Experimental Study of the Self-Potential Response Characteristics of Anisotropic Bituminous Coal during Deformation and Fracturing
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental System
2.2. Coal Sample Preparation
2.3. Experimental Procedure
3. Results
3.1. Response Characteristics of Self-Potential, Stress and Acoustic Emission
3.2. Response Characteristics of Self-Potential Difference and Stress
3.3. Variation in Self-Potential with Time for Bituminous Coal Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, L. Scientific conception of precision coal mining. J. China Coal Soc. 2017, 42, 1–7. [Google Scholar] [CrossRef]
- He, M.C.; Xie, H.P.; Peng, S.P.; Jiang, Y.D. Study on rock mechanics in deep mining engineering. Chin. J. Rock Mech. Eng. 2005, 24, 2803–2813. [Google Scholar] [CrossRef]
- Qian, Q.H. The characteristic scientific phenomena of engineering response to deep rock mass and the implication if deepness. J. East China Inst. Tech. 2004, 27, 1–5. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, D.N.; Peng, S.P. Development Trends and Strategic Research for China’s Energy Engineering Science and Technology to 2035. Chin. Eng. Sci. 2017, 19, 64–72. [Google Scholar] [CrossRef]
- Wang, E.Y.; He, X.Q.; Dou, L.M.; Zhou, S.N.; Nie, B.S.; Liu, Z.T. Electromagnetic radiation characteristics of coal and rocks during excavation in coal mine and their application. Chin. J. Geophys. 2005, 48, 216–221. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Pan, Y.S.; Liu, Y.S.; Luo, H. Experimental study of charge induction of coal samples under uniaxial compression. Chin. J. Rock Mech. Eng. 2011, 30, 306–312. [Google Scholar]
- Li, Z.H. Study on Surface Potential Effect and Its Mechanism of Coal during Deformation and Fracture under Load. Ph.D. Thesis, China University of Mining & Technology, Xuzhou, China, 2007. [Google Scholar]
- Dou, L.M.; He, X.Q.; Ren, T.; He, J.; Wang, Z.Y. Mechanism of coal-gas dynamic disasters caused by the superposition of static and dynamic loads and its control technology. J. China Univ. Min. Tech. 2018, 47, 48–59. [Google Scholar]
- Hu, Q.T.; Zhou, S.N.; Zhou, X.Q. Mechanical mechanism of coal and gas outburst process. J. China Coal Soc. 2008, 33, 1368–1372. [Google Scholar] [CrossRef]
- Jiang, Y.D.; Pan, Y.S.; Jiang, F.X.; Dou, L.M.; Ju, Y. State of the art review on mechanism and prevention of coal bumps in China. J. China Coal Soc. 2014, 39, 205–213. [Google Scholar] [CrossRef]
- Khatiashvili, N.G.; Perel’man, M.E. On the mechanism of seismo-electromagnetic phenomena and their possible role in the electromagnetic radiation during periods of earthquakes, foreshocks and aftershocks. Phys. Earth Planet. Inter. 2014, 57, 169–177. [Google Scholar] [CrossRef]
- Chen, D.Y.; Zhang, D.H.; Sun, Z.J. Studies of natural potential changes in rock sample under stress. Chin. J. Geophys. 1981, 24, 242–244. [Google Scholar]
- Wu, X.P.; Shi, X.J.; Guo, Z.Q. Study of the electrification of granite samples under compression. Chin. J. Geophys. 1990, 2, 208–211. [Google Scholar]
- Enomoto, Y.; Shimamoto, T.; Tsutumi, A. Rapid electric charge fluctuation prior to rock fracturing: Its potential use for an immediate earthquake precursor. In International Workshop on Electromagnetic Phenomena Related to Earthquake Prediction; Terra Scientific Publishing Company: Tokyo, Japan, 1993; pp. 64–65. [Google Scholar]
- Yoshida, S.; Clint, O.C.; Sammonds, P.R. Electric potential changes prior to shear fracture in dry and saturated rocks. Geophys. Res. Lett. 1998, 25, 1577–1580. [Google Scholar] [CrossRef]
- Hao, J.Q.; Liu, L.Q.; Long, H.L.; Ma, S.L.; Guo, Z.Q.; Qian, S.Q.; Zhou, J.G. New result of the experiment on self-potential change of rocks under biaxial compression. Chin. J. Geophys. 2004, 47, 475–482. [Google Scholar] [CrossRef]
- Eccles, D.; Sammonds, P.; Clint, O. Laboratory studies of electrical potential during rock failure. Int. J. Rock Mech. Min. 2005, 42, 933–949. [Google Scholar] [CrossRef]
- Takeuchi, A.; Bobby, W.S.L.; Friedemann, T.F. Current and surface potential induced by stress-activated positive holes in igneous rocks. Phys. Chem. Earth 2006, 31, 240–247. [Google Scholar] [CrossRef]
- Aydin, A.; Prance, R.J.; Prance, H.; Harland, C.J. Observation of pressure stimulated voltages in rocks using an electric potential sensor. Appl. Phys. Lett. 2009, 95, 12. [Google Scholar] [CrossRef]
- Triantis, D.; Stavrakas, I.; Kyriazopoulos, A.; Hloupis, G.; Agioutantis, Z. Pressure stimulated electrical emissions from cement mortar used as failure predictors. Int. J. Fract. 2012, 175, 53–61. [Google Scholar] [CrossRef]
- Li, Z.H.; Wang, E.Y.; Song, X.Y.; Hu, S.B. Study on strain localization and surface potential distribution law of coal samples fracturing. J. China Coal Soc. 2012, 37, 2043–2047. [Google Scholar]
- Archer, J.W.; Dobbs, M.R.; Aydin, A.; Reeves, H.J.; Prance, R.J. Measurement and correlation of acoustic emissions and pressure stimulated voltages in rock using an electric potential sensor. Int. J. Rock Mech. Min. 2016, 89, 26–33. [Google Scholar] [CrossRef]
- Yin, S.; Li, Z.H.; Niu, Y.; Qiu, L.M.; Sun, Y.H.; Cheng, F.Q.; Wei, Y. Experimental study on the characteristics of potential for coal rock evolution under loading. J. China Coal Soc. 2017, 42, 97–103. [Google Scholar]
- Liu, J.; Liu, S.D.; Cao, Y. Self-potential characteristics in deep rock mass damage based on point discharge mechanism. Chin. J. Geophys. 2018, 61, 323–330. [Google Scholar] [CrossRef]
- Yang, C. Study on the Time-Frequency Electrical Properties of Coal Rock Mass. Ph.D. Thesis, China University of Mining & Technology, Xuzhou, China, 2017. [Google Scholar]
- Wang, E.Y.; Li, Z.H.; Liu, Z.T.; Li, Y.N.; Song, X.Y. Experimental study on surface potential effect of coal under load. Chin. J. Geophys. 2009, 52, 1318–1325. [Google Scholar] [CrossRef]
- Yang, C.; Liu, S.D.; Liu, J.; Yang, H.P.; Xie, J.Y. Characteristics of self-potential of coal samples under uniaxial compression. J. Appl. Geophys. 2019, 168, 1–11. [Google Scholar] [CrossRef]
- Liu, B.X.; Huang, J.L.; Wang, Z.Y.; Liu, L. Study on damage evolution and acoustic emission character of coal-rock under uniaxial compression. Chin. J. Rock Mech. Eng. 2009, 28, 3234–3238. [Google Scholar]
- Wang, X.; Li, J.C.; Zhao, X.B.; Yue, L. Propagation characteristics and prediction of blast-induced vibration on closely spaced rock tunnels. Tunn. Undergr. Space Technol. 2022, 123, 104416. [Google Scholar] [CrossRef]
- Li, J.C.; Yuan, W.; Li, H.B.; Zou, C.J. Study on dynamic shear deformation behaviors and test methodology of sawtooth-shaped rock joints under impact load. Int. J. Rock Mech. Min. 2022, 158, 105210. [Google Scholar] [CrossRef]
- Bi, S.K.; Zhang, H.W.; Zhang, Y.; Lu, L.; Ma, Y.S.; Gao, X.B. Experimental study on coal resistivity changing anisotropy during uniaxial compression. Saf. Coal Mines 2016, 47, 35–38. [Google Scholar] [CrossRef]
Sample Name | Diameter (mm) | Height (mm) | Quality (g) | Loading Rate (mm/s) |
---|---|---|---|---|
A1 | 49.79 | 99.31 | 246.6 | 0.001 |
A2 | 49.79 | 99.69 | 244.5 | 0.001 |
A3 | 49.80 | 99.56 | 238.3 | 0.002 |
A4 | 49.80 | 99.62 | 250.7 | 0.002 |
A5 | 49.79 | 99.49 | 247.8 | 0.005 |
A6 | 49.74 | 99.67 | 244.1 | 0.002 |
B1 | 49.84 | 99.45 | 275.3 | 0.001 |
B2 | 49.43 | 99.81 | 242.0 | 0.005 |
B3 | 49.35 | 99.78 | 239.5 | 0.005 |
B4 | 49.58 | 99.70 | 250.9 | 0.005 |
B5 | 49.83 | 99.97 | 254.3 | 0.002 |
B6 | 49.46 | 99.96 | 241.5 | 0.002 |
R2 * | CH25 | CH26 | CH27 | CH28 | CH29 | CH30 | CH31 | CH32 | Loading Rate (mm/s) | Stress Interval (MPa) |
---|---|---|---|---|---|---|---|---|---|---|
R2 (A1) | 0.527 | 0.421 | 0.055 | 0.0006 | 0.087 | 0.606 | 0.931 | 0.124 | 0.001 | ≤4.899 |
R2 (A2) | 0.465 | 0.658 | 0.817 | 0.778 | 0.707 | 0.320 | 0.249 | 0.882 | 0.001 | ≤5.523 |
R2 (A3) | 0.017 | 0.280 | 0.388 | 0.902 | 0.956 | 0.853 | 0.958 | 0.783 | 0.002 | ≤11.352 |
R2 (A4) | 0.055 | 0.490 | 0.183 | 0.041 | 0.908 | 0.932 | 0.941 | 0.882 | 0.002 | ≤3.853 |
R2 (A5) | 0.362 | 0.153 | 0.247 | 0.002 | 0.007 | 0.016 | 0.126 | 0.124 | 0.005 | ≤2.833 |
R2 (A6) | 0.304 | 0.447 | 0.778 | 0.769 | 0.780 | 0.638 | 0.168 | 0.942 | 0.002 | ≤4.585 |
R2 (B1) | 0.091 | 0.786 | 0.954 | 0.935 | 0.580 | 0.631 | 0.942 | 0.964 | 0.001 | ≤31.251 |
R2 (B2) | 0.347 | 0.977 | 0.910 | 0.664 | 0.159 | 0.586 | 0.194 | 0.582 | 0.005 | ≤20.303 |
R2 (B3) | 0.981 | 0.902 | 0.186 | 0.632 | 0.890 | 0.620 | 0.798 | 0.848 | 0.005 | ≤14.706 |
R2 (B4) | 0.894 | 0.658 | 0.030 | 0.933 | 0.89 | 0.903 | 0.145 | 0.650 | 0.005 | ≤18.660 |
R2 (B5) | 0.001 | 0.199 | 0.061 | 0.021 | 0.47 | 0.658 | 0.727 | 0.784 | 0.002 | ≤17.518 |
R2 (B6) | 0.388 | 0.958 | 0.960 | 0.125 | 0.874 | 0.820 | 0.065 | 0.821 | 0.002 | ≤20.486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, S.; Yang, C.; Li, J. Experimental Study of the Self-Potential Response Characteristics of Anisotropic Bituminous Coal during Deformation and Fracturing. Appl. Sci. 2023, 13, 1095. https://doi.org/10.3390/app13021095
Zhang J, Liu S, Yang C, Li J. Experimental Study of the Self-Potential Response Characteristics of Anisotropic Bituminous Coal during Deformation and Fracturing. Applied Sciences. 2023; 13(2):1095. https://doi.org/10.3390/app13021095
Chicago/Turabian StyleZhang, Jun, Shengdong Liu, Cai Yang, and Juanjuan Li. 2023. "Experimental Study of the Self-Potential Response Characteristics of Anisotropic Bituminous Coal during Deformation and Fracturing" Applied Sciences 13, no. 2: 1095. https://doi.org/10.3390/app13021095
APA StyleZhang, J., Liu, S., Yang, C., & Li, J. (2023). Experimental Study of the Self-Potential Response Characteristics of Anisotropic Bituminous Coal during Deformation and Fracturing. Applied Sciences, 13(2), 1095. https://doi.org/10.3390/app13021095