An Accurate, Efficient, and Stable Perspective-n-Point Algorithm in 3D Space
Abstract
:1. Introduction
1.1. Pnp Problems Solved by Linear and Non-Linear Methods
1.2. A Non-Iterative Approach to Optimally Solving PnP Problems
1.3. Problems with Existing PnP Algorithms and Solutions
- (1)
- To prevent singularities in the rotation matrix parametrized by the CGR, a rotation matrix, R1, is constructed, and the rotation matrix, R, parametrized by the CGR is processed using R1.
- (2)
- In this paper, accuracy experiments and noise immunity experiments of the hidden variable method were carried out in three cases, i.e., Planar Case, Ordinary 3D and Quasi-Singular. The performance of some new PnP algorithms in recent years were compared and detailed experimental data given.
- (3)
- In this paper, the hidden variable-based PnP algorithm, and other PnP algorithms, were applied to the physical experiments with monocular vision cameras, and reprojection experiments of the corner points of calibration plates were carried out. In addition, detailed reprojection experimental error data for each PnP algorithm are given.
2. Methods
2.1. Description of the PnP Mathematical Model
2.2. Parametric Representation of Rotation Matrices and Translation Vectors, and the Elimination of Depth Factors
2.3. The Application of Hidden Variable Method to Solve Pose Parameters
2.4. Precise Positioning Based on Gauss–Newton Iterative Method
3. Experiments and Analysis
3.1. Testbed and Test Synthesis Data Generation
3.2. Comparative Simulation Test of the Calculation Accuracy of PnP Methods under Different Circumstances
3.3. Comparative Simulation Test of Anti-Noise Performance of the PnP Method
3.4. Comparative Simulation Test of Calculation Efficiency of Different PnP Methods
3.5. Materials and Experimental Protocol for Physical Experiments
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
P3P | Perspective-3-Point |
P4P | Perspective-4-Point |
P5P | Perspective-5-Point |
PnP | Perspective-n-Point |
GN | Gauss-Newton iterative method |
CGR | Cayley-Gibbs-Rodriguez |
SLAM | Simultaneous Localization and Mapping |
DLT | Traditional direct liner transformation |
ASPnP | Accurate and Scalable Solution to the Perspective-n-Point problem |
RPnP | A Robust O(n)Solution to the Perspective-n-Point problem |
OptDLS | Optimal DLS Method |
SRPnP | A simple, robust and fast method for the Perspective-n-Point problem |
Hidden PnP | hidden variable-based PnP algorithm |
Appendix A
Algorithm | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LHM | mean_r | 13.0754 | 4.7251 | 2.5100 | 0.9473 | 0.7202 | 0.5688 | 0.4262 | 0.4057 | 0.3716 | 0.3542 | 0.3234 | 0.3122 | 0.3132 | 0.2850 | 0.2636 | 0.2737 | 0.2643 |
med_r | 1.3771 | 0.7489 | 0.6150 | 0.4903 | 0.4502 | 0.4237 | 0.3813 | 0.3706 | 0.3314 | 0.3156 | 0.2954 | 0.2972 | 0.2882 | 0.2654 | 0.2538 | 0.2517 | 0.2489 | |
mean_t | 3.4679 | 1.7890 | 0.8695 | 0.5337 | 0.4541 | 0.3898 | 0.2853 | 0.27371 | 0.2519 | 0.2394 | 0.2355 | 0.2046 | 0.2067 | 0.2002 | 0.2034 | 0.1843 | 0.1840 | |
med_t | 0.8707 | 0.4374 | 0.3825 | 0.3066 | 0.2743 | 0.2652 | 0.2358 | 0.2189 | 0.2001 | 0.2064 | 0.1950 | 0.1676 | 0.1767 | 0.1658 | 0.1766 | 0.1564 | 0.1566 | |
EPnP+GN | mean_r | 76.8848 | 5.5589 | 0.7745 | 0.6151 | 0.5600 | 0.4898 | 0.4536 | 0.4390 | 0.3906 | 0.3853 | 0.3567 | 0.3488 | 0.3514 | 0.3139 | 0.3004 | 0.3021 | 0.2911 |
med_r | 62.5052 | 0.7661 | 0.6297 | 0.5285 | 0.4979 | 0.4444 | 0.4094 | 0.4063 | 0.3570 | 0.3534 | 0.3334 | 0.3192 | 0.3262 | 0.2916 | 0.2832 | 0.2826 | 0.2719 | |
mean_t | 84.1045 | 6.1323 | 0.6279 | 0.4937 | 0.4539 | 0.4167 | 0.3812 | 0.3489 | 0.3252 | 0.3186 | 0.2913 | 0.2734 | 0.2659 | 0.2670 | 0.2615 | 0.2336 | 0.2373 | |
med_t | 25.3651 | 0.5623 | 0.4791 | 0.3882 | 0.3386 | 0.3342 | 0.2973 | 0.2833 | 0.2589 | 0.2645 | 0.2390 | 0.2256 | 0.2309 | 0.2189 | 0.2193 | 0.1891 | 0.1919 | |
RPnP | mean_r | 1.5839 | 0.9786 | 0.8274 | 0.6625 | 0.6047 | 0.5180 | 0.4834 | 0.4818 | 0.4288 | 0.4227 | 0.3963 | 0.3732 | 0.4069 | 0.3623 | 0.3341 | 0.3638 | 0.3328 |
med_r | 0.9132 | 0.7124 | 0.6170 | 0.5334 | 0.5019 | 0.4501 | 0.4116 | 0.4353 | 0.3894 | 0.3754 | 0.3535 | 0.3477 | 0.3481 | 0.3203 | 0.3041 | 0.3362 | 0.3049 | |
mean_t | 0.8706 | 0.6730 | 0.5824 | 0.5043 | 0.4675 | 0.4435 | 0.4016 | 0.4142 | 0.3775 | 0.3491 | 0.3600 | 0.3207 | 0.3336 | 0.3090 | 0.3214 | 0.3014 | 0.2838 | |
med_t | 0.5658 | 0.4572 | 0.4337 | 0.3815 | 0.3532 | 0.3611 | 0.3164 | 0.3311 | 0.2869 | 0.2862 | 0.2854 | 0.2624 | 0.2562 | 0.2461 | 0.2673 | 0.2395 | 0.2384 | |
DLS | mean_r | 1.7126 | 1.0378 | 2.2025 | 0.5228 | 1.6235 | 1.0265 | 2.5497 | 0.9934 | 1.6183 | 0.9533 | 1.5333 | 1.7904 | 0.9160 | 1.9107 | 1.2365 | 0.2764 | 1.3690 |
med_r | 0.8089 | 0.6307 | 0.5686 | 0.4656 | 0.4399 | 0.4049 | 0.3797 | 0.3693 | 0.3294 | 0.3125 | 0.3038 | 0.3002 | 0.2883 | 0.2771 | 0.2525 | 0.2564 | 0.2514 | |
mean_t | 0.7990 | 0.8944 | 2.0803 | 0.3606 | 1.2989 | 1.0579 | 1.9619 | 0.8520 | 1.4562 | 0.8537 | 1.2139 | 1.4712 | 0.9613 | 1.5552 | 1.1896 | 0.1840 | 1.3562 | |
med_t | 0.4904 | 0.3676 | 0.3281 | 0.2778 | 0.2626 | 0.2559 | 0.2386 | 0.2192 | 0.2005 | 0.2047 | 0.1934 | 0.1686 | 0.1746 | 0.1671 | 0.1767 | 0.1578 | 0.1561 | |
OPnP | mean_r | 1.0844 | 0.7366 | 0.6380 | 0.5188 | 0.4724 | 0.4259 | 0.3967 | 0.3817 | 0.3430 | 0.3402 | 0.3106 | 0.3106 | 0.3038 | 0.2821 | 0.2635 | 0.2722 | 0.2628 |
med_r | 0.8024 | 0.6321 | 0.5611 | 0.4614 | 0.4329 | 0.4075 | 0.3691 | 0.3631 | 0.3291 | 0.3130 | 0.2956 | 0.2954 | 0.2889 | 0.2670 | 0.2532 | 0.2485 | 0.2502 | |
mean_t | 0.6626 | 0.4722 | 0.4035 | 0.3571 | 0.3119 | 0.2955 | 0.2754 | 0.2614 | 0.2404 | 0.2312 | 0.2277 | 0.2030 | 0.2008 | 0.1964 | 0.2019 | 0.1814 | 0.1818 | |
med_t | 0.4823 | 0.3676 | 0.3281 | 0.2832 | 0.2523 | 0.2513 | 0.2309 | 0.2177 | 0.1994 | 0.2006 | 0.1914 | 0.1653 | 0.1758 | 0.1661 | 0.1740 | 0.1546 | 0.1566 | |
SRPnP | mean_r | 1.0925 | 0.7302 | 0.6423 | 0.5126 | 0.4748 | 0.4264 | 0.4012 | 0.3848 | 0.3460 | 0.3400 | 0.3178 | 0.3156 | 0.3082 | 0.2865 | 0.2674 | 0.2720 | 0.2628 |
med_r | 0.7914 | 0.6225 | 0.5551 | 0.4503 | 0.4308 | 0.4014 | 0.3762 | 0.3633 | 0.3278 | 0.3077 | 0.2996 | 0.3005 | 0.2884 | 0.2715 | 0.2510 | 0.2536 | 0.2472 | |
mean_t | 0.6262 | 0.4662 | 0.4039 | 0.3560 | 0.3123 | 0.2954 | 0.2753 | 0.2597 | 0.2402 | 0.2312 | 0.2284 | 0.2028 | 0.2004 | 0.1974 | 0.2015 | 0.1814 | 0.1818 | |
med_t | 0.4636 | 0.3688 | 0.3203 | 0.2795 | 0.2532 | 0.2500 | 0.2313 | 0.2132 | 0.1966 | 0.2014 | 0.1893 | 0.1674 | 0.1750 | 0.1631 | 0.1750 | 0.1543 | 0.1570 | |
RDLT | mean_r | 8.1381 | 1.3415 | 0.6382 | 0.5188 | 0.4724 | 0.4259 | 0.3967 | 0.3817 | 0.3430 | 0.3402 | 0.3106 | 0.3106 | 0.3038 | 0.2821 | 0.2635 | 0.2722 | 0.2628 |
med_r | 0.8814 | 0.6333 | 0.5611 | 0.4614 | 0.4329 | 0.4075 | 0.3691 | 0.3631 | 0.3291 | 0.3130 | 0.2956 | 0.2954 | 0.2889 | 0.2670 | 0.2532 | 0.2485 | 0.2502 | |
mean_t | 1.6306 | 0.5207 | 0.4037 | 0.3571 | 0.3119 | 0.2955 | 0.2754 | 0.2614 | 0.2404 | 0.2312 | 0.2277 | 0.2030 | 0.2008 | 0.1964 | 0.2019 | 0.1814 | 0.1818 | |
med_t | 0.5407 | 0.3676 | 0.3281 | 0.2832 | 0.2523 | 0.2513 | 0.2309 | 0.2177 | 0.1994 | 0.2006 | 0.1914 | 0.1653 | 0.1758 | 0.1661 | 0.1740 | 0.1546 | 0.1566 | |
ASPnP | mean_r | 1.1801 | 0.7359 | 0.6940 | 0.5215 | 0.4792 | 0.4353 | 0.4332 | 0.3900 | 0.3592 | 0.3459 | 0.3203 | 0.3275 | 0.3121 | 0.3374 | 0.2844 | 0.2762 | 0.2698 |
med_r | 0.8074 | 0.6254 | 0.5683 | 0.4651 | 0.4380 | 0.4105 | 0.3790 | 0.3686 | 0.3291 | 0.3114 | 0.3033 | 0.3026 | 0.2886 | 0.2740 | 0.2532 | 0.2549 | 0.2504 | |
mean_t | 0.6688 | 0.4709 | 0.4209 | 0.3591 | 0.3130 | 0.2977 | 0.2808 | 0.2620 | 0.2417 | 0.2335 | 0.2285 | 0.2044 | 0.2023 | 0.2106 | 0.2045 | 0.1817 | 0.1822 | |
med_t | 0.4869 | 0.3739 | 0.3250 | 0.2798 | 0.2567 | 0.2540 | 0.2324 | 0.2142 | 0.2012 | 0.2029 | 0.1896 | 0.1666 | 0.1757 | 0.1648 | 0.1751 | 0.1560 | 0.1570 | |
Hidden PnP | mean_r | 1.0096 | 0.6825 | 0.5921 | 0.4868 | 0.4374 | 0.3959 | 0.3746 | 0.3603 | 0.3213 | 0.3191 | 0.2911 | 0.2940 | 0.2840 | 0.2675 | 0.2452 | 0.2520 | 0.2432 |
med_r | 0.7724 | 0.5711 | 0.5231 | 0.4308 | 0.4047 | 0.3669 | 0.3530 | 0.3350 | 0.3053 | 0.2922 | 0.2747 | 0.2774 | 0.2682 | 0.2532 | 0.2366 | 0.2293 | 0.2305 | |
mean_t | 0.6206 | 0.4472 | 0.3912 | 0.3457 | 0.3041 | 0.2911 | 0.2708 | 0.2575 | 0.2358 | 0.2283 | 0.2241 | 0.2006 | 0.1971 | 0.1963 | 0.2000 | 0.1805 | 0.1803 | |
med_t | 0.4614 | 0.3423 | 0.3102 | 0.2698 | 0.2452 | 0.2436 | 0.2198 | 0.2116 | 0.1963 | 0.1999 | 0.1850 | 0.1641 | 0.1685 | 0.1617 | 0.1743 | 0.1537 | 0.1546 |
Algorithm | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LHM | mean_r | 47.6084 | 41.1666 | 38.5179 | 29.1996 | 35.2541 | 35.3723 | 30.1953 | 32.5595 | 27.3411 | 32.6208 | 27.3603 | 26.6317 | 24.9990 | 30.0272 | 24.1386 | 29.0261 | 27.5716 |
med_r | 17.3057 | 10.9226 | 6.0421 | 3.9639 | 4.3974 | 3.0146 | 2.5718 | 2.4091 | 1.5180 | 1.7360 | 1.2385 | 1.1547 | 1.6215 | 1.1610 | 1.0436 | 1.5580 | 1.2107 | |
mean_t | 11.8580 | 7.4881 | 6.6424 | 4.7441 | 4.3324 | 3.8645 | 3.5253 | 3.3329 | 2.9597 | 2.7985 | 2.6314 | 2.5928 | 2.6732 | 2.3425 | 2.2064 | 2.3023 | 2.2538 | |
med_t | 4.4363 | 2.9252 | 1.8759 | 1.3380 | 1.3540 | 1.0515 | 1.0270 | 0.9867 | 0.7359 | 0.8561 | 0.6310 | 0.6124 | 0.6781 | 0.6283 | 0.6173 | 0.6853 | 0.5652 | |
EPnP+GN | mean_r | 72.5487 | 52.7761 | 55.4373 | 43.6290 | 43.7338 | 47.6463 | 49.1237 | 54.2072 | 46.3542 | 53.3214 | 48.8542 | 49.0449 | 47.1507 | 44.5502 | 50.4445 | 45.7662 | 39.7199 |
med_r | 38.6826 | 11.0440 | 7.6876 | 4.0413 | 3.5632 | 3.1551 | 3.0051 | 2.8045 | 2.4111 | 2.3700 | 2.0679 | 1.9320 | 1.8653 | 1.6525 | 1.6850 | 1.5760 | 1.4522 | |
mean_t | 31.1458 | 10.8352 | 8.6082 | 6.1455 | 5.3650 | 5.7193 | 4.8501 | 5.0141 | 4.0794 | 4.2141 | 3.8548 | 3.9762 | 3.2950 | 3.0837 | 3.3897 | 3.2871 | 2.6048 | |
med_t | 14.9291 | 5.0701 | 4.1344 | 2.4429 | 1.8784 | 2.2016 | 1.6147 | 1.6494 | 1.2980 | 1.3211 | 1.2384 | 1.2976 | 1.0184 | 1.0724 | 1.1601 | 0.8845 | 0.8339 | |
RPnP | mean_r | 13.7271 | 5.3508 | 3.0398 | 2.1776 | 1.6670 | 1.6599 | 1.5712 | 1.3900 | 1.5611 | 1.2574 | 1.3994 | 1.2204 | 1.2133 | 1.1129 | 1.1933 | 1.2165 | 1.1784 |
med_r | 2.0487 | 1.6477 | 1.2644 | 1.1359 | 1.0954 | 0.9717 | 0.9196 | 0.8995 | 0.8759 | 0.7788 | 0.8219 | 0.7708 | 0.7830 | 0.7336 | 0.7049 | 0.6939 | 0.6917 | |
mean_t | 2.8646 | 1.7623 | 1.1446 | 1.0526 | 0.8943 | 0.8262 | 0.8689 | 0.7395 | 0.6782 | 0.6734 | 0.6490 | 0.6375 | 0.5383 | 0.5801 | 0.6324 | 0.5377 | 0.5457 | |
med_t | 1.1586 | 0.8932 | 0.6991 | 0.6915 | 0.6136 | 0.5845 | 0.5937 | 0.5173 | 0.4245 | 0.4576 | 0.4378 | 0.4487 | 0.3731 | 0.3838 | 0.3813 | 0.3563 | 0.3402 | |
DLS | mean_r | 3.5122 | 2.9464 | 2.4260 | 2.9221 | 2.5462 | 2.2454 | 3.9204 | 2.4494 | 2.1385 | 2.2930 | 2.3993 | 3.9147 | 1.8941 | 1.6100 | 2.3338 | 3.4797 | 2.4525 |
med_r | 1.6132 | 1.2857 | 1.0201 | 0.8861 | 0.8174 | 0.7358 | 0.7703 | 0.6504 | 0.6189 | 0.5802 | 0.5604 | 0.5232 | 0.5141 | 0.5095 | 0.4659 | 0.4648 | 0.4623 | |
mean_t | 2.2829 | 2.2897 | 1.9681 | 2.4944 | 2.5019 | 2.1091 | 3.9274 | 2.2677 | 2.0180 | 1.9241 | 1.9448 | 4.1985 | 1.6631 | 1.4068 | 2.4417 | 2.6388 | 2.5014 | |
med_t | 0.9078 | 0.7168 | 0.5260 | 0.4702 | 0.4652 | 0.4426 | 0.4466 | 0.3633 | 0.3342 | 0.3431 | 0.3136 | 0.3265 | 0.2985 | 0.27037 | 0.2760 | 0.2716 | 0.2727 | |
OPnP | mean_r | 2.6390 | 1.8239 | 1.4753 | 1.4502 | 0.9841 | 0.9869 | 0.9514 | 0.8194 | 0.8034 | 0.7222 | 0.7024 | 0.6511 | 0.6700 | 0.5955 | 0.5721 | 0.5849 | 0.5535 |
med_r | 1.5836 | 1.2897 | 1.0140 | 0.8749 | 0.8175 | 0.7151 | 0.7563 | 0.6384 | 0.6184 | 0.5748 | 0.5521 | 0.5167 | 0.5198 | 0.4965 | 0.4534 | 0.4605 | 0.4277 | |
mean_t | 1.4720 | 1.0224 | 0.8103 | 0.7082 | 0.6156 | 0.5724 | 0.5581 | 0.4732 | 0.4245 | 0.4209 | 0.3870 | 0.4075 | 0.3567 | 0.3551 | 0.3591 | 0.3239 | 0.3174 | |
med_t | 0.8802 | 0.6960 | 0.5277 | 0.4516 | 0.4592 | 0.4256 | 0.4336 | 0.3575 | 0.3224 | 0.3310 | 0.3013 | 0.3122 | 0.2780 | 0.2678 | 0.2755 | 0.2548 | 0.2520 | |
SRPnP | mean_r | 2.5963 | 1.8562 | 1.4161 | 1.3039 | 1.0142 | 0.9866 | 1.0194 | 0.8687 | 0.8384 | 0.7547 | 0.7466 | 0.6795 | 0.7001 | 0.6216 | 0.6201 | 0.6693 | 0.5857 |
med_r | 1.5498 | 1.2400 | 1.0141 | 0.8707 | 0.8091 | 0.7389 | 0.7573 | 0.6399 | 0.6160 | 0.5681 | 0.5638 | 0.5175 | 0.5116 | 0.5056 | 0.4666 | 0.4644 | 0.4632 | |
mean_t | 1.5448 | 1.0200 | 0.7810 | 0.7041 | 0.6038 | 0.5649 | 0.5523 | 0.4861 | 0.4243 | 0.4291 | 0.3861 | 0.4115 | 0.3560 | 0.3546 | 0.3715 | 0.3407 | 0.3244 | |
med_t | 0.8369 | 0.6811 | 0.5081 | 0.4637 | 0.4508 | 0.4246 | 0.4108 | 0.3553 | 0.3303 | 0.3205 | 0.2974 | 0.3201 | 0.2780 | 0.2661 | 0.2684 | 0.2725 | 0.2561 | |
RDLT | mean_r | 27.8986 | 9.4104 | 2.7283 | 1.4517 | 0.9881 | 1.2952 | 0.9504 | 0.8201 | 0.8038 | 0.7227 | 0.7024 | 0.6497 | 0.6697 | 0.5952 | 0.5729 | 0.5849 | 0.5533 |
med_r | 2.2386 | 1.3494 | 1.0219 | 0.8923 | 0.8128 | 0.7142 | 0.7561 | 0.6350 | 0.6150 | 0.5753 | 0.5503 | 0.5158 | 0.5194 | 0.4974 | 0.4538 | 0.4614 | 0.4273 | |
mean_t | 4.8601 | 1.7110 | 1.0066 | 0.7103 | 0.6165 | 0.6102 | 0.5581 | 0.4737 | 0.4247 | 0.4210 | 0.3870 | 0.4076 | 0.3565 | 0.3551 | 0.3592 | 0.3239 | 0.3174 | |
med_t | 1.2106 | 0.7245 | 0.5313 | 0.4519 | 0.4603 | 0.4208 | 0.4298 | 0.3598 | 0.3203 | 0.3308 | 0.3023 | 0.3114 | 0.2785 | 0.2670 | 0.2758 | 0.2578 | 0.2511 | |
ASPnP | mean_r | 12.1086 | 4.2874 | 2.4447 | 1.8109 | 1.3761 | 1.3070 | 1.4086 | 1.370 | 0.8622 | 0.9546 | 1.1412 | 0.8169 | 0.8210 | 1.0147 | 0.8163 | 1.0789 | 0.6431 |
med_r | 1.7827 | 1.3545 | 1.0436 | 0.8918 | 0.8152 | 0.7375 | 0.7723 | 0.6578 | 0.6234 | 0.5817 | 0.5566 | 0.5267 | 0.5232 | 0.5115 | 0.4662 | 0.4700 | 0.4596 | |
mean_t | 2.5704 | 1.3143 | 1.0646 | 0.7800 | 0.6510 | 0.6491 | 0.7230 | 0.5723 | 0.4506 | 0.5207 | 0.4291 | 0.4430 | 0.4074 | 0.4873 | 0.4124 | 0.3526 | 0.3315 | |
med_t | 1.0066 | 0.7218 | 0.5315 | 0.4708 | 0.4523 | 0.4363 | 0.4371 | 0.3590 | 0.3337 | 0.3415 | 0.3095 | 0.3237 | 0.2970 | 0.2714 | 0.2753 | 0.2722 | 0.2650 | |
Hidden PnP | mean_r | 2.2123 | 1.6286 | 1.2707 | 1.1090 | 0.8888 | 0.8777 | 0.8582 | 0.7365 | 0.7161 | 0.6461 | 0.6473 | 0.5736 | 0.5986 | 0.5464 | 0.5263 | 0.5372 | 0.5011 |
med_r | 1.4838 | 1.1802 | 0.9272 | 0.8069 | 0.7313 | 0.6661 | 0.6751 | 0.5891 | 0.5510 | 0.5312 | 0.5015 | 0.4680 | 0.4720 | .4566 | 0.4164 | 0.4103 | 0.4130 | |
mean_t | 1.2603 | 0.9613 | 0.7147 | 0.6370 | 0.5701 | 0.5297 | 0.5259 | 0.4406 | 0.3996 | 0.4007 | 0.3696 | 0.3785 | 0.3381 | 0.3392 | 0.3358 | 0.3143 | 0.2988 | |
med_t | 0.8210 | 0.6414 | 0.4654 | 0.4213 | 0.4139 | 0.3986 | 0.3955 | 0.3136 | 0.3009 | 0.3048 | 0.2779 | 0.2851 | 0.2651 | 0.2613 | 0.2545 | 0.2551 | 0.2284 |
Algorithm | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LHM | mean_r | 88.5363 | 83.4160 | 76.3662 | 64.9129 | 59.4713 | 57.7804 | 53.2612 | 52.2715 | 45.9908 | 46.9352 | 44.3802 | 34.8269 | 34.8904 | 32.9860 | 41.7693 | 29.6207 | 27.1142 |
med_r | 114.8179 | 113.0583 | 107.2753 | 7.5616 | 2.5322 | 1.4896 | 1.4404 | 1.3385 | 0.9689 | 0.9629 | 0.8284 | 0.7423 | 0.7579 | 0.7313 | 0.7587 | 0.6166 | 0.5740 | |
mean_t | 22.4275 | 23.5323 | 23.1096 | 21.5192 | 21.9526 | 22.1201 | 22.4902 | 23.9994 | 20.6341 | 22.2973 | 21.0504 | 17.1425 | 16.9422 | 17.0355 | 21.4164 | 15.1585 | 14.5199 | |
med_t | 13.3753 | 14.3777 | 12.4502 | 6.3186 | 3.8556 | 2.4819 | 2.6239 | 1.8476 | 1.2448 | 1.2844 | 1.2337 | 0.9537 | 0.9284 | 0.9641 | 1.0083 | 0.8474 | 0.7319 | |
EPnP+GN | mean_r | 79.9803 | 22.0146 | 5.8036 | 3.0681 | 1.9169 | 0.9111 | 0.9253 | 0.8037 | 0.7383 | 0.7027 | 0.6857 | 0.6468 | 0.6426 | 0.6275 | 0.5920 | 0.5585 | 0.5544 |
med_r | 109.5947 | 1.6905 | 1.1897 | 0.9748 | 0.8991 | 0.8050 | 0.8055 | 0.7131 | 0.6509 | 0.6197 | 0.5987 | 0.5823 | 0.5839 | 0.5351 | 0.5356 | 0.5121 | 0.4868 | |
mean_t | 85.9515 | 25.5783 | 7.5526 | 4.2305 | 2.8772 | 1.3890 | 1.4177 | 1.1768 | 1.1766 | 1.0031 | 1.0493 | 1.0488 | 0.8451 | 0.9353 | 0.8632 | 0.7929 | 0.8156 | |
med_t | 35.4233 | 2.8269 | 1.7718 | 1.4147 | 1.3241 | 1.1203 | 1.0722 | 0.8859 | 0.8969 | 0.7860 | 0.8629 | 0.8747 | 0.6522 | 0.8047 | 0.7056 | 0.6456 | 0.7045 | |
RPnP | mean_r | 2.4754 | 1.5292 | 1.2479 | 1.2740 | 0.9538 | 0.8581 | 0.8610 | 0.7846 | 0.7237 | 0.6890 | 0.6723 | 0.6504 | 0.6531 | 0.6340 | 0.6077 | 0.5630 | 0.5647 |
med_r | 1.5216 | 1.3075 | 1.0744 | 0.9148 | 0.8316 | 0.7598 | 0.7967 | 0.6982 | 0.6437 | 0.6188 | 0.6017 | 0.5832 | 0.5967 | 0.5710 | 0.5483 | 0.5105 | 0.5024 | |
mean_t | 3.4242 | 2.2408 | 1.8396 | 1.6556 | 1.5115 | 1.4216 | 1.3692 | 1.2521 | 1.2847 | 1.1356 | 1.1485 | 1.1397 | 1.1262 | 1.1622 | 1.1048 | 1.0447 | 1.0828 | |
med_t | 1.7536 | 1.7059 | 1.3482 | 1.1599 | 1.1854 | 1.1057 | 1.0153 | 0.9726 | 1.0366 | 0.8878 | 0.8960 | 0.8505 | 0.8917 | 0.9717 | 0.8575 | 0.8454 | 0.8771 | |
DLS | mean_r | 2.5075 | 3.1715 | 1.8212 | 2.8081 | 2.4542 | 2.6568 | 2.3554 | 1.6720 | 1.9985 | 1.2962 | 2.1792 | 2.3421 | 2.4598 | 2.8239 | 2.2215 | 1.8087 | 2.1475 |
med_r | 1.4606 | 1.2713 | 1.0437 | 0.8794 | 0.8034 | 0.7300 | 0.7588 | 0.6885 | 0.6164 | 0.5861 | 0.5736 | 0.5553 | 0.5542 | 0.5652 | 0.5016 | 0.4737 | 0.4619 | |
mean_t | 2.7870 | 3.7659 | 1.9955 | 2.2902 | 2.0288 | 2.4368 | 2.3009 | 1.6533 | 1.8906 | 1.4351 | 2.1246 | 2.1229 | 2.2386 | 2.2340 | 1.9413 | 1.6419 | 1.5749 | |
med_t | 1.6199 | 1.4788 | 1.1536 | 1.0144 | 0.9694 | 0.8427 | 0.8076 | 0.7584 | 0.6547 | 0.6283 | 0.6716 | 0.6193 | 0.5669 | 0.6438 | 0.5678 | 0.5472 | 0.5149 | |
OPnP | mean_r | 1.8925 | 1.4384 | 1.1989 | 0.9776 | 0.8968 | 0.7994 | 0.8120 | 0.7318 | 0.6629 | 0.6380 | 0.6243 | 0.5995 | 0.5982 | 0.5796 | 0.5481 | 0.5083 | 0.5075 |
med_r | 1.4476 | 1.2364 | 1.0059 | 0.8574 | 0.7972 | 0.7071 | 0.7454 | 0.6477 | 0.5837 | 0.5659 | 0.5527 | 0.5386 | 0.5349 | 0.5124 | 0.4729 | 0.4529 | 0.4495 | |
mean_t | 2.2792 | 1.8178 | 1.4381 | 1.1628 | 1.0862 | 0.9894 | 0.9710 | 0.8649 | 0.7913 | 0.7451 | 0.7172 | 0.7368 | 0.6374 | 0.7012 | 0.6420 | 0.5993 | 0.5948 | |
med_t | 1.5295 | 1.4414 | 1.1241 | 0.9778 | 0.9097 | 0.8119 | 0.7907 | 0.7238 | 0.6383 | 0.6219 | 0.6100 | 0.5837 | 0.5189 | 0.5980 | 0.5455 | 0.5032 | 0.5020 | |
SRPnP | mean_r | 1.8680 | 1.4407 | 1.2095 | 0.9957 | 0.9167 | 0.8362 | 0.8345 | 0.7667 | 0.6981 | 0.6511 | 0.6477 | 0.6310 | 0.6316 | 0.6297 | 0.5794 | 0.5305 | 0.5305 |
med_r | 1.4332 | 1.2343 | 1.0021 | 0.8286 | 0.7998 | 0.7363 | 0.7563 | 0.6882 | 0.6060 | 0.5668 | 0.5754 | 0.5547 | 0.5512 | 0.5604 | 0.4914 | 0.4698 | 0.4664 | |
mean_t | 2.1290 | 1.6188 | 1.3144 | 1.0451 | 1.0025 | 0.8758 | 0.8434 | 0.7850 | 0.7204 | 0.6581 | 0.6624 | 0.6706 | 0.5687 | 0.6117 | 0.5999 | 0.5411 | 0.5357 | |
med_t | 1.3096 | 1.2755 | 0.9757 | 0.8524 | 0.7920 | 0.7056 | 0.6701 | 0.6034 | 0.5649 | 0.5526 | 0.5305 | 0.5035 | 0.4311 | 0.5232 | 0.4754 | 0.4588 | 0.4310 | |
RDLT | mean_r | 20.2851 | 6.0432 | 3.6167 | 0.9776 | 0.8968 | 0.7994 | 0.8120 | 0.7318 | 0.6629 | 0.6380 | 0.6243 | 0.5995 | 0.5982 | 0.5796 | 0.5481 | 0.5083 | 0.5075 |
med_r | 1.7325 | 1.2456 | 1.0085 | 0.8574 | 0.7972 | 0.7071 | 0.7454 | 0.6477 | 0.5837 | 0.5659 | 0.5527 | 0.5386 | 0.5349 | 0.5124 | 0.4729 | 0.4529 | 0.4495 | |
mean_t | 9.4143 | 4.4118 | 2.1033 | 1.1628 | 1.0862 | 0.9894 | 0.9710 | 0.8649 | 0.7913 | 0.7451 | 0.7172 | 0.7368 | 0.6374 | 0.7012 | 0.6420 | 0.5993 | 0.5948 | |
med_t | 1.9552 | 1.5340 | 1.1465 | 0.9777 | 0.9097 | 0.8119 | 0.7907 | 0.7238 | 0.6383 | 0.6219 | 0.6100 | 0.5837 | 0.5189 | 0.5980 | 0.5455 | 0.5032 | 0.5020 | |
ASPnP | mean_r | 2.1409 | 1.4813 | 1.2524 | 1.0484 | 0.9350 | 0.8538 | 0.8421 | 0.7811 | 0.7125 | 0.6732 | 0.6523 | 0.6527 | 0.6495 | 0.6667 | 0.6085 | 0.5666 | 0.5510 |
med_r | 1.4528 | 1.2572 | 1.0228 | 0.8752 | 0.8030 | 0.7273 | 0.7610 | 0.6730 | 0.6129 | 0.5828 | 0.5709 | 0.5532 | 0.5449 | 0.5585 | 0.4912 | 0.4720 | 0.4606 | |
mean_t | 2.3347 | 1.8393 | 1.4414 | 1.2182 | 1.1339 | 1.0286 | 0.9771 | 0.9011 | 0.8075 | 0.7681 | 0.7632 | 0.7650 | 0.6796 | 0.7252 | 0.6649 | 0.6198 | 0.6496 | |
med_t | 1.6315 | 1.4785 | 1.0954 | 0.9817 | 0.9123 | 0.8301 | 0.7925 | 0.7412 | 0.6462 | 0.6247 | 0.6375 | 0.5944 | 0.5658 | 0.6386 | 0.5677 | 0.5323 | 0.4971 | |
Hidden PnP | mean_r | 1.8136 | 1.3940 | 1.1402 | 0.9256 | 0.8505 | 0.7569 | 0.7456 | 0.7023 | 0.6240 | 0.6154 | 0.6022 | 0.5694 | 0.5685 | 0.5423 | 0.5196 | 0.4836 | 0.4949 |
med_r | 1.4174 | 1.1641 | 0.9662 | 0.8011 | 0.7392 | 0.6673 | 0.6530 | 0.6256 | 0.5491 | 0.5306 | 0.5213 | 0.4951 | 0.4992 | 0.4905 | 0.4379 | 0.4194 | 0.4173 | |
mean_t | 1.9815 | 1.5816 | 1.2749 | 1.0220 | 0.9419 | 0.8908 | 0.8221 | 0.7688 | 0.6978 | 0.6459 | 0.6452 | 0.6546 | 0.5755 | 0.5923 | 0.5489 | 0.5231 | 0.5183 | |
med_t | 1.3354 | 1.1969 | 0.9179 | 0.7979 | 0.7418 | 0.7017 | 0.6140 | 0.5704 | 0.5393 | 0.5293 | 0.4917 | 0.4822 | 0.4424 | 0.4928 | 0.4494 | 0.3941 | 0.3843 |
Appendix B
Algorithm | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | |
---|---|---|---|---|---|---|---|---|---|---|---|
LHM | mean_r | 0.1807 | 0.1807 | 0.3220 | 0.4175 | 0.5393 | 0.6030 | 0.7031 | 0.8386 | 0.9343 | 1.0227 |
med_r | 0.0972 | 0.1952 | 0.2646 | 0.3605 | 0.4667 | 0.5371 | 0.6364 | 0.7646 | 0.8217 | 0.9407 | |
mean_t | 0.1086 | 0.1537 | 0.2190 | 0.2947 | 0.3502 | 0.4461 | 0.4919 | 0.5568 | 0.6207 | 0.6865 | |
med_t | 0.0606 | 0.1140 | 0.1821 | 0.2359 | 0.2818 | 0.3645 | 0.4172 | 0.4595 | 0.5096 | 0.5810 | |
EPnP+GN | mean_r | 0.1141 | 0.2300 | 0.3324 | 0.4371 | 0.5675 | 0.6753 | 0.7855 | 0.9213 | 1.0472 | 1.1810 |
med_r | 0.1037 | 0.2047 | 0.2890 | 0.4032 | 0.5246 | 0.5990 | 0.7160 | 0.8451 | 0.9160 | 1.1029 | |
mean_t | 0.0925 | 0.1924 | 0.2730 | 0.3683 | 0.4562 | 0.5988 | 0.6400 | 0.7036 | 0.8448 | 0.9137 | |
med_t | 0.0736 | 0.1540 | 0.2159 | 0.3060 | 0.3794 | 0.4819 | 0.5323 | 0.5700 | 0.7159 | 0.7540 | |
RPnP | mean_r | 0.1275 | 0.2334 | 0.3549 | 0.4771 | 0.5938 | 0.7643 | 0.8491 | 0.9958 | 1.1019 | 1.2677 |
med_r | 0.1130 | 0.2050 | 0.3083 | 0.4229 | 0.5323 | 0.6433 | 0.7452 | 0.9071 | 0.9775 | 1.1195 | |
mean_t | 0.1075 | 0.1907 | 0.3073 | 0.4024 | 0.5064 | 0.6449 | 0.7000 | 0.8506 | 0.9345 | 0.9841 | |
med_t | 0.0813 | 0.1584 | 0.2391 | 0.3259 | 0.4066 | 0.5156 | 0.5525 | 0.6650 | 0.7564 | 0.8090 | |
DLS | mean_r | 0.4475 | 1.1487 | 1.1147 | 1.2296 | 1.1524 | 2.1032 | 2.5493 | 1.4194 | 2.5500 | 3.1087 |
med_r | 0.0915 | 0.1875 | 0.2599 | 0.3599 | 0.4670 | 0.5328 | 0.6348 | 0.7746 | 0.8233 | 0.9797 | |
mean_t | 0.3853 | 0.9546 | 1.0905 | 0.8749 | 0.8964 | 1.8509 | 2.0846 | 1.2460 | 2.2659 | 2.0337 | |
med_t | 0.0558 | 0.1086 | 0.1755 | 0.2320 | 0.2803 | 0.3647 | 0.4179 | 0.4737 | 0.5178 | 0.5843 | |
OPnP | mean_r | 0.1001 | 0.2037 | 0.2863 | 0.3836 | 0.4968 | 0.5846 | 0.6813 | 0.8209 | 0.8924 | 1.0151 |
med_r | 0.0905 | 0.1842 | 0.2625 | 0.3545 | 0.4642 | 0.5344 | 0.6272 | 0.7651 | 0.8177 | 0.9449 | |
mean_t | 0.0677 | 0.1334 | 0.2054 | 0.2747 | 0.3345 | 0.4335 | 0.4747 | 0.5492 | 0.6042 | 0.6784 | |
med_t | 0.0554 | 0.1084 | 0.1705 | 0.2353 | 0.2764 | 0.3592 | 0.4207 | 0.4682 | 0.4982 | 0.5691 | |
SRPnP | mean_r | 0.1002 | 0.2052 | 0.2914 | 0.3892 | 0.4973 | 0.5841 | 0.6909 | 0.8270 | 0.8988 | 1.0289 |
med_r | 0.0908 | 0.1855 | 0.2616 | 0.3586 | 0.4651 | 0.5233 | 0.6299 | 0.7614 | 0.8114 | 0.9360 | |
mean_t | 0.0678 | 0.1331 | 0.2063 | 0.2744 | 0.3335 | 0.4323 | 0.4706 | 0.5472 | 0.5991 | 0.6751 | |
med_t | 0.0554 | 0.1096 | 0.1698 | 0.2280 | 0.2730 | 0.3604 | 0.4165 | 0.4625 | 0.4893 | 0.5630 | |
RDLT | mean_r | 0.1001 | 0.2037 | 0.2863 | 0.3836 | 0.4968 | 0.5846 | 0.6813 | 0.8209 | 0.8924 | 1.0151 |
med_r | 0.0905 | 0.1842 | 0.2625 | 0.3545 | 0.4642 | 0.5344 | 0.6272 | 0.7651 | 0.8177 | 0.9449 | |
mean_t | 0.0677 | 0.1334 | 10.2054 | 0.2747 | 0.3345 | 0.4335 | 0.4747 | 0.5492 | 0.6042 | 50.6784 | |
med_t | 0.0554 | 0.1084 | 0.1705 | 0.2353 | 0.2764 | 0.3592 | 0.4207 | 0.4682 | 0.4982 | 0.5691 | |
ASPnP | mean_r | 0.1010 | 0.2082 | 0.2973 | 0.3996 | 0.5100 | 0.8267 | 0.7203 | 1.0774 | 0.9347 | 1.0732 |
med_r | 0.0913 | 0.1865 | 0.2621 | 0.3614 | 0.4719 | 0.5322 | 0.6358 | 0.7774 | 0.8271 | 0.9787 | |
mean_t | 0.0679 | 0.1341 | 0.2070 | 0.2735 | 0.3373 | 0.5553 | 0.4797 | 0.6491 | 0.6145 | 0.6926 | |
med_t | 0.0555 | 0.1091 | 0.1696 | 0.2272 | 0.2754 | 0.3629 | 0.4221 | 0.4652 | 0.5154 | 0.5753 | |
Hidden PnP | mean_r | 0.0964 | 0.1958 | 0.2689 | 0.3588 | 0.4567 | 0.5347 | 0.6182 | 0.7606 | 0.8220 | 0.9265 |
med_r | 0.0889 | 0.1773 | 0.2432 | 0.3353 | 0.4169 | 0.4913 | 0.5580 | 0.6941 | 0.7393 | 0.8596 | |
mean_t | 0.0673 | 0.1317 | 0.2033 | 0.2689 | 0.3304 | 0.4242 | 0.4647 | 0.5345 | 0.5866 | 0.6613 | |
med_t | 0.0555 | 0.1084 | 0.1681 | 0.2315 | 0.2703 | 0.3452 | 0.4085 | 0.4526 | 0.4962 | 0.5577 |
Algorithm | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | |
---|---|---|---|---|---|---|---|---|---|---|---|
LHM | mean_r | 29.9013 | 31.7417 | 34.0830 | 30.4676 | 34.8833 | 34.1832 | 33.9616 | 34.6558 | 31.7799 | 31.9322 |
med_r | 2.8468 | 3.2152 | 2.7973 | 2.0785 | 3.6989 | 3.1051 | 3.1786 | 2.9233 | 3.2985 | 4.2504 | |
mean_t | 3.3637 | 3.5275 | 3.9004 | 3.4480 | 4.0174 | 4.0321 | 3.5296 | 3.4999 | 4.0043 | 4.3222 | |
med_t | 0.6659 | 0.8165 | 0.8331 | 0.9665 | 1.2537 | 1.3488 | 1.2499 | 1.4956 | 1.5673 | 1.7776 | |
EPnP+GN | mean_r | 46.8393 | 42.6777 | 51.0806 | 48.3854 | 46.9577 | 45.8880 | 52.0428 | 52.9036 | 45.1681 | 50.2341 |
med_r | 0.7138 | 1.4216 | 2.1556 | 3.1449 | 3.7999 | 4.4034 | 5.2400 | 6.0751 | 6.2405 | 7.4797 | |
mean_t | 3.7485 | 3.5632 | 5.0009 | 4.7705 | 5.3529 | 5.6749 | 6.0509 | 6.7726 | 6.8051 | 7.6502 | |
med_t | 0.3575 | 0.7303 | 1.2746 | 1.8901 | 2.2481 | 2.4254 | 3.0487 | 3.5236 | 3.4720 | 3.7619 | |
RPnP | mean_r | 0.4261 | 0.8353 | 1.1778 | 1.5130 | 1.9098 | 2.3771 | 3.0138 | 2.9731 | 4.1376 | 4.6917 |
med_r | 0.2416 | 0.4758 | 0.6824 | 0.8861 | 1.2338 | 1.3706 | 1.7477 | 1.8044 | 1.9868 | 2.4974 | |
mean_t | 0.1888 | 0.3862 | 0.5620 | 0.7651 | 0.9524 | 1.1376 | 1.2889 | 1.4823 | 1.7577 | 2.3301 | |
med_t | 0.1271 | 0.2688 | 0.4004 | 0.5474 | 0.6886 | 0.7919 | 0.8837 | 1.0852 | 1.1113 | 1.3150 | |
DLS | mean_r | 0.4276 | 1.2854 | 2.6917 | 0.9575 | 5.0002 | 4.2490 | 3.4537 | 5.8777 | 5.0284 | 5.3160 |
med_r | 0.1648 | 0.3662 | 0.5233 | 0.6719 | 0.9063 | 1.0596 | 1.2445 | 1.4611 | 1.5596 | 1.8049 | |
mean_t | 0.2401 | 1.0773 | 2.0854 | 0.5296 | 4.8974 | 4.1841 | 2.2231 | 5.1008 | 4.3977 | 4.4116 | |
med_t | 0.0898 | 0.1885 | 0.2912 | 0.3745 | 0.5265 | 0.5984 | 0.6815 | 0.9106 | 0.8918 | 1.0721 | |
OPnP | mean_r | 0.2326 | 0.4586 | 0.7364 | 0.8815 | 1.0890 | 1.3746 | 1.7562 | 1.8247 | 2.6162 | 2.3749 |
med_r | 0.1652 | 0.3593 | 0.5107 | 0.6574 | 0.8389 | 1.0283 | 1.1975 | 1.4204 | 1.4475 | 1.7539 | |
mean_t | 0.1240 | 0.2519 | 0.3974 | 0.5193 | 0.6545 | 0.7879 | 0.9072 | 1.0739 | 1.2102 | 1.3622 | |
med_t | 0.0873 | 0.1902 | 0.2806 | 0.3760 | 0.4851 | 0.5923 | 0.6681 | 0.8576 | 0.9000 | 1.0170 | |
SRPnP | mean_r | 0.2357 | 0.4629 | 0.7205 | 0.9008 | 1.2179 | 1.4794 | 1.6644 | 1.9671 | 2.2805 | 2.3890 |
med_r | 0.1658 | 0.3579 | 0.5173 | 0.6685 | 0.8743 | 1.0466 | 1.2245 | 1.4397 | 1.5172 | 1.7760 | |
mean_t | 0.1258 | 0.2518 | 0.3946 | 0.5234 | 0.6682 | 0.7730 | 0.9051 | 1.0956 | 1.1898 | 1.3577 | |
med_t | 0.0898 | 0.1874 | 0.2788 | 0.3717 | 0.4793 | 0.5806 | 0.6398 | 0.8341 | 0.8424 | 1.0107 | |
RDLT | mean_r | 0.2327 | 0.4588 | 0.7368 | 0.8807 | 1.0852 | 1.3764 | 1.7521 | 1.8329 | 2.5784 | 2.8207 |
med_r | 0.1652 | 0.3607 | 0.5124 | 0.6550 | 0.8386 | 1.0291 | 1.1959 | 1.4296 | 1.4404 | 1.7471 | |
mean_t | 0.1240 | 0.2521 | 0.3974 | 0.5191 | 0.6542 | 0.7879 | 0.9071 | 1.0746 | 1.2163 | 1.3757 | |
med_t | 0.0875 | 0.1910 | 0.2816 | 0.3782 | 0.4846 | 0.5868 | 0.6647 | 0.8616 | 0.8947 | 1.0055 | |
ASPnP | mean_r | 0.4148 | 0.9866 | 1.1999 | 0.9221 | 1.3332 | 1.8575 | 2.2183 | 2.3400 | 2.7756 | 2.8859 |
med_r | 0.1671 | 0.3639 | 0.5251 | 0.6741 | 0.9168 | 1.0721 | 1.2483 | 1.4691 | 1.5937 | 1.8008 | |
mean_t | 0.2600 | 0.4219 | 0.4155 | 0.5228 | 0.7140 | 0.8517 | 1.0662 | 1.2743 | 1.2471 | 1.5128 | |
med_t | 0.0899 | 0.1877 | 0.2916 | 0.3719 | 0.5261 | 0.5950 | 0.6790 | 0.8965 | 0.8823 | 1.0750 | |
Hidden PnP | mean_r | 0.2159 | 0.4265 | 0.6458 | 0.7841 | 0.9784 | 1.2362 | 1.3908 | 1.6459 | 1.7801 | 2.0570 |
med_r | 0.1573 | 0.3359 | 0.4634 | 0.6046 | 0.7988 | 0.9436 | 1.1092 | 1.2575 | 1.2435 | 1.5755 | |
mean_t | 0.1197 | 0.2395 | 0.3678 | 0.4788 | 0.6268 | 0.7351 | 0.8315 | 0.9976 | 1.0773 | 1.2631 | |
med_t | 0.0847 | 0.1761 | 0.2568 | 0.3386 | 0.4384 | 0.5490 | 0.5939 | 0.7586 | 0.7682 | 0.9011 |
Algorithm | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | |
---|---|---|---|---|---|---|---|---|---|---|---|
LHM | mean_r | 54.0364 | 54.3921 | 49.1851 | 54.7541 | 55.5350 | 53.8090 | 61.1037 | 50.8340 | 59.5363 | 48.8130 |
med_r | 0.5430 | 0.6938 | 0.9608 | 1.3668 | 1.9575 | 2.0970 | 2.7591 | 2.2852 | 3.1373 | 2.7422 | |
mean_t | 24.0074 | 22.4198 | 20.3533 | 23.1433 | 23.9086 | 24.4829 | 24.6227 | 21.8371 | 25.1056 | 21.9802 | |
med_t | 1.0878 | 1.1643 | 1.5035 | 2.2859 | 2.6978 | 3.3351 | 4.1897 | 3.2054 | 4.9388 | 3.9800 | |
EPnP+GN | mean_r | 0.2244 | 0.4413 | 0.6315 | 0.8488 | 1.7360 | 1.2971 | 2.6893 | 2.8364 | 3.2494 | 5.0486 |
med_r | 0.1970 | 0.3855 | 0.5353 | 0.7729 | 0.9831 | 1.1117 | 1.2841 | 1.5965 | 1.8046 | 2.0050 | |
mean_t | 0.3342 | 0.6441 | 0.9640 | 1.2418 | 2.4658 | 1.9245 | 3.6031 | 3.7211 | 4.5948 | 6.5992 | |
med_t | 0.2598 | 0.5030 | 0.7724 | 0.9210 | 1.4354 | 1.5420 | 1.9140 | 2.0268 | 2.4701 | 2.7201 | |
RPnP | mean_r | 0.2154 | 0.4220 | 0.6192 | 0.8204 | 1.0657 | 1.2264 | 1.5655 | 1.8108 | 2.7098 | 2.9224 |
med_r | 0.1904 | 0.3817 | 0.5750 | 0.7554 | 0.9199 | 1.1043 | 1.2703 | 1.5176 | 1.6604 | 1.8881 | |
mean_t | 0.3290 | 0.6677 | 0.9760 | 1.2976 | 1.7074 | 2.0699 | 2.6763 | 3.5394 | 5.9400 | 6.7567 | |
med_t | 00.2416 | 0.5224 | 0.7942 | 1.0313 | 1.3539 | 1.6545 | 1.8082 | 1.7970 | 2.3827 | 2.5840 | |
DLS | mean_r | 1.3246 | 0.9490 | 0.8534 | 2.3530 | 2.9240 | 4.3047 | 0.2423 | 4.3139 | 6.4904 | 7.9017 |
med_r | 0.1814 | 0.3607 | 0.5110 | 0.7116 | 0.8884 | 1.0614 | 1.2847 | 1.4287 | 1.6488 | 1.8967 | |
mean_t | 1.3381 | 0.9327 | 1.1137 | 2.4278 | 2.9235 | 4.2191 | 3.2908 | 4.6732 | 5.9860 | 7.7954 | |
med_t | 0.1857 | 0.3956 | 0.6232 | 0.7111 | 1.0305 | 1.1656 | 1.5168 | 1.4978 | 2.0095 | 2.2148 | |
OPnP | mean_r | 0.2009 | 0.3935 | 0.5741 | 0.7661 | 0.9848 | 1.1401 | 1.3736 | 1.5609 | 1.7385 | 1.9173 |
med_r | 0.1800 | 0.3576 | 0.5058 | 0.6969 | 0.8395 | 1.0358 | 1.1920 | 1.3928 | 1.5463 | 1.7345 | |
mean_t | 0.2305 | 0.4519 | 0.7225 | 0.8622 | 1.1681 | 1.3680 | 1.6463 | 1.8462 | 2.0557 | 2.1876 | |
med_t | 0.1890 | 0.3693 | 0.6191 | 0.6738 | 0.9407 | 1.2223 | 1.3506 | 1.4146 | 1.6998 | 1.7047 | |
SRPnP | mean_r | 0.2043 | 0.4002 | 0.5853 | 0.8017 | 1.0143 | 1.2321 | 1.4438 | 1.7237 | 2.3445 | 2.8959 |
med_r | 0.1831 | 0.3637 | 0.5166 | 0.7146 | 0.8596 | 1.0442 | 1.3145 | 1.3997 | 1.6407 | 1.8299 | |
mean_t | 0.2170 | 0.4213 | 0.6510 | 0.7903 | 1.0547 | 1.2260 | 1.4596 | 1.6429 | 2.4650 | 2.9031 | |
med_t | 0.1674 | 0.3443 | 0.5555 | 0.6205 | 0.8075 | 0.9431 | 1.1241 | 1.2359 | 1.6262 | 1.6205 | |
RDLT | mean_r | 0.2009 | 0.3935 | 0.5741 | 0.7661 | 0.9848 | 1.1401 | 1.3736 | 1.5609 | 1.7385 | 1.9173 |
med_r | 0.1800 | 0.3576 | 0.5058 | 0.6969 | 0.8395 | 1.0358 | 1.1920 | 1.3928 | 1.5463 | 1.7345 | |
mean_t | 0.2305 | 0.4519 | 0.7225 | 0.8622 | 1.1681 | 1.3680 | 1.6463 | 1.8462 | 2.0557 | 2.1876 | |
med_t | 0.1890 | 0.3693 | 0.6191 | 0.6738 | 0.9407 | 1.2223 | 1.3506 | 1.4146 | 1.6998 | 1.7047 | |
ASPnP | mean_r | 0.2086 | 0.4022 | 0.5988 | 0.8428 | 1.0503 | 1.3127 | 1.6188 | 1.7450 | 2.0989 | 2.6162 |
med_r | 0.1831 | 0.3627 | 10.5136 | 0.7179 | 0.8674 | 1.0355 | 1.3072 | 1.4347 | 1.6401 | 1.8674 | |
mean_t | 0.2298 | 0.4605 | 0.7340 | 0.8666 | 1.2207 | 1.4245 | 1.7956 | 2.0231 | 2.5034 | 2.7405 | |
med_t | 0.1833 | 0.3788 | 0.6139 | 0.6991 | 1.0133 | 1.1224 | 1.4662 | 1.4969 | 1.8896 | 2.0720 | |
Hidden PnP | mean_r | 0.1951 | 0.3781 | 0.5507 | 0.7379 | 0.9307 | 1.1099 | 1.3035 | 1.4450 | 1.7213 | 1.8770 |
med_r | 0.1693 | 0.3463 | 0.4822 | 0.6619 | 0.7891 | 0.9849 | 1.1354 | 1.2461 | 1.4599 | 1.6329 | |
mean_t | 0.2150 | 0.4134 | 0.6432 | 0.7656 | 1.0164 | 1.1514 | 1.3801 | 1.5349 | 1.8260 | 1.8857 | |
med_t | 0.1665 | 0.3278 | 0.5525 | 0.6121 | 0.8036 | 0.8853 | 1.0788 | 1.0622 | 1.4421 | 1.3561 |
References
- Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Gai, S.; Jung, E.J.; Yi, B.J. Multi-group localization problem of service robots based on hybrid external localization algorithm with application to shopping mall environment. Intell. Serv. Robot. 2016, 9, 257–275. [Google Scholar] [CrossRef]
- Hijikata, S.; Terabayashi, K.; Umeda, K. A simple indoor self-localization system using infrared LEDs. In Proceedings of the 2009 Sixth International Conference on Networked Sensing Systems (INSS), Pittsburgh, PA, USA, 17–19 June 2009; pp. 1–7. [Google Scholar] [CrossRef]
- Daniilidis, K. Hand-Eye Calibration Using Dual Quaternions. Int. J. Robot. Res. 1999, 18, 286–298. [Google Scholar] [CrossRef]
- Kelsey, J.; Byrne, J.; Cosgrove, M.; Seereeram, S.; Mehra, R. Vision-based relative pose estimation for autonomous rendezvous and docking. In Proceedings of the 2006 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2006; p. 20. [Google Scholar] [CrossRef] [Green Version]
- Yao, N. Research of Monocular Vision Based Target Tracking and Positioning Techniques. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 2014. [Google Scholar]
- Park, J.S.; Lee, B.J. Vision-based real-time camera match moving using a known marker. Opt. Eng. 2008, 47, 027201. [Google Scholar] [CrossRef]
- Tsai, R.Y. An efficient and accurate camera calibration technique fro 3d machine vision. In Proceedings of the CVPR’86, Miami Beach, FL, USA, 22–26 June 1986; pp. 364–374. [Google Scholar]
- Shahzad, M.G.; Roth, G.; Mcdonald, C. Robust 2D Tracking for Real-Time Augmented Reality. 2002. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=df4bae2e7b7000f80c2ebc01f64a8832b0d6330b (accessed on 7 January 2023).
- Abdel-Aziz, Y.; Karara, H.; Hauck, M. Direct Linear Transformation from Comparator Coordinates into Object Space Coordinates in Close-Range Photogrammetry. Photogramm. Eng. Remote Sens. 2015, 81, 103–107. [Google Scholar] [CrossRef]
- David, P.; Dementhon, D.; Duraiswami, R.; Samet, H. SoftPOSIT: Simultaneous pose and correspondence determination. Int. J. Comput. Vis. 2004, 59, 259–284. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.P.; Hager, G.; Mjolsness, E. Fast and globally convergent pose estimation from video images. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 610–622. [Google Scholar] [CrossRef] [Green Version]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. Epnp: An accurate O(n) solution to the pnp problem. Int. J. Comput. Vis. 2009, 81, 155–166. [Google Scholar] [CrossRef]
- Hesch, J.A.; Roumeliotis, S.I. A Direct Least-Squares (DLS) method for PnP. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 383–390. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xu, C.; Xie, M. A Robust O(n) Solution to the Perspective-n-Point Problem. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1444–1450. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Sugimoto, S.; Okutomi, M. ASPnP: An Accurate and Scalable Solution to the Perspective-n-Point Problem. IEICE Trans. Inf. Syst. 2013, E96.D, 1525–1535. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Kuang, Y.; Sugimoto, S.; Åström, K.; Okutomi, M. Revisiting the PnP Problem: A Fast, General and Optimal Solution. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 2344–2351. [Google Scholar] [CrossRef] [Green Version]
- Kneip, L.; Li, H.; Seo, Y. Upnp: An optimal O(n) solution to the absolute pose problem with universal applicability. In Computer Vision—ECCV 2014, Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switerland, 2014; pp. 127–142. [Google Scholar] [CrossRef]
- Nakano, G. Globally Optimal DLS Method for PnP Problem with Cayley parameterization. In Proceedings of the British Machine Vision Conference (BMVC), Swansea, UK, 7–10 September 2015; Xie, X., Jones, M.W., Tam, G.K.L., Eds.; BMVA Press: Malvern, UK, 2015; pp. 78.1–78.11. [Google Scholar] [CrossRef] [Green Version]
- Kukelova, Z.; Bujnak, M.; Pajdla, T. Automatic generator of minimal problem solvers. In Computer Vision—ECCV 2008, Proceedings of the European Conference on Computer Vision, Marseille, France, 12–18 October 2008; Springer: Cham, Switzerland, 2008; pp. 302–315. [Google Scholar] [CrossRef] [Green Version]
- Ene, V.; rgen Herzog, J. Gröbner Bases in Commutative Algebra; American Mathematical Society: Providence, RI, USA, 2011; Volume 130, p. 164. [Google Scholar]
- Wang, P.; Xu, G.; Cheng, Y.; Yu, Q. A simple, robust and fast method for the perspective-n-point Problem. Pattern Recognit. Lett. 2018, 108, 31–37. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, X.; An, A.; He, Q.; Zhang, A. Robust and linear solving method for Perspective-n-Point problem. Chin. J. Sci. Instrum. 2020, 41, 271–280. [Google Scholar] [CrossRef]
- Jiabao, W.; Shirong, Z.; Qingya, Z. Vision based real-time 3D displacement measurement using weighted iterative EPnP algorithm. Chin. J. Sci. Instrum. 2020, 41, 166–175. [Google Scholar]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef]
Algorithm Name | DLT | HOMO | Tsai | LHM | POSIT | EPnP | DLS | RPnP | ASPnP | OPnP | UPnP | optDLS | SRPnP | RDLT | WIEPnP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Time | 1971 | 1981 | 1987 | 2000 | 2002 | 2009 | 2011 | 2012 | 2013 | 2013 | 2014 | 2015 | 2018 | 2020 | 2020 |
Linear Method | Y | Y | Y | N | N | N | N | N | N | N | N | N | N | Y | N |
Optimization method | N | N | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y |
Iterative method | N | N | N | Y | Y | N | N | N | N | N | N | N | Y | N | Y |
Accuracy | L | L | L | H | M+ | M | M+ | H | H+ | H+ | H | H+ | H+ | H+ | H+ |
Efficiency | H+ | H+ | H | L | L | H | M | H | M | M | M+ | M+ | H | H | H |
Algorithm | 4 | 25 | 50 | 75 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LHM | 2.5509 | 7.7007 | 12.2105 | 16.8193 | 21.7186 | 30.4288 | 42.9690 | 53.1203 | 61.6848 | 71.1986 | 90.3208 | 99.2493 | 119.3778 |
EPnP+GN | 1.6838 | 2.1403 | 2.2151 | 2.5364 | 2.9156 | 3.4627 | 6.3518 | 4.6227 | 5.6691 | 5.9800 | 6.6296 | 7.6668 | 8.3636 |
RPnP | 0.6458 | 0.7559 | 0.6870 | 0.9943 | 1.0058 | 1.4853 | 1.7070 | 2.3842 | 2.5221 | 2.9366 | 4.9716 | 5.9435 | 6.7481 |
DLS | 3.0037 | 4.8548 | 6.4148 | 8.8721 | 9.6642 | 17.0611 | 19.8981 | 21.0115 | 24.3279 | 28.3810 | 35.4492 | 39.2732 | 60.9486 |
OPnP | 20.1334 | 20.5736 | 19.7894 | 21.6439 | 20.3364 | 19.8135 | 20.6554 | 20.0438 | 19.9601 | 21.1331 | 25.7936 | 20.9996 | 19.6722 |
SRPnP | 1.6868 | 1.5887 | 1.6163 | 3.0589 | 2.4218 | 3.5239 | 4.5388 | 5.9875 | 6.3517 | 8.4796 | 13.12230 | 14.4261 | 15.3281 |
RDLT | 1.6937 | 1.39685 | 1.66310 | 1.8911 | 2.3511 | 2.8533 | 3.3670 | 4.2310 | 4.8015 | 5.9169 | 9.9572 | 6.3648 | 6.6381 |
ASPnP | 2.5683 | 2.3886 | 2.4077 | 2.3488 | 2.4894 | 2.5342 | 2.6157 | 2.6969 | 2.8046 | 3.1248 | 3.0530 | 3.4392 | 3.2354 |
Hidden PnP | 1.4739 | 1.7446 | 1.6663 | 1.6259 | 1.4931 | 1.5347 | 2.0399 | 1.6966 | 1.7153 | 1.9807 | 2.1906 | 2.0242 | 2.2700 |
Parameter | Specific Data |
---|---|
Focal length | , |
Principal point | |
Radial distortion coefficient | |
Tangential distortion coefficient |
Algorithm | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|
LHM | 45 | 136.1 | 25.2 | 134.5 | 53.3 | 29.1 | 51.1 | 34.1 | 30.3 | 22.3 | |
42.4 | 123.6 | 22.4 | 137.1 | 51.9 | 20.2 | 51.0 | 34.6 | 29.7 | 20.9 | ||
EPnP+GN | 14.8 | 10.6 | 10.2 | 19.7 | 8.7 | 19.4 | 6.1 | 9.5 | 18.6 | 15.1 | |
15.1 | 10.5 | 10.4 | 19.7 | 8.9 | 19.5 | 6.1 | 9.6 | 18.8 | 15.1 | ||
RPnP | 14.7 | 10.8 | 12.9 | 20.2 | 10.4 | 18.8 | 6.7 | 10.1 | 18.5 | 15.1 | |
14.7 | 10.8 | 10.9 | 20.2 | 9.1 | 18.8 | 6.2 | 10.1 | 18.6 | 15.1 | ||
DLS | 2541.7 | 2542.5 | 2606.1 | 1928.4 | 2156.4 | 2907.1 | 2470.4 | 2118.2 | 1889.5 | 2583.5 | |
2534.5 | 2551.7 | 2602.6 | 1936.5 | 2160.8 | 2913.1 | 2468.3 | 2118.7 | 1901.1 | 2584.3 | ||
OPnP | 14.7 | 10.5 | 10.4 | 20.1 | 8.7 | 18.9 | 6.6 | 9.9 | 32.5 | 14.9 | |
14.9 | 10.5 | 10.4 | 19.8 | 8.8 | 18.9 | 6.1 | 9.8 | 22.8 | 15.1 | ||
SRPnP | 14.8 | 10.5 | 10.2 | 19.8 | 8.6 | 18.9 | 5.8 | 9.6 | 18.5 | 14.8 | |
14.9 | 10.4 | 10.5 | 19.9 | 8.8 | 18.9 | 5.8 | 9.6 | 18.8 | 15.0 | ||
RDLT | 14.8 | 10.6 | 10.1 | 19.8 | 8.7 | 19.6 | 6.1 | 9.6 | 18.6 | 15.1 | |
14.9 | 10.6 | 10.4 | 19.8 | 9.1 | 19.6 | 6.0 | 9.6 | 18.8 | 15.1 | ||
ASPnP | 15.2 | 10.6 | 10.2 | 19.8 | 8.6 | 18.9 | 6.9 | 9.6 | 21.2 | 14.8 | |
14.9 | 10.4 | 10.4 | 19.9 | 8.8 | 18.9 | 5.8 | 9.6 | 18.9 | 15.0 | ||
Hidden PnP | 14.5 | 10.4 | 10.1 | 19.8 | 8.5 | 18.7 | 5.8 | 9.6 | 18.5 | 14.8 | |
14.8 | 10.4 | 10.4 | 19.7 | 8.8 | 18.9 | 5.8 | 9.6 | 18.7 | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, R.; Xu, G.; Wang, P.; Cheng, Y.; Dong, W. An Accurate, Efficient, and Stable Perspective-n-Point Algorithm in 3D Space. Appl. Sci. 2023, 13, 1111. https://doi.org/10.3390/app13021111
Qiao R, Xu G, Wang P, Cheng Y, Dong W. An Accurate, Efficient, and Stable Perspective-n-Point Algorithm in 3D Space. Applied Sciences. 2023; 13(2):1111. https://doi.org/10.3390/app13021111
Chicago/Turabian StyleQiao, Rui, Guili Xu, Ping Wang, Yuehua Cheng, and Wende Dong. 2023. "An Accurate, Efficient, and Stable Perspective-n-Point Algorithm in 3D Space" Applied Sciences 13, no. 2: 1111. https://doi.org/10.3390/app13021111
APA StyleQiao, R., Xu, G., Wang, P., Cheng, Y., & Dong, W. (2023). An Accurate, Efficient, and Stable Perspective-n-Point Algorithm in 3D Space. Applied Sciences, 13(2), 1111. https://doi.org/10.3390/app13021111