Investigation of Cutting Path Effect on Spindle Vibration and AE Signal Features for Tool Wear Monitoring in Micro Milling
Abstract
:1. Introduction
2. Experimental Setup
3. System Development for Verification
4. Results and Discussion
4.1. Path Effect on Signal Features
4.2. Sensitivity Analysis of Signal Features to Tool Wear
4.3. Reduction of Path Effect by Signal Length and Bandwidth of Feature
4.4. Classification of Tool Wear Condition for Various Cutting Paths and Sensor Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Byrne, G.; Dornfeld, D.; Inasaki, I.; Ketteler, G.; König, W.; Teti, R. Tool condition monitoring (TCM)-the status of research and industrial application. Ann. CIRP 1995, 44, 541–567. [Google Scholar] [CrossRef]
- Dimla, D.E., Sr. Sensor signals for tool-wear monitoring in metal cutting operations—A review of methods. Int. J. Mach. Tools Manuf. 2000, 40, 1073–1098. [Google Scholar] [CrossRef]
- Rehorn, A.; Jiang, J.; Orban, P. State-of-the-art methods and results in tool condition monitoring: A review. Int. J. Adv. Manuf. Technol. 2005, 26, 693–710. [Google Scholar] [CrossRef]
- Hopkins, C.; Hosseini, A. A Review of Developments in the Fields of the Design of Smart Cutting Tools, Wear Monitoring, and Sensor Innovation. FAC Pap. OnLine 2019, 52, 352–357. [Google Scholar] [CrossRef]
- Nath, C. Integrated Tool Condition Monitoring Systems and Their Applications: A Comprehensive Review. Procedia Manuf 2020, 48, 852–863. [Google Scholar] [CrossRef]
- Wong, S.Y.; Chuah, J.H.; Yap, H.J. Technical data-driven tool condition monitoring challenges for CNC milling: A review. Int. J. Adv. Manuf. Technol. 2020, 107, 4837–4857. [Google Scholar] [CrossRef]
- Serin, G.; Sener, B.; Ozbayoglu, A.M.; Unver, H.O. Review of tool condition monitoring in machining and opportunities for deep learning. Int. J. Adv. Manuf. Technol. 2020, 109, 953–974. [Google Scholar] [CrossRef]
- Pimenov, D.Y.; Bustillo, A.; Wojciechowski, S.; Sharma, V.S.; Gupta, M.K.; Kuntoğlu, M. Artificial intelligence systems for tool condition monitoring in machining: Analysis and critical review. J. Intell. Manuf. 2022. [Google Scholar] [CrossRef]
- Mohamed, A.; Hassan, M.; M’Saoubi, R.; Attia, H. Tool Condition Monitoring for High-Performance Machining Systems—A Review. Sensors 2022, 22, 2206. [Google Scholar] [CrossRef]
- Al-Sulaiman, F.A.; Abdul Baseer, M.; Sheikh, A.K. Use of electrical power for online monitoring of tool condition. J. Mater. Process. Technol. 2005, 166, 364–371. [Google Scholar] [CrossRef]
- Yuan, J.; Liu, L.; Yang, Z.; Bo, J.; Zhang, Y. Tool wear condition monitoring by combining spindle motor current signal analysis and machined surface image processing. Int. J. Adv. Manuf. Technol. 2021, 116, 2697–2709. [Google Scholar] [CrossRef]
- Tansel, I.N.; Arkan, T.T.; Bao, W.Y.; Mahendrakar, N.; Shisler, B.; Smith, D.; McCool, M. Tool wear estimation in micro-machining—Part I: Tool usage-cutting force relationship. Int. J. Mach. Tools Manuf. 2000, 40, 599–608. [Google Scholar] [CrossRef]
- Zhu, K.; Hong, G.S.; Wong, Y.S.; Wang, W. Cutting force denoising in micro-milling tool condition monitoring. Int. J. Prod. Res. 2008, 46, 4391–4408. [Google Scholar] [CrossRef]
- Li, W.; Liu, T. Time varying and condition adaptive hidden Markov model for tool wear state estimation and remaining useful life prediction in micro-milling. Mech. Syst. Signal Process. 2019, 131, 689–702. [Google Scholar] [CrossRef]
- Li, S.; Zhu, K. In-situ tool wear area evaluation in micro milling with considering the influence of cutting force. Mech. Syst. Signal Process. 2021, 161, 107971. [Google Scholar] [CrossRef]
- Delin Liu, D.; Liu, Z.; Zhao, J.; Song, Q.; Ren, X.; Ma, H. Tool wear monitoring through online measured cutting force and cutting temperature during face milling Inconel 718. Int. J. Adv. Manuf. Technol. 2022, 122, 729–740. [Google Scholar]
- Liu, T.; Wang, Q.; Wang, W. Micro-milling tool wear monitoring via nonlinear cutting force model. Micromachines 2022, 13, 943. [Google Scholar] [CrossRef]
- Hsieh, W.; Lu, M. Application of back propagation neural network for spindle vibration based tool wear monitoring in micro milling. Int. J. Adv. Manuf. Technol. 2012, 61, 53–61. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Lei, J.; Li, X.; Tian, F. Tool wear monitoring with vibration signals based on short-time Fourier transform and deep convolutional neural network in milling. Math. Probl. Eng. 2021, 2021, 9976939. [Google Scholar] [CrossRef]
- Ma, K.; Wang, G.; Yang, K.; Hu, M.; Li, J. Tool wear monitoring for cavity milling based on vibration singularity analysis and stacked LSTM. Int. J. Adv. Manuf. Technol. 2022, 120, 4023–4039. [Google Scholar] [CrossRef]
- Sun, W.; Zhou, J.; Sun, B.; Zhou, Y.; Jiang, Y. Markov transition field enhanced deep domain adaptation network for milling tool condition monitoring. Micromachines 2022, 13, 873. [Google Scholar] [CrossRef]
- Lee, D.E.; Hwang, I.; Valente, C.M.O.; Oliveira, J.F.G.; Dornfeld, D.A. Precision manufacturing process monitoring with acoustic emission. Int. J. Mach. Tools Manuf. 2006, 46, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Prakash, M.; Kanthababu, M. In-process tool condition monitoring using acoustic emission sensor in microendmilling. Mach. Sci. Technol. 2013, 17, 209–227. [Google Scholar] [CrossRef]
- Hu, M.; Ming, W.; An, Q.; Chen, M. Tool Wear Monitoring in Milling of Titanium Alloy Ti-6Al-4V under MQL conditions based on a new tool wear categorization method. Int. J. Adv. Manuf. Technol. 2019, 104, 4117–4128. [Google Scholar] [CrossRef]
- Twardowski, P.; Tabaszewski, M.; Wiciak-Pikuła, M.; Felusiak-Czyryca, A. Identification of tool wear using acoustic emission signal and machine learning methods. Precis. Eng. 2021, 72, 738–744. [Google Scholar] [CrossRef]
- Wan, B.-S.; Lu, M.-C.; Chiou, S.-J. Analysis of spindle AE signals and development of ae-based tool wear monitoring system in micro-milling. J. Manuf. Mater. Process. 2022, 6, 42. [Google Scholar] [CrossRef]
- Lu, M.C.; Kannatey-Asibu, E., Jr. Analysis of sound signal generation due to flank wear in turning. J. Manuf. Sci. Eng. 2002, 124, 799–808. [Google Scholar] [CrossRef]
- Ravikumar, S.; Ramachandran, K.I. Tool wear monitoring of multipoint cutting tool using sound signal features signals with machine learning techniques. Mater. Today Proc. 2018, 5, 25720–25729. [Google Scholar] [CrossRef]
- Liu, M.K.; Tseng, Y.H.; Tran, M.Q. Tool wear monitoring and prediction based on sound signal. Int. J. Adv. Manuf. Technol. 2019, 103, 3361–3373. [Google Scholar] [CrossRef]
- Hou, Y.; Sun, B.; Sun, W.; Lei, Z. Tool wear condition monitoring based on a two-layer angle kernel extreme learning machine using sound sensor for milling process. J. Intell. Manuf. 2022, 33, 247–258. [Google Scholar]
- Banda, T.; Farid, A.A.; Li, C.; Jauw, V.L.; Lim, C.S. Application of machine vision for tool condition monitoring and tool performance optimization–a review. Int. J. Adv. Manuf. Technol. 2022, 121, 7057–7086. [Google Scholar] [CrossRef]
- Yang, J.; Duan, J.; Li, T.; Hu, C.; Liang, J.; Shi, T. Tool wear monitoring in milling based on fine-grained image classification of machined surface images. Sensors 2022, 22, 8416. [Google Scholar] [CrossRef]
- Jemielniak, K.; Arrazola, P.J. Application of AE and cutting force signals in tool condition monitoring in micro-milling. CIRP J. Manuf. Sci. 2008, 1, 97–102. [Google Scholar] [CrossRef]
- Gomes, M.C.; Brito, L.C.; Bacci da Silva, M.; Antonio ˆ Viana Duarte, M. Tool wear monitoring in micromilling using Support Vector Machine with vibration and sound sensors. Precis. Eng. 2021, 67, 137–151. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Li, X.; Liu, S.; Yue, C.; Liang, S.Y. An approach for tool wear prediction using customized DenseNet and GRU integrated model based on multi-sensor feature fusion. J. Intell. Manuf. 2022. [Google Scholar] [CrossRef]
- Kannatey-Asibu Jr., E.; Emel, E. Linear discriminant function analysis of acoustic emission signals for cutting tool monitoring. Mech. Syst. Signal Process. 1987, 1, 333–347. [Google Scholar] [CrossRef] [Green Version]
- Abellan-Nebot, J.V.; Subirón, F.R. A review of machining monitoring systems based on artificial intelligence process models. Int. J. Adv. Manuf. 2010, 47, 237–257. [Google Scholar] [CrossRef]
- Sayyad, S.; Kumar, S.; Bongale, A.; Kotecha, K.; Selvachandran, G.; Suganthan, P.N. Tool wear prediction using long short-term memory variants and hybrid feature selection techniques. Int. J. Adv. Manuf. 2022, 121, 6611–6633. [Google Scholar] [CrossRef]
- Du, R.X.; Elbestawi, M.A.; Li, S. Tool condition monitoring in turning using fuzzy set theory. Int. J. Mach. Tools Manuf. 1992, 32, 781–796. [Google Scholar] [CrossRef]
- Yao, Y.; Li, X.; Yuan, Z. Tool wear detection with fuzzy classification and wavelet fuzzy neural network. Int. J. Mach. Tools Manuf. 1999, 39, 1525–1538. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Wong, Y.S.; Hong, G.S. Multi-category micro-milling tool wear monitoring with continuous hidden Markov models. Mech. Syst. Signal Process. 2009, 23, 547–560. [Google Scholar] [CrossRef]
- Ou, J.; Li, H.; Huang, G.; Zhou, Q. A novel order analysis and stacked sparse auto-encoder feature learning method for milling tool wear condition monitoring. Sensors 2020, 20, 2878. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Emel, E.; Kannatey-Asibu, E., Jr. Tool Failure Monitoring in Turning by Pattern Recognition Analysis of AE Signals. J. Eng. Ind. 1988, 110, 137–145. [Google Scholar] [CrossRef]
Tool Diameter (μm) | Feed Rate (μm/Flute) | Spindle Speed (rpm) | Depth of Cut (μm) | Workpiece Material |
---|---|---|---|---|
700 | 2 | 30,000 | 200 | ISO TC 120 (SK2 steel) |
Bandwidth Size 1200 Hz | Straight Line | Square | Circle | ||||||
---|---|---|---|---|---|---|---|---|---|
Sharp | Worn | Average | Sharp | Worn | Average | Sharp | Worn | Average | |
Data Length 0.27 s | |||||||||
X axis | 89 | 100 | 93 | 75 | 100 | 88 | 69 | 100 | 84 |
Y axis | 86 | 100 | 93 | 31 | 100 | 66 | 38 | 100 | 69 |
Z axis | 100 | 100 | 100 | 94 | 100 | 94 | 94 | 100 | 97 |
Signal Length 0.22 s | Straight Line | Square | Circle | ||||||
---|---|---|---|---|---|---|---|---|---|
Sharp | Worn | Average | Sharp | Worn | Average | Sharp | Worn | Average | |
Bandwidth Size | |||||||||
150 Hz | 73 | 91 | 82 | 88 | 75 | 81 | 75 | 56 | 66 |
6000 Hz | 68 | 77 | 73 | 94 | 44 | 69 | 75 | 38 | 56 |
36,000 Hz | 45 | 95 | 70 | 63 | 50 | 56 | 25 | 69 | 47 |
Bandwidth Size 150 Hz | Straight Line | Square | Circle | ||||||
---|---|---|---|---|---|---|---|---|---|
Sharp | Worn | Average | Sharp | Worn | Average | Sharp | Worn | Average | |
Signal Length | |||||||||
0.017 s | 32 | 86 | 59 | 69 | 75 | 72 | 75 | 56 | 66 |
0.27 s | 27 | 100 | 64 | 50 | 100 | 75 | 44 | 100 | 72 |
0.82 s | 50 | 100 | 75 | 69 | 100 | 84 | 88 | 100 | 94 |
2.18 s | 100 | 100 | 100 | 100 | 94 | 97 | 100 | 100 | 100 |
Bandwidth Size 150 Hz | Straight Line | Square | Circle | ||||||
---|---|---|---|---|---|---|---|---|---|
Sharp | Worn | Average | Sharp | Worn | Average | Sharp | Worn | Average | |
Signal Length | |||||||||
0.017 s | 95 | 36 | 66 | 100 | 31 | 66 | 100 | 38 | 69 |
0.27 s | 100 | 100 | 100 | 94 | 100 | 97 | 88 | 100 | 94 |
0.82 s | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
2.18 s | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Bandwidth Size 6000 Hz | Straight Line | Square | Circle | ||||||
---|---|---|---|---|---|---|---|---|---|
Sharp | Worn | Average | Sharp | Worn | Average | Sharp | Worn | Average | |
Signal Length | |||||||||
0.015 s | 59 | 59 | 59 | 94 | 50 | 72 | 75 | 31 | 53 |
0.22 s | 68 | 77 | 73 | 94 | 44 | 69 | 75 | 38 | 56 |
1 s | 55 | 100 | 78 | 88 | 75 | 81 | 75 | 81 | 78 |
1.75 s | 50 | 100 | 75 | 75 | 75 | 75 | 75 | 81 | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-R.; Lu, M.-C. Investigation of Cutting Path Effect on Spindle Vibration and AE Signal Features for Tool Wear Monitoring in Micro Milling. Appl. Sci. 2023, 13, 1107. https://doi.org/10.3390/app13021107
Huang C-R, Lu M-C. Investigation of Cutting Path Effect on Spindle Vibration and AE Signal Features for Tool Wear Monitoring in Micro Milling. Applied Sciences. 2023; 13(2):1107. https://doi.org/10.3390/app13021107
Chicago/Turabian StyleHuang, Ci-Rong, and Ming-Chyuan Lu. 2023. "Investigation of Cutting Path Effect on Spindle Vibration and AE Signal Features for Tool Wear Monitoring in Micro Milling" Applied Sciences 13, no. 2: 1107. https://doi.org/10.3390/app13021107
APA StyleHuang, C.-R., & Lu, M.-C. (2023). Investigation of Cutting Path Effect on Spindle Vibration and AE Signal Features for Tool Wear Monitoring in Micro Milling. Applied Sciences, 13(2), 1107. https://doi.org/10.3390/app13021107