Optimal Heart Sound Segmentation Algorithm Based on K-Mean Clustering and Wavelet Transform
Abstract
:1. Introduction
2. Methods
2.1. Pre-Processing
2.2. Envelope Extraction Based on Viola Integral and Shannon Energy
2.3. Adaptive Optimal-Peak Finding Based on Dynamic Spacing and Dynamic Threshold Segmentation
2.4. Segmentation Algorithm Based on K-Mean Clustering and Haar Wavelet Transform
2.5. Boundary Detection
2.6. Complexity of the Proposed Algorithm
3. Results
3.1. Dataset
3.2. Evaluation Criteria
3.3. Evaluation Criteria
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals; World Health Organization: Geneva, Switzerland, 2021.
- Yuenyong, S.; Nishihara, A.; Kongprawechnon, W.; Tungpimolrut, K. A framework for automatic heart sound analysis without segmentation. Biomed. Eng. Online 2011, 10, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, S.W.; Han, J.Q. Towards heart sound classification without segmentation via autocorrelation feature and diffusion maps. Future Gener. Comput. Syst. 2016, 60, 13–21. [Google Scholar] [CrossRef]
- Zhang, W.; Han, J. Towards heart sound classification without segmentation using convolutional neural network. In Proceedings of the 2017 Computing in Cardiology (CinC), Rennes, France, 24–27 September 2017; pp. 1–4. [Google Scholar]
- Zhang, W.; Han, J.; Deng, S. Heart sound classification based on scaled spectrogram and partial least squares regression. Biomed. Signal Process. Control 2017, 32, 20–28. [Google Scholar] [CrossRef]
- El-Segaier, M.; Lilja, O.; Lukkarinen, S.; Sörnmo, L.; Sepponen, R.; Pesonen, E. Computer-based detection and analysis of heart sound and murmur. Ann. Biomed. Eng. 2005, 33, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Springer, D.B.; Tarassenko, L.; Clifford, G.D. Logistic regression-HSMM-based heart sound segmentation. IEEE Trans. Biomed. Eng. 2015, 63, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Min, S.D.; Shin, H. A localization method for first and second heart sounds based on energy detection and interval regulation. J. Electr. Eng. Technol. 2015, 10, 2126–2134. [Google Scholar] [CrossRef] [Green Version]
- Shukla, S.; Singh, S.K.; Mitra, D. An efficient heart sound segmentation approach using kurtosis and zero frequency filter features. Biomed. Signal Process. Control 2020, 57, 101762. [Google Scholar] [CrossRef]
- Akram, M.U.; Shaukat, A.; Hussain, F.; Khawaja, S.G.; Butt, W.H. Analysis of PCG signals using quality assessment and homomorphic filters for localization and classification of heart sounds. Comput. Methods Programs Biomed. 2018, 164, 143–157. [Google Scholar]
- Shivhare, V.K.; Sharma, S.N.; Shakya, D.K. Detection of heart sounds S1 and S2 using optimized S-transform and back-Propagation Algorithm. In Proceedings of the 2015 IEEE Bombay Section Symposium (IBSS), Mumbai, India, 10–11 September 2015; pp. 1–6. [Google Scholar]
- Varghees, V.N.; Ramachandran, K.I. Heart murmur detection and classification using wavelet transform and Hilbert phase envelope. In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Mumbai, India, 27 February–1 March 2015; pp. 1–6. [Google Scholar]
- Varghees, V.N.; Ramachandran, K.I. Effective heart sound segmentation and murmur classification using empirical wavelet transform and instantaneous phase for electronic stethoscope. IEEE Sens. J. 2017, 17, 3861–3872. [Google Scholar] [CrossRef]
- Charleston-Villalobos, S.; Aljama-Corrales, A.T.; Gonzalez-Camarena, R. Analysis of simulated heart sounds by intrinsic mode functions. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 2848–2851. [Google Scholar]
- Papadaniil, C.D.; Hadjileontiadis, L.J. Efficient heart sound segmentation and extraction using ensemble empirical mode decomposition and kurtosis features. IEEE J. Biomed. Health Inform. 2013, 18, 1138–1152. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Mishra, M.; Mukherjee, A. Segmentation and detection of first and second heart sounds (s1 and s2) using variational mode decomposition. In Proceedings of the 2016 IEEE EMBS conference on biomedical engineering and sciences (IECBES), Kuala Lumpur, Malaysia, 4–8 December 2016; pp. 565–570. [Google Scholar]
- Zaeemzadeh, A.; Nafar, Z.; Setarehdan, S.K. Heart sound segmentation based on recurrence time statistics. In Proceedings of the 2013 20th Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 18–20 December 2013; pp. 215–218. [Google Scholar]
- Yadav, J.; Sharma, M. A Review of K-mean Algorithm. Int. J. Eng. Trends Technol. 2013, 4, 2972–2976. [Google Scholar]
- Viola, P.; Jones, M.J. Robust Real-Time Face Detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, Z.; Miyamoto, A.; Wei, Y. The moment segmentation analysis of heart sound pattern. Comput. Methods Programs Biomed. 2010, 98, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Lin, Z.; Yuan, C.; Wang, Q.; Liu, F.; Wang, Y. Detection of heart valve disorders from PCG signals using TQWT, FA-MVEMD, Shannon energy envelope and deterministic learning. Artif. Intell. Rev. 2021, 54, 6063–6100. [Google Scholar] [CrossRef]
- Beyramienanlou, H.; Lotfivand, N. Shannon’s energy based algorithm in ECG signal processing. Comput. Math. Methods Med. 2017, 2017, 8081361. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Springer, D.; Li, Q.; Moody, B.; Juan, R.A.; Chorro, F.J.; Castells, F.; Roig, J.M.; Silva, I.; Johnson, A.E.W.; et al. An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 2016, 37, 2181. [Google Scholar] [CrossRef] [PubMed]
- Roquemen-Echeverri, V.; Jacobs, P.G.; Heitner, S.; Schulman, P.M.; Wilson, B.; Mahecha, J.; Mosquera-Lopez, C. An AI-Powered Tool for Automatic Heart Sound Quality Assessment and Segmentation. In Proceedings of the 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021; pp. 3065–3074. [Google Scholar]
- Fernando, T.; Ghaemmaghami, H.; Denman, S.; Sridharan, S.; Hussain, N.; Fookes, C. Heart sound segmentation using bidirectional LSTMs with attention. IEEE J. Biomed. Health Inform. 2019, 24, 1601–1609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, K.; Khan, H.A.; Qu, W. Clustering with Missing Features: A Density-Based Approach. Symmetry 2022, 14, 60. [Google Scholar] [CrossRef]
- Dinh, D.T.; Huynh, V.N.; Sriboonchitta, S. Clustering mixed numerical and categorical data with missing values. Inf. Sci. 2021, 571, 418–442. [Google Scholar] [CrossRef]
PCG Signal | Types | FP | FN | TP | Se | PPV | Acc | Std |
---|---|---|---|---|---|---|---|---|
Total S1 | Normal | 6 | 0 | 212 | 100% | 97.25% | 97.25% | ±2.46% |
Aortic | 3 | 0 | 158 | 100% | 98.14% | 98.14% | ±4.22% | |
Benign | 3 | 0 | 208 | 100% | 98.58% | 98.58% | ±2.54% | |
Miscell. | 2 | 3 | 206 | 98.56% | 99.04% | 97.63% | ±3.65% | |
MVP | 3 | 0 | 208 | 100% | 98.58% | 98.58% | ±1.70% | |
Total | 17 | 3 | 992 | 99.70% | 98.51% | 98.02% | ±2.93% | |
Total S2 | Normal | 9 | 0 | 213 | 100% | 95.95% | 95.95% | ±2.58% |
Aortic | 1 | 3 | 158 | 99.37% | 99.37% | 97.53% | ±4.19% | |
Benign | 8 | 0 | 204 | 100% | 96.22% | 96.22% | ±3.34% | |
Miscell. | 3 | 3 | 208 | 98.58% | 98.58% | 97.20% | ±3.38% | |
MVP | 6 | 0 | 204 | 100% | 97.14% | 97.14% | ±3.4% | |
Total | 27 | 6 | 987 | 99.40% | 97.34% | 96.76% | ±3.35% |
Method (The Reporter and Year) | Classifier | Computational Complexity | Se/PPV/Sp/Acc(%) |
---|---|---|---|
HE, kurtosis, and ZFF (Shukla et al., 2020) [9] | low | Se = 98.61, PPV = 99.11, Acc = 98.07 | |
DWT and HE (Akram et al., 2018) [10] | SVM | low | Se = 87.68, Sp = 87.18, Acc = 87.42 |
EWT, SEE, and IP (Varghees et al., 2017) [13] | a decision-tree algorithm | low | Se = 98.00, PPV = 97.40, Acc = 95.50 |
EEMD and kurtosis (Papadaniil et al., 2013) [15] | low | Acc = 83.05 | |
db4 wavelet, SE, and MFCC (Roquemen-Echeverri et al., 2021) [24] | MLP | high | Acc = 93.00 |
SHAP, ∆, and ∆2 (Fernando et al., 2019) [25] | LSTMs and CNN | high | Se = 95.4, Sp = 96.2, PPV = 91.10, Acc = 96.00 |
Our proposal | low | Se = 99.55, PPV = 97.93, Acc = 97.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Geng, X.; Gao, Z.; Yang, H.; Dai, Z.; Zhang, H. Optimal Heart Sound Segmentation Algorithm Based on K-Mean Clustering and Wavelet Transform. Appl. Sci. 2023, 13, 1170. https://doi.org/10.3390/app13021170
Xu X, Geng X, Gao Z, Yang H, Dai Z, Zhang H. Optimal Heart Sound Segmentation Algorithm Based on K-Mean Clustering and Wavelet Transform. Applied Sciences. 2023; 13(2):1170. https://doi.org/10.3390/app13021170
Chicago/Turabian StyleXu, Xingchen, Xingguang Geng, Zhixing Gao, Hao Yang, Zhiwei Dai, and Haiying Zhang. 2023. "Optimal Heart Sound Segmentation Algorithm Based on K-Mean Clustering and Wavelet Transform" Applied Sciences 13, no. 2: 1170. https://doi.org/10.3390/app13021170
APA StyleXu, X., Geng, X., Gao, Z., Yang, H., Dai, Z., & Zhang, H. (2023). Optimal Heart Sound Segmentation Algorithm Based on K-Mean Clustering and Wavelet Transform. Applied Sciences, 13(2), 1170. https://doi.org/10.3390/app13021170