance of Epoxy-Nanocomposite Matrix Glass Fibre Composites Containing Conventional Flame Retardants. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1389–1399. [Google Scholar] [CrossRef]
- Ashrafi, H.; Bazli, M.; Najafabadi, E.P.; Vatani Oskouei, A. The Effect of Mechanical and Thermal Properties of FRP Bars on Their Tensile Performance under Elevated Temperatures. Constr. Build. Mater. 2017, 157, 1001–1010. [Google Scholar] [CrossRef]
- Wang, Y.C.; Kodur, V. Variation of Strength and Stiffness of Fibre Reinforced Polymer Reinforcing Bars with Temperature. Cem. Concr. Compos. 2005, 27, 864–874. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Han, Q. Mechanical Properties of Pultruded High-Temperature-Resistant Carbon-Fiber-Reinforced Polymer Tendons at Elevated Temperatures. Constr. Build. Mater. 2020, 258, 119526. [Google Scholar] [CrossRef]
- Khaneghahi, M.H.; Najafabadi, E.P.; Shoaei, P.; Oskouei, A.V. Effect of Intumescent Paint Coating on Mechanical Properties of FRP Bars at Elevated Temperature. Polym. Test. 2018, 71, 72–86. [Google Scholar] [CrossRef]
- Shekarchi, M.; Farahani, E.M.; Yekrangnia, M.; Ozbakkaloglu, T. Mechanical Strength of CFRP and GFRP Composites Filled with APP Fire Retardant Powder Exposed to Elevated Temperature. Fire Saf. J. 2020, 115, 103178. [Google Scholar] [CrossRef]
- Naguib, H.M. Environmental-Friendly Recycled Polyester/Mg(OH)2 Nanocomposite: Fire-Retardancy and Thermal Stability. Polym. Test. 2018, 72, 308–314. [Google Scholar] [CrossRef]
- Rallini, M.; Natali, M.; Kenny, J.M.; Torre, L. Effect of Boron Carbide Nanoparticles on the Fire Reaction and Fire Resistance of Carbon Fiber/Epoxy Composites. Polymer 2013, 54, 5154–5165. [Google Scholar] [CrossRef]
- ACI 440.2R-17; Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI Committee 440. American Concrete Institute (ACI): Farmington Hills, MI, USA, 2017.
- ISO 834-1; Fire-Resistance Tests—Elements of Building Construction—Part 1: General Requirements. ISO: Geneva, Switzerland, 2021.
- CECS 200-2006; Technical Code for Fire Safety of Steel Structure in Buildings. China Association for Engineering Construction Standardization (CECS): Beijing, China, 2006.
- GB 14907-2018; Fire Resistive Coating for Steel Structure. Standardization Administration of China: Beijing, China, 2018.
- GB 50016-2014; Code for Fire Protection Design of Buildings. AQSIQ: Beijing, China, 2018.
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- BS 5950-8-2003; Structural Use of Steelwork in Building—Part 8: Code of Practice for Fire Resistant Design. BSI: London, UK, 2003.
- Zhuge, P.; Tao, G.; Wang, B.; Jie, Z.; Zhang, Z. Effects of High Temperatures on the Performance of Carbon Fiber Reinforced Polymer (CFRP) Composite Cables Protected with Fire-Retardant Materials. Materials 2022, 15, 4696. [Google Scholar] [CrossRef]
Property | CFRP |
---|---|
Resin type | Epoxy |
Fiber volume (%) | ≥65 |
Tensile strength standard value (MPa) | ≥2400 |
Tensile elastic modulus (MPa) | ≥1.6 × 105 |
Elongation (%) | ≥1.7 |
Tensile bond strength of fiber composite materials with concrete (MPa) | ≥2.5, and cohesive failure within the concrete |
Interlayer shear strength (MPa) | ≥50 |
Thermal conductivity (W/m·k) | 12.5 |
Specific heat capacity (J/kg·°C) | 795.5 |
Glass transition temperature (°C) | 120 |
Specimen | Sheet Thickness (mm) | Fire Conditions | Heating Duration (h) | Coating Type * | Coating Thickness (mm) |
---|---|---|---|---|---|
P-1.2-A-U | 1.2 | - | 2 | - | - |
P-2-A-U | 2 | - | 2 | - | - |
P-3-A-U | 3 | - | 2 | - | - |
P-1.2-E-U | 1.2 | Large-space fire | 2 | - | - |
P-2-E-U | 2 | Large-space fire | 2 | - | - |
P-3-E-U | 3 | Large-space fire | 2 | - | - |
P-1.2-E-C1-15 | 1.2 | Large-space fire | 2 | C1 | 15 |
P-2-E-C1-15 | 2 | Large-space fire | 2 | C1 | 15 |
P-3-E-C1-15 | 3 | Large-space fire | 2 | C1 | 15 |
P-1.2-E-C2-15 | 1.2 | Large-space fire | 2 | C2 | 15 |
P-2-E-C2-15 | 2 | Large-space fire | 2 | C2 | 15 |
P-3-E-C2-15 | 3 | Large-space fire | 2 | C2 | 15 |
P-1.2-E-C1-25 | 1.2 | Large-space fire | 2 | C1 | 25 |
P-2-E-C1-25 | 2 | Large-space fire | 2 | C1 | 25 |
P-3-E-C1-25 | 3 | Large-space fire | 2 | C1 | 25 |
P-1.2-E-C2-25 | 1.2 | Large-space fire | 2 | C2 | 25 |
P-2-E-C2-25 | 2 | Large-space fire | 2 | C2 | 25 |
P-3-E-C2-25 | 3 | Large-space fire | 2 | C2 | 25 |
P-1.2-E-C1-35 | 1.2 | Large-space fire | 2 | C1 | 35 |
P-2-E-C1-35 | 2 | Large-space fire | 2 | C1 | 35 |
P-3-E-C1-35 | 3 | Large-space fire | 2 | C1 | 35 |
P-1.2-E-C2-35 | 1.2 | Large-space fire | 2 | C2 | 35 |
P-2-E-C2-35 | 2 | Large-space fire | 2 | C2 | 35 |
P-3-E-C2-35 | 3 | Large-space fire | 2 | C2 | 35 |
P-2-C1-35-b1 | 2 | Standard fire | 0.5 | C1 | 35 |
P-2-C2-35-b1 | 2 | Standard fire | 0.5 | C2 | 35 |
P-3-C1-35-b1 | 3 | Standard fire | 0.5 | C1 | 35 |
P-3-C2-35-b1 | 3 | Standard fire | 0.5 | C2 | 35 |
P-2-C1-35-b3 | 2 | Standard fire | 0.75 | C1 | 35 |
P-2-C2-35-b3 | 2 | Standard fire | 0.75 | C2 | 35 |
P-3-C1-35-b3 | 3 | Standard fire | 0.75 | C1 | 35 |
P-3-C2-35-b3 | 3 | Standard fire | 0.75 | C2 | 35 |
P-2-C1-35-b2 | 2 | Standard fire | 1 | C1 | 35 |
P-2-C2-35-b2 | 2 | Standard fire | 1 | C2 | 35 |
P-3-C1-35-b2 | 3 | Standard fire | 1 | C1 | 35 |
P-3-C2-35-b2 | 3 | Standard fire | 1 | C2 | 35 |
Specimen | Flexural Modulus (MPa) | Flexural Strength (MPa) | Fracture Deflection (mm) | Reduction Factor | ||
---|---|---|---|---|---|---|
Modulus | Strength | Deflection | ||||
P-1.2-A-U | 197,303 | 1988 | 6.02 | 1.000 | 1.000 | 1.000 |
P-2-A-U | 201,609 | 1681 | 3.37 | 1.000 | 1.000 | 1.000 |
P-3-A-U | 134,791 | 1353 | 2.95 | 1.000 | 1.000 | 1.000 |
P-1.2-E-U | 47,750 | 461 | 5.97 | 0.242 | 0.232 | 0.991 |
P-2-E-U | 129,745 | 354 | 2.37 | 0.644 | 0.211 | 0.704 |
P-3-E-U | 52,448 | 267 | 2.48 | 0.389 | 0.197 | 0.841 |
P-1.2-E-C1-15 | 195,108 | 1888 | 5.83 | 0.989 | 0.950 | 0.969 |
P-2-E-C1-15 | 197,558 | 1516 | 3.26 | 0.980 | 0.902 | 0.967 |
P-3-E-C1-15 | 125,551 | 1222 | 2.71 | 0.931 | 0.903 | 0.918 |
P-1.2-E-C2-15 | 181,306 | 1875 | 6.20 | 0.919 | 0.943 | 1.029 |
P-2-E-C2-15 | 188,622 | 1495 | 3.38 | 0.936 | 0.889 | 1.004 |
P-3-E-C2-15 | 120,308 | 1075 | 2.82 | 0.893 | 0.794 | 0.956 |
P-1.2-E-C1-25 | 190,302 | 1906 | 6.03 | 0.965 | 0.959 | 1.002 |
P-2-E-C1-25 | 199,324 | 1532 | 3.38 | 0.989 | 0.912 | 1.002 |
P-3-E-C1-25 | 126,083 | 1284 | 2.77 | 0.935 | 0.949 | 0.938 |
P-1.2-E-C2-25 | 189,915 | 1893 | 5.96 | 0.963 | 0.952 | 0.990 |
P-2-E-C2-25 | 196,442 | 1548 | 3.41 | 0.974 | 0.921 | 1.012 |
P-3-E-C2-25 | 127,180 | 1322 | 2.79 | 0.944 | 0.977 | 0.946 |
P-1.2-E-C1-35 | 194,879 | 1916 | 6.02 | 0.988 | 0.964 | 1.000 |
P-2-E-C1-35 | 194,134 | 1588 | 3.31 | 0.963 | 0.945 | 0.983 |
P-3-E-C1-35 | 126,193 | 1312 | 2.89 | 0.936 | 0.970 | 0.980 |
P-1.2-E-C2-35 | 195,879 | 1943 | 6.00 | 0.993 | 0.978 | 0.996 |
P-2-E-C2-35 | 200,939 | 1589 | 3.34 | 0.997 | 0.945 | 0.991 |
P-3-E-C2-35 | 124,134 | 1361 | 2.88 | 0.921 | 1.006 | 0.976 |
Specimen | Flexural Modulus (MPa) | Flexural Strength (MPa) | Fracture Deflection (mm) | Reduction Factor | ||
---|---|---|---|---|---|---|
Modulus | Strength | Deflection | ||||
P-2-C1-35-b1 | 200,059 | 1559 | 3.30 | 0.992 | 0.928 | 0.979 |
P-2-C2-35-b1 | 203,972 | 1527 | 3.09 | 1.012 | 0.908 | 0.917 |
P-3-C1-35-b1 | 128,761 | 1254 | 2.70 | 0.955 | 0.927 | 0.914 |
P-3-C2-35-b1 | 138,880 | 1238 | 2.69 | 1.030 | 0.915 | 0.911 |
P-2-C1-35-b3 | 198,582 | 1478 | 3.14 | 0.985 | 0.880 | 0.933 |
P-2-C2-35-b3 | 206,772 | 1516 | 2.98 | 1.026 | 0.902 | 0.886 |
P-3-C1-35-b3 | 126,229 | 1195 | 2.68 | 0.936 | 0.883 | 0.908 |
P-2-C1-35-b1 | 200,059 | 1559 | 3.30 | 0.992 | 0.928 | 0.979 |
P-2-C2-35-b1 | 203,972 | 1527 | 3.09 | 1.012 | 0.908 | 0.917 |
P-3-C1-35-b1 | 128,761 | 1254 | 2.70 | 0.955 | 0.927 | 0.914 |
P-3-C2-35-b1 | 138,880 | 1238 | 2.69 | 1.030 | 0.915 | 0.911 |
P-2-C1-35-b3 | 198,582 | 1478 | 3.14 | 0.985 | 0.880 | 0.933 |
P-2-C2-35-b3 | 206,772 | 1516 | 2.98 | 1.026 | 0.902 | 0.886 |
P-3-C1-35-b3 | 126,229 | 1195 | 2.68 | 0.936 | 0.883 | 0.908 |
P-3-C2-35-b3 | 125,374 | 1205 | 2.78 | 0.930 | 0.891 | 0.940 |
P-2-C1-35-b2 | 32,060 | 122 | 3.06 | 0.159 | 0.073 | 0.909 |
P-2-C2-35-b2 | 34,370 | 117 | 2.73 | 0.170 | 0.070 | 0.811 |
P-3-C1-35-b2 | 18,291 | 100 | 2.30 | 0.136 | 0.074 | 0.780 |
P-3-C2-35-b2 | 17,788 | 105 | 2.86 | 0.132 | 0.077 | 0.969 |
Study | CFRP Type | Fireproof Measure | Mass Fraction (%) | Thickness (mm) | Fire Resistance Duration | |
---|---|---|---|---|---|---|
Large-Space Fire | Standard Fire | |||||
This study | Sheet | Non-intumescent fireproof coating | - | 25 | >2 h | - |
- | 35 | - | 0.75 h | |||
Khaneghahi et al. [30] | Bar | Intumescent coating | - | - | >2 h | 8 min |
Jarrah et al. [19] | Sheet | Intumescent coating | - | 0.5 | >2 h | 3 min |
Zhuge et al. [41] | Tendon | high-silica needled felt | - | 24 | >2 h | 1.5 h |
- | 45 | >2 h | 1.5 h | |||
Ceramic fiber felt | - | 24 | >2 h | >2 h | ||
- | 50 | >2 h | >2 h | |||
Shekarchi et al. [31] | Sheet | Ammonium polyphosphate (APP) fire retardant powder | 20 | - | 0.5 h | - |
40 | - | 0.5 h | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiang, X.; Wang, K.; Jiang, X.; Xiao, Y.; E, Y. Effect of Fireproof Coatings on the Post-Fire Behavior of CFRP Composite Sheets. Appl. Sci. 2023, 13, 10369. https://doi.org/10.3390/app131810369
Qiang X, Wang K, Jiang X, Xiao Y, E Y. Effect of Fireproof Coatings on the Post-Fire Behavior of CFRP Composite Sheets. Applied Sciences. 2023; 13(18):10369. https://doi.org/10.3390/app131810369
Chicago/Turabian StyleQiang, Xuhong, Kaihao Wang, Xu Jiang, Yi Xiao, and Yibo E. 2023. "Effect of Fireproof Coatings on the Post-Fire Behavior of CFRP Composite Sheets" Applied Sciences 13, no. 18: 10369. https://doi.org/10.3390/app131810369
APA StyleQiang, X., Wang, K., Jiang, X., Xiao, Y., & E, Y. (2023). Effect of Fireproof Coatings on the Post-Fire Behavior of CFRP Composite Sheets. Applied Sciences, 13(18), 10369. https://doi.org/10.3390/app131810369