Improved Broad Learning System for Birdsong Recognition
Abstract
:1. Introduction
- (1)
- Build the improved BLS model for birdsongs recognition.
- (2)
- Integrate residual block into the BLS, enabling the model to learn the residual information of the differences between feature nodes and enhancement nodes instead of directly learning the mapping. This makes the network more capable of learning and optimizing complex functions.
- (3)
- Employ a mutual similarity criterion to measure the correlation between nodes and the class in BLS for nodes selection, enhancing the quality of node subset.
2. Related Work
3. Dataset
4. Methods
4.1. Broad Learning System
4.2. Improved Broad Learning System
4.2.1. Construction of Differential MFCC Feature Sequences
- Perform the signal pre-processing: pre-emphasis, framing, and windowing.
- Perform the Fast Fourier Transform (FFT) on each frame.
- Pass the power spectrum through a bank of Mel filters.
- Take the logarithm of the filter-bank energies.
- Apply the Discrete Cosine Transform (DCT) to obtain the MFCC coefficients.
4.2.2. Improved BLS Based on Residual Block and Mutual Similarity Criterion (RMSC-BLS)
- The design of residual block
- Mutual similarity criterion (MSC)
Algorithm 1: The procedure of RMSC-BLS |
Input: training set {X, Y}, number of feature nodes , number of enhancement nodes , node subset = . |
Output: Classification result |
1. for do 2. Randomly generate and ; 3. Calculate by Formula (1); 4. end // Obtained the feature nodes Z. |
5. for j do 6. Randomly generate and ; 7. Calculate by Formula (2); 8. end // Obtained the enhancement nodes H. 9. Obtain Nodes Layer () according to the Formula (8); |
10. Caculate correlation for each node in according to the Formula (9); 11. Sort the correlation and select the top nodes as nodes subset ; 12. Set the input for BLS; 13. Calculate with Formula (6); 14. Calculate the weight matrix with Formula (5); 15. Obtained with Formula (3); 16. Output . |
5. Experiment and Result Analysis
5.1. Experimental Design and Environment
5.2. Analysis of Experiment Results
5.2.1. The Results of RMSC-BLS
5.2.2. Comparison of RMSC-BLS with Other Methods
5.3. Discussion
6. Limitations and Future Scope
- (1)
- Extract more different features and extend the method to these features.
- (2)
- The categories and sample size of birdsongs need to be expanded. The RMSC-BLS model will be extended to encompass a wider range of birdsongs as well as other audio recognition applications.
- (3)
- The weights of the input layer and feature nodes in the BLS, as well as the weights from feature nodes to enhancement nodes, are randomly generated and not interpretable. Therefore, future research will further optimize these two parameters.
- (4)
- Establish the connection between bird species identification results and bird biodiversity assessment indicators to explore the relationship between diversity indices. The cross-species identification contributes to a broader understanding of bird diversity and interactions within ecosystems.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, Q.V.; Ming, L.U. Construction of Urban Ecological Security Pattern Based on Biodiversity Conservation. Urban Dev. Stud. 2017, 24, 134–137. [Google Scholar]
- Hu, Y.W. Research on Feature Extraction and Classification of Audio Signals. Master’s Thesis, Kunming University of Science and Technology, Kunming, China, 2018. [Google Scholar]
- Brooker, S.A.; Stephens, P.A.; Whittingham, M.J.; Willis, S.G. Automated detection and classification of birdsong: An ensemble approach. Ecol. Indic. 2020, 117, 106609. [Google Scholar] [CrossRef]
- Clemins, P.; Trawicki, M.; Adi, K.; Tao, J.; Johnson, M. Generalized perceptual features for vocalization analysis across multiple species. In Proceedings of the 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings, IEEE, Toulouse, France, 14–19 May 2006. [Google Scholar] [CrossRef]
- Selin, A.; Turunen, J.; Tanttu, J.T. Wavelets in recognition of bird sounds. EURASIP J. Adv. Signal Process. 2006, 2007, 1–9. [Google Scholar] [CrossRef]
- Cai, J.; Ee, D.; Pham, B.; Roe, P.; Zhang, J. Sensor network for the monitoring of ecosystem: Bird species recognition. In Proceedings of the 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information IEEE, Melbourne, VIC, Australia, 3–6 December 2007; pp. 293–298. [Google Scholar] [CrossRef]
- Fagerlund, S. Bird species recognition using support vector machines. EURASIP J. Adv. Signal Process. 2007, 2007, 1–8. [Google Scholar] [CrossRef]
- Ren, Y.; Johnson, M.T.; Clemins, P.J.; Darre, M.; Glaeser, S.S.; Osiejuk, T.S.; Out-Nyarko, E. A framework for bioacoustic vocalization analysis using hidden Markov models. Algorithms 2009, 2, 1410–1428. [Google Scholar] [CrossRef]
- Potamitis, I.; Ntalampiras, S.; Jahn, O.; Riede, K. Automatic bird sound detection in long real-field recordings: Applications and tools. Appl. Acoust. 2014, 80, 1–9. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 60, 1097–1105. [Google Scholar] [CrossRef]
- Issa, D.; Demirci, M.F.; Yazici, A. Speech emotion recognition with deep convolutional neural networks. Biomed. Signal Process. Control. 2020, 59, 101894. [Google Scholar] [CrossRef]
- Chang, C.C.; Chang, T.Y.P.; Xu, Y.G.; Wang, M.L. Structural damage detection using an iterative neural network. J. Intell. Mater. Syst. Struct. 2000, 11, 32–42. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Liu, Z. Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 10–24. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Liu, Z.; Feng, S. Universal approximation capability of broad learning system and its structural variations. IEEE Trans Neural Netw. Learn. Syst. 2019, 30, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xu, L. Application of local receptive field based broad learning system. Comput. Eng. Appl. 2019, 56, 162–167. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, J.; Chen, C.L.P. Broad learning system:feature extraction based on K-means clustering algorithm. In Proceedings of the 4th International Conference on Information, Cybernetics and Computational Social Systems, Piscataway, NJ, USA, 24–26 July 2017; pp. 683–687. [Google Scholar] [CrossRef]
- Li, W.; Yu, Z. Applicationof broad learning system in discrimination of mushroom toxicity. Mod. Food Sci. Technol. 2019, 35, 267–272. [Google Scholar] [CrossRef]
- Fan, X.-N.; Zhang, S.-W. LPI-BLS:predicting IncRNA-proteininteractions with a broad learning system-based stacked ensemble clas-sifier. Neurocomputing 2019, 370, 88–93. [Google Scholar] [CrossRef]
- Ren, C.; Yuan, C.; Sun, Y.; Liu, Z.; Chen, J. Research of broad learning system. Appl. Res. Comput. 2021, 38, 2258–2267. [Google Scholar] [CrossRef]
- Logan, B. Mel frequency cepstral coefficients for music modeling. Int. Soc. Music. Inf. Retr. 2000, 270, 11. [Google Scholar]
- Makhoul, J. Linear prediction: A tutorial review. Proc. IEEE Inst. Electr. Electron Eng. 1975, 63, 561–580. [Google Scholar] [CrossRef]
- Xie, J.J.; Li, W.B.; Zhang, J.G.; Ding, C.Q. Bird species recognition method based on Chirplet spectrogram feature and deep learning. J. Beijing For. Univ. 2018, 40, 122–127. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Lv, D.J.; Lu, J.; Xie, S.S.; Zi, J.L.; Yin, Y.; Xu, H.F. Birdsong classification based on ensemble multi-scale convolutional neural network. Sci. Rep. 2022, 12, 8636. [Google Scholar] [CrossRef]
- Stowell, D.; Plumbley, M.D. Automatic large-scale classification of bird sounds is strongly improved by unsupervised feature learning. PeerJ 2014, 2, e488. [Google Scholar] [CrossRef]
- Wang, E.; He, D. Bird recognition based on MFCC and dual-GMM. Comput. Eng. Des. 2014, 35, 1868–1871+1881. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Y.; Huangfu, L.; Fang, W.Q. Design of Synthesized Bird Sounds Classifier Based on Multi Feature Extraction Classifiers and Time-frequency Chat. Res. Explor. Lab. 2018, 37, 81–86+91. [Google Scholar]
- Yan, N.; Chen, A.; Zhou, G.; Zhang, Z.; Liu, X.; Wang, J.; Liu, Z.; Chen, W. Birdsong classification based on multi-feature fusion. Multimed. Tools. Appl. 2021, 80, 36529–36547. [Google Scholar] [CrossRef]
- Bai, J.; Chen, C.; Chen, J. Xception Based Method for Bird Sound Recognition of BirdCLEF 2020. Conference and Labs of the Evaluation Forum, 2020. Available online: https://api.semanticscholar.org/CorpusID:225073815 (accessed on 25 September 2022).
- Gupta, G.; Kshirsagar, M.; Zhong, M.; Gholami, S.; Ferres, J.L. Comparing recurrent convolutional neural networks for large scale bird species classification. Sci. Rep. 2021, 11, 17085. [Google Scholar] [CrossRef]
- Ye, R.; Kong, Q.; Li, D.; Chen, Y.; Zhang, Y.; Liu, C. Shrimp Freshness Detection Method Based on Broad Learning System. Spectrosc. Spectr. Anal. 2022, 42, 164–169. [Google Scholar]
- Zhu, Y.; Yan, X.; Shen, X.; Lu, Z. Fatigue driving detection based on cascade broad learning. Comput. Eng. Des. 2020, 41, 537–541. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, X.; Liu, H.; Sun, F. Cascade broad learning for multi-modal material recognition. CAAI Trans. Intell. Syst. 2020, 15, 787–794. [Google Scholar]
- Huang, P.-Q. Research on Design Method of Broad Neural Network. Master’s Thesis, Wuhan University of Science and Technology, Wuhan, China, 2020. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, B.; Wang, S.; Wang, W. Broad learning system based on maximum correntropy criterion. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3083–3097. [Google Scholar] [CrossRef]
- Zhang, T.-L.; Chen, R.; Yang, X.; Guo, S. Rich feature combination for cost-based broad learning system. IEEE Access 2018, 7, 160–172. [Google Scholar] [CrossRef]
- Ye, H.; Li, H.; Chen, C.L.P. Adaptive deep cascade broad learning system and its application in image denoising. IEEE Trans. Cybern. 2021, 51, 4450–4463. [Google Scholar] [CrossRef]
- Han, M.; Feng, S.; Chen, C.L.P.; Xu, M.; Qiu, T. Structured manifold broad learning system: A manifold perspective for large-scale chaotic time series analysis and prediction. IEEE Trans. Knowl. Data Eng. 2019, 31, 1809–1821. [Google Scholar] [CrossRef]
- Ding, Z.; Chen, Y.; Li, N.; Zhao, D.; Sun, Z.; Chen, C.L.P. BNAS: Efficient neural architecture search using broad scalable architecture. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 5004–5018. [Google Scholar] [CrossRef]
- Xie, R.; Wang, S. Downsizing and enhancing broad learning systems by feature augmentation and residuals boosting. Complex Intell. Syst. 2020, 6, 411–429. [Google Scholar] [CrossRef]
- Ma, J.; Fan, J.; Wang, L.; Chen, C.P.; Yang, B.; Sun, F.; Zhou, J.; Zhang, X.; Gao, F.; Zhang, N. Factorization of broad expansion for broad learning system. Inf. Sci. 2023, 630, 271–285. [Google Scholar] [CrossRef]
- Pao, Y.H.; Park, G.H.; Sobajic, D.J. Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 1994, 6, 163–180. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998, 13, 18–28. [Google Scholar] [CrossRef]
- Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [Google Scholar] [CrossRef]
- Xie, S.; Zhang, Y.; Lv, D.; Xu, H.; Liu, J.; Yin, Y. Birdsongs recognition based on ensemble ELM with multi-strategy differential evolution. Sci. Rep. 2022, 12, 9739. [Google Scholar] [CrossRef]
- Wang, H.L.; Xu, Y.F.; Yu, Y.; Lin, Y.C.; Ran, J.H. An efficient model for a vast number of bird species identification based on acoustic features. Animals 2022, 12, 2434. [Google Scholar] [CrossRef] [PubMed]
- Murugaiya, R.; Abas, P.E.; De Silva, L.C. Probability enhanced entropy (PEE) novel feature for improved bird sound classification. Mach. Intell. Res. 2022, 19, 52–62. [Google Scholar] [CrossRef]
- Chakraborty, K.; Tyagi, S.; Shridevi, S. Comparative analysis of deep learning models for bird song classification. In AIP Conference Proceedings; AIP Publishing: Chennai, India, 2023; Volume 2788. [Google Scholar] [CrossRef]
- Mohanty, R.; Mallik, B.K.; Solanki, S.S. Automatic bird species recognition system using neural network based on spike. Appl. Acoust 2020, 161, 107177.1–107177.8. [Google Scholar] [CrossRef]
- Carvalho, S.; Gomes, E.F. Automatic Classification of Bird Sounds: Using MFCC and Mel Spectrogram Features with Deep Learning. Vietnam. J. Comput. Sci. 2023, 10, 39–54. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, M.Y. Handcrafted features and late fusion with deep learning for bird sound classification. Ecol. Inform. 2019, 52, 74–81. [Google Scholar] [CrossRef]
- Nagarajaiah, S.; Basu, B. Output only modal identification and structural damage detection using time frequency & wavelet techniques. Earthq. Eng. Eng. Vib. 2009, 8, 583–605. [Google Scholar] [CrossRef]
- Griffin, D.; Lim, J. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1974, 32, 236–243. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, M.L.; Qu, W.; Long, S.R.; Shen, S.S. Applications of HilbertHuang transform to non-stationary financial time series analysis. Appl. Stoch. Model. Bus. 2003, 19, 245–268. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y.; Lyu, D.; Lu, J.; Xie, S.; Zi, J.; Chen, X.; Zhao, Y. Research on birdsong classification based on multi-view ensemble. J. Nanjing For. Univ. 2023, 47, 23–30. [Google Scholar] [CrossRef]
ID | Genus | Family | Order | Latin Name | Training Set | Test Set | Total |
---|---|---|---|---|---|---|---|
1 | Francolinus | Phasianidae | Galliformes | Francolinus pintadeanus | 552 | 138 | 690 |
2 | Coturnix | Phasianidae | Galliformes | Coturnix | 1093 | 274 | 1367 |
3 | Phasianus | Phasianidae | Galliformes | Phasianus colchicus | 800 | 201 | 1001 |
4 | Lagopus | Phasianidae | Galliformes | Lagopus muta | 778 | 195 | 973 |
5 | Lyrurus | Phasianidae | Galliformes | Lyrurus tetrix | 944 | 236 | 1180 |
6 | Cygnus | Anatidae | Anseriformes | Cygnus cygnus | 908 | 227 | 1135 |
7 | Asio | Strigidae | Strigiformes | Asio otus | 556 | 140 | 696 |
8 | Grus | Gruidae | Gruiformes | Grus grus | 606 | 152 | 758 |
9 | Numenius | Scolopacidae | Charadriiformes | Numenius phaeopus | 1441 | 361 | 1802 |
10 | Larus | Laridae | Charadriiformes | Larus canus | 553 | 139 | 692 |
11 | Accipiter | Accipitridae | Ciconiiformes | Accipiter nisus | 852 | 214 | 1066 |
12 | Accipiter | Accipitridae | Ciconiiformes | Accipiter gentilis | 517 | 130 | 647 |
13 | Falcons | Falconidae | Falconiformes | Falco tinnunculus | 642 | 161 | 803 |
14 | Phylloscopus | Sylviidae | Passeriformes | Phylloscopus trochiloides | 817 | 205 | 1022 |
15 | Spelaeornis | Sylviidae | Passeriformes | Elachura formosa | 678 | 170 | 848 |
16 | Leiothrix | Sylviidae | Passeriformes | Leiothrix lutea (Scopoli) | 603 | 151 | 754 |
Classifier | Relevant Parameter Settings |
---|---|
BLS | activation function: tanh, epoch:50, N1:10, N2:100, N3:1000, C: 2−30; s: 0.8 |
ELM | hidden_layer_size:1000, activation function: sigmoid |
MLP | hidden_layer_size:100, activation function: ReLU alpha: 0.0001, solver: Adam, learning_rate_init: 0.001, max_iter: 200 |
RF | n_estimators:100, random_state: 0, criterion: gini, max_depth: none |
SVM | kernel: rbf, gamma: auto, catch_size: 200, max_iter: −1, degree: 3 |
Model | Features | Performance (%) | |||
---|---|---|---|---|---|
Acc (mean ± std) | F1 (mean ± std) | Pre (mean ± std) | Recall (mean ± std) | ||
BLS | MFCC | 74.77 ± 0.37 | 74.39 ± 0.41 | 75.80 ± 0.39 | 73.84 ± 0.43 |
74.79 ± 0.29 | 74.33 ± 0.31 | 75.69 ± 0.30 | 73.81 ± 0.32 | ||
89.99 ± 0.31 | 89.50 ± 0.32 | 90.39 ± 0.34 | 88.94 ± 0.31 | ||
Res-BLS | MFCC | 74.90 ± 0.37 | 74.53 ± 0.40 | 75.97 ± 0.38 | 73.99 ± 0.41 |
75.48 ± 0.32 | 75.06 ± 0.36 | 76.45 ± 0.36 | 74.51 ± 0.36 | ||
90.07 ± 0.29 | 89.58 ± 0.32 | 90.47 ± 0.34 | 89.02 ± 0.32 | ||
RMSC-BLS | MFCC | 78.85 ± 0.21 | 78.62 ± 0.22 | 79.50 ± 0.23 | 78.45 ± 0.22 |
79.29 ± 0.33 | 79.07 ± 0.34 | 79.89 ± 0.34 | 78.85 ± 0.34 | ||
92.37 ± 0.25 | 91.99 ± 0.27 | 92.61 ± 0.29 | 91.59 ± 0.27 |
Model | Performance (%) | |||
---|---|---|---|---|
Acc (mean ± std) | F1 (mean ± std) | Pre (mean ± std) | Recall (mean ± std) | |
Res-BLS | 90.07 ± 0.29 | 89.58 ± 0.32 | 90.47 ± 0.34 | 89.02 ± 0.32 |
MSC-BLS | 90.04 ± 0.30 | 89.56 ± 0.32 | 90.48 ± 0.31 | 88.97 ± 0.33 |
RMSC-BLS | 92.37 ± 0.25 | 91.99 ± 0.27 | 92.61 ± 0.29 | 91.59 ± 0.27 |
Model | Performance (%) | |||
---|---|---|---|---|
Acc | F1 | Pre | Recall | |
RF | 91.33 | 91.13 | 92.75 | 90.06 |
SVM | 85.47 | 84.63 | 86.31 | 83.75 |
MLP | 90.84 | 90.25 | 90.88 | 90.19 |
ELM | 86.92 | 86.18 | 87.57 | 85.52 |
RMSC-BLS | 92.37 | 91.99 | 92.61 | 91.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Zhang, Y.; Lv, D.; Xie, S.; Fu, Y.; Lv, D.; Zhao, Y.; Li, Z. Improved Broad Learning System for Birdsong Recognition. Appl. Sci. 2023, 13, 11009. https://doi.org/10.3390/app131911009
Lu J, Zhang Y, Lv D, Xie S, Fu Y, Lv D, Zhao Y, Li Z. Improved Broad Learning System for Birdsong Recognition. Applied Sciences. 2023; 13(19):11009. https://doi.org/10.3390/app131911009
Chicago/Turabian StyleLu, Jing, Yan Zhang, Danjv Lv, Shanshan Xie, Yixing Fu, Dan Lv, Youjie Zhao, and Zhun Li. 2023. "Improved Broad Learning System for Birdsong Recognition" Applied Sciences 13, no. 19: 11009. https://doi.org/10.3390/app131911009
APA StyleLu, J., Zhang, Y., Lv, D., Xie, S., Fu, Y., Lv, D., Zhao, Y., & Li, Z. (2023). Improved Broad Learning System for Birdsong Recognition. Applied Sciences, 13(19), 11009. https://doi.org/10.3390/app131911009