Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens
Abstract
:1. Fundamentals of High-Pressure Processing Pasteurization of Food and Beverages
2. Mechanisms and Factors Affecting the Inactivation of Vegetative Microorganisms in Foods
Counting Microorganisms and Assessing Microbial Reductions by HPP
3. Pasteurization Targets and Regulations
Regulatory Aspects of High Pressure Processed Foods
4. Staphylococcus aureus Inactivation by HPP
5. Escherichia coli Inactivation by HPP
6. Listeria monocytogenes Inactivation by HPP
7. Salmonella inactivation by HPP
8. Vibrio Inactivation by HPP
9. Inactivation of Other Vegetative Pathogens by HPP
10. Conclusions and Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, F.V.M.; Gibbs, P.A. Principles of thermal processing: Pasteurization. In Engineering Aspects of Thermal Food Processing; Simpson, R., Ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 14–38. [Google Scholar]
- Silva, F.V.M.; Gibbs, P.A.; Nunez, H.; Almonacid, S.; Simpson, R. Thermal processes: Pasteurization. In Encyclopedia of Food Microbiology; Batt, C.A., Tortorello, M.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 577–595. [Google Scholar]
- Evelyn; Silva, F.V.M. Inactivation of pathogenic microorganisms in foods by high-pressure processing. In Food Safety and Protection; Rai, V.R., Bai, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 343–378. [Google Scholar]
- Silva, F.V.M.; Evelyn. High pressure processing effect on microorganisms in fruit and vegetable products. In High Pressure Processing of Fruit and Vegetable Juices; Houška, M., Silva, F.V.M., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2018; pp. 3–37. [Google Scholar]
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards); Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. The efficacy and safety of high-pressure processing of food. EFSA J. 2022, 20, 7128. [Google Scholar]
- Sulaiman, A.; Farid, M.; Silva, F.V.M. Strawberry puree processed by thermal, high pressure, or power ultrasound: Process energy requirements and quality modeling during storage. Food Sci. Technol. Int. 2017, 23, 293–309. [Google Scholar] [CrossRef]
- Sánchez-Moreno, C.; de Ancos, B. High pressure processing effect on nutrients and their stability. In High Pressure Processing of Fruit and Vegetable Juices; Houška, M., Silva, F.V.M., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2018; pp. 85–103. [Google Scholar]
- Milani, E.A.; Silva, F. Nonthermal pasteurization of beer by high pressure processing: Modelling the inactivation of Saccharomyces cerevisiae ascospores in different alcohol beers. High Press. Res. 2016, 36, 595–609. [Google Scholar] [CrossRef]
- van Wyk, S.; Farid, M.M.; Silva, F.V. SO2, high pressure processing and pulsed electric field treatments of red wine: Effect on sensory, Brettanomyces inactivation and other quality parameters during one year storage. Innov. Food Sci. Emerg. Technol. 2018, 48, 204–211. [Google Scholar] [CrossRef]
- Lee, P.Y.; Oey, I. Sensory properties of high pressure treated fruit and vegetable juices. In High Pressure Processing of Fruit and Vegetable Juices; Houška, M., Silva, F.V.M., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2018; pp. 121–133. [Google Scholar]
- Tříska, J. Health active components in fruit/vegetable juices treated by high pressure. In High Pressure Processing of Fruit and Vegetable Juices; Houška, M., Silva, F.V.M., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2018; pp. 105–119. [Google Scholar]
- Houška, M.; Silva, F.V.M.; Evelyn; Buckow, R.; Terefe, N.S.; Tonello, C. High pressure processing applications in plant foods. Foods 2022, 11, 223. [Google Scholar] [CrossRef]
- Silva, F.M.; Sims, C.; Balaban, M.O.; Silva, C.L.M.; O’Keefe, S. Kinetics of flavour and aroma changes in thermally processed cupuaçu (Theobroma grandiflorum) pulp. J. Sci. Food Agric. 2000, 80, 783–787. [Google Scholar] [CrossRef]
- van Wyk, S.; Silva, F.V.M. High pressure processing inactivation of Brettanomyces bruxellensis in seven different table wines. Food Contr. 2017, 81, 1–8. [Google Scholar] [CrossRef]
- van Wyk, S.; Silva, F.V.M. High pressure inactivation of Brettanomyces bruxellensis in red wine. Food Microbiol. 2017, 63, 199–204. [Google Scholar] [CrossRef]
- Houska, M.; Silva, F.V.M. High Pressure Processing of Fruit and Vegetable Products; CRC Press Taylor and Francis Group: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2018. [Google Scholar]
- HPP Technology Applications. Available online: https://www.hiperbaric.com/en/hpp-technology/hpp-applications/ (accessed on 24 November 2022).
- Milani, E.A.; Silva, F.V.M. Pasteurization of beer by non-thermal technologies. Front. Food. Sci. Technol. 2022, 1, 798676. [Google Scholar] [CrossRef]
- Abe, F. Dynamic structural changes in microbial membranes in response to high hydrostatic pressure analyzed using time-resolved fluorescence anisotropy measurement. Biophys. Chem. 2013, 183, 3–8. [Google Scholar] [CrossRef]
- Rozali, S.N.; Milani, E.A.; Deed, R.C.; Silva, F.V.M. Bacteria, mould and yeast spore inactivation studies by scanning electron microscope observations. Int. J. Food Microbiol. 2017, 263, 17–25. [Google Scholar] [CrossRef]
- Silva, F.V.M.; van Wyk, S. Emerging non-thermal technologies as alternative to SO2 for the production of wine. Foods 2021, 10, 2175. [Google Scholar] [CrossRef]
- Norton, T.; Sun, D.-W. Recent advances in the use of high pressure as an effective processing technique in the food industry. Food Bioprocess Technol. 2007, 1, 2–34. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. High pressure thermal processing for the inactivation of Clostridium perfringens spores in beef slurry. Innov. Food Sci. Emerg. Technol. 2016, 33, 26–31. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. Modeling the inactivation of psychrotrophic Bacillus cereus spores in beef slurry by 600MPa HPP combined with 38–70 °C: Comparing with thermal processing and estimating the energy requirements. Food Bioprod. Process. 2016, 99, 179–187. [Google Scholar] [CrossRef]
- Uchida, R.; Silva, F.V.M. Alicyclobacillus acidoterrestris spore inactivation by high pressure combined with mild heat: Modelling the effect of temperature and soluble solids. Food Contr. 2017, 73, 426–432. [Google Scholar] [CrossRef]
- Evelyn; Silva, F.V.M. Heat assisted HPP for the inactivation of bacteria, molds and yeast spores in foods: Log reductions and mathematical models. Trends Food Sci. Technol. 2018, 88, 143–156. [Google Scholar] [CrossRef]
- Rendueles, E.; Omer, M.K.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT-Food Sci. Technol. 2011, 44, 1251–1260. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Belletti, N.; Aymerich, T.; Garriga, M. Modeling the protective effect of aw and fat content on the high pressure resistance of Listeria monocytogenes in dry-cured ham. Food Res. Int. 2015, 75, 194–199. [Google Scholar] [CrossRef]
- Bover-Cid, S.; Belletti, N.; Aymerich, T.; Garriga, M. Modelling the impact of water activity and fat content of dry-cured ham on the reduction of Salmonella enterica by high pressure processing. Meat Sci. 2017, 123, 120–125. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Foodborne Germs and Illnesses. Available online: http://www.cdc.gov/foodsafety/foodborne-germs.html (accessed on 24 November 2022).
- Centers for Disease Control and Prevention (CDC). Surveillance for Foodborne Disease Outbreaks, United States, 2017, Annual Report; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Salmonella (Non-Typhoidal). Available online: https://www.who.int/en/news-room/fact-sheets/detail/salmonella-(non-typhoidal) (accessed on 24 November 2022).
- European Food Safety Authority; European Centre for Disease Prevention and Control. Multi-country outbreak of Listeria monocytogenes serogroup IVb, multi-locus sequence type 6, infections linked to frozen corn and possibly to other frozen vegetables—First update. EFSA Support. Publ. 2018, 15, 1448E. [Google Scholar]
- Westhoff, D.C. Heating milk for microbial destruction: A historical outline and update. J. Food Prot. 1978, 41, 122–130. [Google Scholar] [CrossRef]
- Grant, I.R.; Ball, H.J.; Neill, S.D.; Rowe, M.T. Inactivation of Mycobacterium paratuberculosis in cows’ milk at pasteurization temperatures. Appl. Environ. Microbiol. 1996, 62, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Grant, I.R. Mycobacterium paratuberculosis and milk. Acta Vet Scand 2003, 44, 261–266. [Google Scholar]
- Cerf, O.; Condron, R. Coxiella burnetii and milk pasteurization: An early application of the precautionary principle? Epidemiol. Infect. 2006, 134, 946–951. [Google Scholar] [CrossRef]
- D’Aoust, J. Psychrotrophy and foodborne Salmonella. Int. J. Food Microbiol. 1991, 13, 207–215. [Google Scholar] [CrossRef]
- Penfield, M.P.; Campbell, A.M.; Penfield, M.P. Experimental Food Science; Academic Press: San Diego, CA, USA, 1990. [Google Scholar]
- Implementation of the FDA Food Safety Modernization Act (FSMA, P.L. 111–353). Available online: https://www.govinfo.gov/content/pkg/PLAW-111publ353/pdf/PLAW-111publ353.pdf (accessed on 24 November 2022).
- Koutchma, T.; Warriner, K. Regulatory aspects of high pressure processed foods in North America, Europe, Asia, New Zealand and Australia. In High Pressure Processing of Fruit and Vegetable Juices; Houška, M., Silva, F.V.M., Eds.; CRC Press: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2018; pp. 155–168. [Google Scholar]
- Evenson, M.L.; Hinds, M.W.; Bernstein, R.S.; Bergdoll, M.S. Estimation of human dose of staphylococcal enterotoxin A from a large outbreak of staphylococcal food poisoning involving chocolate milk. Int. J. Food Microbiol. 1988, 7, 311–316. [Google Scholar] [CrossRef]
- Asao, T.; Kumeda, Y.; Kawai, T.; Shibata, T.; Oda, H.; Haruki, K.; Nakazawa, H.; Kozaki, S. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: Estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol. Infect. 2003, 130, 33–40. [Google Scholar] [CrossRef]
- Schmid, D.; Fretz, R.; Winter, P.; Mann, M.; Höger, G.; Stöger, A.; Ruppitsch, W.; Ladstätter, J.; Mayer, N.; de Martin, A. Outbreak of staphylococcal food intoxication after consumption of pasteurized milk products, June 2007, Austria. Wien. Klin. Wochenschr. 2009, 121, 125–131. [Google Scholar] [CrossRef]
- Ostyn, A.; De Buyser, M.L.; Guillier, F.; Groult, J.; Felix, B.; Salah, S.; Delmas, G.; Hennekinne, J.A. First evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E, France, 2009. Eurosurveillance 2010, 15, 19528. [Google Scholar] [CrossRef]
- Hennekinne, J.A.; De Buyser, M.L.; Dragacci, S. Staphylococcus aureus and its food poisoning toxins: Characterization and outbreak investigation. FEMS Microbiol. Rev. 2012, 36, 815–836. [Google Scholar] [CrossRef] [Green Version]
- Shigehisa, T.; Ohmori, T.; Saito, A.; Taji, S.; Hayashi, R. Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int. J. Food Microbiol. 1991, 12, 207–215. [Google Scholar] [CrossRef]
- Zagorska, J.; Galoburda, R.; Raita, S.; Liepa, M. Inactivation and recovery of bacterial strains, individually and mixed, in milk after high pressure processing. Int. Dairy J. 2021, 123, 105147. [Google Scholar] [CrossRef]
- O’Reilly, C.E.; O’Connor, P.M.; Kelly, A.L.; Beresford, T.P.; Murphy, P.M. Use of hydrostatic pressure for inactivation of microbial contaminants in cheese. Appl. Environ. Microbiol. 2000, 66, 4890–4896. [Google Scholar] [CrossRef] [Green Version]
- Rocha-Pimienta, J.; Martillanes, S.; Ramírez, R.; Garcia-Parra, J.; Delgado-Adamez, J. Bacillus cereus spores and Staphylococus aureus sub. aureus vegetative cells inactivation in human milk by high-pressure processing. Food Control 2020, 113, 107212. [Google Scholar] [CrossRef]
- Patterson, M.F.; Kilpatrick, D.J. The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J. Food Prot. 1998, 61, 432–436. [Google Scholar] [CrossRef]
- Gervilla, R.; Sendra, E.; Ferragut, V.; Guamis, B. Sensitivity of Staphylococcus aureus and Lactobacillus helveticus in ovine milk subjected to high hydrostatic pressure. J. Dairy Sci. 1999, 82, 1099–1107. [Google Scholar] [CrossRef]
- Park, S.; Park, E.; Yoon, Y. Comparison of nonthermal decontamination methods to improve the safety for raw beef consumption. J. Food Prot. 2021, 85, 664–670. [Google Scholar] [CrossRef]
- Jarzynka, S.; Strom, K.; Barbarska, O.; Pawlikowska, E.; Minkiewicz-Zochniak, A.; Rosiak, E.; Oledzka, G.; Wesolowska, A. Combination of high-pressure processing and freeze-drying as the most effective techniques in maintaining biological values and microbiological safety of donor milk. Int. J. Environ. Res. Public Health 2021, 18, 2147. [Google Scholar] [CrossRef]
- Alpas, H.; Bozoglu, F. The combined effect of high hydrostatic pressure, heat and bacteriocins on inactivation of foodborne pathogens in milk and orange juice. World J. Microbiol. Biotechnol. 2000, 16, 387–392. [Google Scholar] [CrossRef]
- Hugas, M.; Garriga, M.; Monfort, J.M. New mild technologies in meat processing: High pressure as a model technology. Meat Sci. 2002, 62, 359–371. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Reports of Selected E. coli Outbreak Investigations. Available online: http://www.cdc.gov/ecoli/outbreaks.html (accessed on 24 November 2022).
- Weagant, S.D.; Bryant, J.L.; Bark, D.H. Survival of Escherichia coli O157:H7 in mayonnaise and mayonnaise-based sauces at room and refrigerated temperatures. J. Food Prot. 1994, 57, 629–631. [Google Scholar] [CrossRef] [PubMed]
- Conner, D.E.; Kotrola, J.S. Growth and survival of Escherichia coli O157:H7 under acidic conditions. Appl. Environ. Microbiol. 1995, 61, 382–385. [Google Scholar] [CrossRef]
- Hsin-Yi, C.; Chou, C. Acid adaptation and temperature effect on the survival of E. coli O157:H7 in acidic fruit juice and lactic fermented milk product. Int. J. Food Microbiol. 2001, 70, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Outbreak of Escherichia coli O157:H7 infections associated with drinking unpasteurized commercial apple juice--British Columbia, California, Colorado, and Washington, October 1996. MMWR Morb. Mortal. Wkly. Rep. 1996, 45, 975. [Google Scholar]
- Cody, S.H.; Glynn, M.K.; Farrar, J.A.; Cairns, K.L.; Griffin, P.M.; Kobayashi, J.; Fyfe, M.; Hoffman, R.; King, A.S.; Lewis, J.H. An outbreak of Escherichia coli O157:H7 infection from unpasteurized commercial apple juice. Ann. Intern. Med. 1999, 130, 202–209. [Google Scholar] [CrossRef]
- Miller, L.G.; Kaspar, C.W. Escherichia coli O157:H7 acid tolerance and survival in apple cider. J. Food Prot. 1994, 57, 460–464. [Google Scholar] [CrossRef]
- Tsai, Y.; Ingham, S.C. Survival of Escherichia coli O157:H7 and Salmonella spp. in acidic condiments. J. Food Prot. 1997, 60, 751–755. [Google Scholar] [CrossRef]
- Morgan, D.; Newman, C.P.; Hutchinson, D.N.; Walker, A.M.; Rowe, B.; Majid, F. Verotoxin producing Escherichia coli O157 infections associated with the consumption of yoghurt. Epidemiol. Infect. 1993, 111, 181. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, O.O. Food borne pathogen Escherichia coli O157: H7 History, sources of transmission, symptoms, detection and prevention. EC Microbiol. 2015, 2, 214–222. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). E. coli (Escherichia coli): General Information. Available online: http://www.cdc.gov/ecoli/general/ (accessed on 24 November 2022).
- Stratakos, A.C.; Inguglia, E.S.; Linton, M.; Tollerton, J.; Murphy, L.; Corcionivoschi, N.; Koidis, A.; Tiwari, B.K. Effect of high pressure processing on the safety, shelf life and quality of raw milk. Innov. Food Sci. Emerg. Technol. 2019, 52, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Raghubeer, E.V.; Phan, B.N.; Onuoha, E.; Diggins, S.; Aguilar, V.; Swanson, S.; Lee, A. The use of high-pressure processing (HPP) to improve the safety and quality of raw coconut (Cocos nucifera L) water. Int. J. Food Microbiol. 2020, 331, 108697. [Google Scholar] [CrossRef] [PubMed]
- Chien, S.Y.; Sheen, S.; Sommers, C.; Sheen, L.Y. Modeling the inactivation of Escherichia coli O157:H7 and uropathogenic E. coli in ground beef by high pressure processing and citral. Food Control 2017, 73, 672–680. [Google Scholar] [CrossRef]
- Capellas, M.; Mor-Mur, M.; Sendra, E.; Pla, R.; Guamis, B. Populations of aerobic mesophils and inoculated E. coli during storage of fresh goat’s milk cheese treated with high pressure. J. Food Prot. 1996, 59, 582–587. [Google Scholar] [CrossRef] [PubMed]
- Linton, M.; McClements, J.M.J.; Patterson, M.F. Inactivation of Escherichia coli O157:H7 in orange juice using a combination of high pressure and mild heat. J. Food Prot. 1999, 62, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, N.D.; Ramaswamy, H.S. High pressure destruction kinetics of spoilage and pathogenic microorganisms in mango juice. J. Food Process. Pres. 2012, 36, 113–125. [Google Scholar] [CrossRef]
- Jordan, S.L.; Pascual, C.; Bracey, E.; Mackey, B.M. Inactivation and injury of pressure-resistant strains of Escherichia coli O157 and Listeria monocytogenes in fruit juices. J. Appl. Microbiol. 2001, 91, 463–469. [Google Scholar] [CrossRef]
- Henriques, A.R.; Fraqueza, M.J. Listeria monocytogenes and ready-to-eat-meat-based food products: Incidence and control. In Listeria Monocytogenes Incidence, Growth Behavior, and Control; Vicario, T., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2015; pp. 71–103. [Google Scholar]
- Gillespie, I.A.; Mook, P.; Little, C.L.; Grant, K.A.; McLauchlin, J. Human listeriosis in England, 2001–2007: Association with neighbourhood deprivation. Eurosurveillance 2010, 15, 7–16. [Google Scholar] [CrossRef] [Green Version]
- CDC. Listeriosis: Diagnosis. Available online: http://www.cdc.gov/listeria/diagnosis.html (accessed on 24 November 2022).
- CDC. Listeria Outbreaks. Available online: http://www.cdc.gov/listeria/outbreaks/ (accessed on 24 November 2022).
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards). Scientific Opinion on the Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J. 2018, 16, 5134. [Google Scholar]
- EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards); Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables, including herbs, blanched during processing. EFSA J. 2020, 18, 6092. [Google Scholar]
- Balamurugan, S.; Inmanee, P.; Souza, J.; Strange, P.; Pirak, T.; Barbut, S. Effects of high pressure processing and hot water pasteurization of cooked sausages on inactivation of inoculated Listeria monocytogenes, natural populations of lactic acid bacteria, Pseudomonas spp., and coliforms and their recovery during storage at 4 and 10 °C. J. Food Prot. 2018, 81, 1245–1251. [Google Scholar] [PubMed]
- Gallot-Lavallee, T. Efficiency of high pressure treatment for destruction of Listeria monocytogenes in goat cheese from raw milk. Sci. Aliment. 1998, 18, 647–655. [Google Scholar]
- Bambace, M.F.; Moreira, M.R.; Sánchez-Moreno, C.; De Ancos, B. Effects of combined application of high-pressure processing and active coatings on phenolic compounds and microbiological and physicochemical quality of apple cubes. J. Sci. Food Agric. 2021, 101, 4256–4265. [Google Scholar] [CrossRef]
- Patterson, M.F.; Quinn, M.; Simpson, R.; Gilmour, A. Sensitivity of vegetative pathogens to high hydrostatic pressure treatment in phosphate-buffered saline and foods. J. Food Prot. 1995, 58, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Reports of Selected Salmonella Outbreak Investigations. Available online: https://www.cdc.gov/salmonella/outbreaks.html (accessed on 24 November 2022).
- Perales, I.; Audicana, A. The role of hens’ eggs in outbreaks of salmonellosis in north Spain. Int. J. Food Microbiol. 1989, 8, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.P.; Erickson, M.C. Summer meeting 2007–the problems with fresh produce: An overview. J. Appl. Microbiol. 2008, 105, 317–330. [Google Scholar] [CrossRef]
- Hanning, I.B.; Nutt, J.D.; Ricke, S.C. Salmonellosis outbreaks in the United States due to fresh produce: Sources and potential intervention measures. Foodborne Pathog. Dis. 2009, 6, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Giannella, R.A. Salmonella. In Medical Microbiology; Baron, S., Ed.; University of Texas Medical Branch: Galveston, TX, USA, 1996. [Google Scholar]
- Behravesh, C.B.; Lynch, M.; Schlundt, J. Salmonellosis, Control of Communicable Diseases Manual; United Book Press: Baltimore, MD, USA, 2008. [Google Scholar]
- Argyri, A.A.; Papadopoulou, O.S.; Nisiotou, A.; Tassou, C.C.; Chorianopoulos, N. Effect of high pressure processing on the survival of Salmonella Enteritidis and shelf-life of chicken fillets. Food Microbiol. 2018, 70, 55–64. [Google Scholar] [CrossRef]
- Shahbaz, H.M.; Jeong, B.; Kim, J.U.; Ha, N.; Lee, H.; Ha, S.D.; Park, J. Application of high pressure processing for prevention of greenish-gray yolks and improvement of safety and shelf-life of hard-cooked peeled eggs. Innov. Food Sci. Emerg. Technol. 2018, 45, 10–17. [Google Scholar] [CrossRef]
- Ponce, E.; Pla, R.; Sendra, E.; Guamis, B.; Mor-Mur, M. Destruction of Salmonella Enteritidis inoculated in liquid whole egg by high hydrostatic pressure: Comparative study in selective and non-selective media. Food Microbiol. 1999, 16, 357–365. [Google Scholar] [CrossRef]
- Bari, M.L.; Ukuku, D.O.; Mori, M.; Kawamoto, S.; Yamamoto, K. Effect of hydrostatic pressure pulsing on the inactivation of Salmonella Enteritidis in liquid whole egg. Foodborne Pathog. Dis. 2008, 5, 175–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metrick, C.; Hoover, D.G.; Farkas, D.F. Effects of high hydrostatic pressure on heat resistant and heat sensitive strains of Salmonella. J. Food Sci. 1989, 54, 1547–1549. [Google Scholar] [CrossRef]
- Bonilauri, P.; Grisenti, M.S.; Daminelli, P.; Merialdi, G.; Ramini, M.; Bardasi, L.; Taddei, R.; Cosciani-Cunico, E.; Dalzini, E.; Frustoli, M.A.; et al. Reduction of Salmonella spp. populations in Italian salami during production process and high pressure processing treatment: Validation of processes to export to the U.S. Meat Sci. 2019, 157, 107869. [Google Scholar] [CrossRef] [PubMed]
- Boziaris, I.S.; Parlapani, F.F.; DeWitt, C.A.M. High pressure processing at ultra-low temperatures: Inactivation of foodborne bacterial pathogens and quality changes in frozen fish fillets. Innov. Food Sci. Emerg. Technol. 2021, 74, 102811. [Google Scholar] [CrossRef]
- Jay, J.M. High-temperature food preservation and characteristics of thermophilic microorganisms. In Modern Food Microbiology; Springer: Berlin/Heidelberg, Germany, 2000; pp. 341–362. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Vibrio Species Causing Vibriosis: Symptoms and Outbreaks. Available online: https://www.cdc.gov/vibrio/outbreaks.html (accessed on 24 November 2022).
- Daniels, N.A.; Ray, B.; Easton, A.; Marano, N.; Kahn, E.; McShan, A.L., 2nd; Rosario, L.D.; Baldwin, T.; Kingsley, M.A.; Puhr, N.D.; et al. Emergence of a new Vibrio parahaemolyticus serotype in raw oysters: A prevention quandary. JAMA 2000, 284, 1541–1545. [Google Scholar] [CrossRef] [Green Version]
- De Paola, A.; Kaysner, C.A.; Bowers, J.; Cook, D.W. Environmental investigations of Vibrio parahaemolyticus in oysters after outbreaks in Washington, Texas, and New York (1997 and 1998). Appl. Environ. Microbiol. 2000, 66, 4649–4654. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, R.L.; Altekruse, S.; Hutwagner, L.; Bishop, R.; Hammond, R.; Wilson, S.; Ray, B.; Thompson, S.; Tauxe, R.V.; Griffin, P.M. The role of Gulf Coast oysters harvested in warmer months in Vibrio vulnificus infections in the United States, 1988–1996. J. Infect. Dis. 1998, 178, 752–759. [Google Scholar] [CrossRef] [Green Version]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Ye, M.; Huang, Y.; Chen, H. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in oysters by high-hydrostatic pressure and mild heat. Food Microbiol. 2012, 32, 179–184. [Google Scholar] [CrossRef]
- Cook, D. Sensitivity of Vibrio species in phosphate-buffered saline and in oysters to high-pressure processing. J. Food Prot. 2003, 66, 2276–2282. [Google Scholar] [CrossRef]
- Koo, J.; Jahncke, M.L.; Reno, P.W.; Hu, X.; Mallikarjunan, P. Inactivation of Vibrio parahaemolyticus and Vibrio vulnificus in phosphate-buffered saline and in inoculated whole oysters by high-pressure processing. J. Food Prot. 2006, 69, 596–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Styles, M.F.; Hoover, D.G.; Farkas, D.F. Response of Listeria monocytogenes and Vibrio parahaemolyticus to high hydrostatic pressure. J. Food Sci. 1991, 56, 1404–1407. [Google Scholar] [CrossRef]
- Deming, M.S.; Tauxe, R.V.; Blake, P.A.; Dixon, S.E.; Fowler, B.S.; Jones, T.S.; Lockamy, E.A.; Patton, C.M.; Sikes, R.O. Campylobacter enteritis at a university: Transmission from eating chicken and from cats. Am. J. Epidemiol. 1987, 126, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Z.; Kuhn, M.; Lannigan, R.; Austin, T.W. Microbiological investigation of an outbreak of bacteraemia due to Streptococcus faecalis in an intensive care unit. J. Hosp. Infect. 1988, 12, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Tsai, G.; Chen, T. Incidence and toxigenicity of Aeromonas hydrophila in seafood. Int. J. Food Microbiol. 1996, 31, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Gaibani, P.; Ambretti, S.; Farruggia, P.; Bua, G.; Berlingeri, A.; Tamburini, M.V.; Cordovana, M.; Guerra, L.; Mazzetti, M.; Roncarati, G. Outbreak of Citrobacter freundii carrying VIM-1 in an Italian Hospital, identified during the carbapenemases screening actions, June 2012. Int. J. Infect. Dis. 2013, 17, e714–e717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grahek-Ogden, D.; Schimmer, B.; Cudjoe, K.S.; Nygård, K.; Kapperud, G. Outbreak of Yersinia enterocolitica serogroup O:9 infection and processed pork, Norway. Emerg. Infect. Dis. 2007, 13, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.B.; Hoover, D.G. Inactivation of Campylobacter jejuni by high hydrostatic pressure. Lett. Appl. Microbiol. 2004, 38, 505–509. [Google Scholar] [CrossRef]
- Ellenberg, L.; Hoover, D.G. Injury and survival of Aeromonas hydrophila 7965 and Yersinia enterocolitica 9610 from high hydrostatic pressure. J. Food Saf. 1999, 19, 263–276. [Google Scholar] [CrossRef]
- Carlez, A.; Rosec, J.-P.; Richard, N.; Cheftel, J.-C. High pressure inactivation of Citrobacter freundii, Pseudomonas fluorescens and Listeria innocua in inoculated minced beef muscle. LWT-Food Sci. Technol. 1993, 26, 357–363. [Google Scholar] [CrossRef]
Strain | Food Products | pH | Pressure (MPa) | Temperature (°C) | Time (min) | Log Reduction | Reference |
---|---|---|---|---|---|---|---|
ATCC 25923 | Pork slurry | nr | 600 | RT | 10 | 6.0 | [47] |
ATCC 25923 | UHT milk 2% fat | nr | 600 | RT | 15 | 4.7 | [48] |
ATCC 6538 | Cheese slurry | 5.2–5.4 | 600 | RT | 20 | 4.5 | [49] |
CECT 976 (ATCC 13565) | Human milk | nr | 594 | RT | 4 | 5.8 | [50] |
NCTC 10652 (ATCC 13565) | Poultry meat | nr | 600 | RT 50 a | 15 15 | 4.0 6.0 | [51] |
NCTC 10652 (ATCC 13565) | UHT milk | nr nr | 600 | RT | 15 | 5.5 | [51] |
500 | RT | 15 | 2.5 | ||||
500 | 50 a | 15 | 6.0 | ||||
CECT 534 (NCTC 4163) | Ovine milk | 6.7 | 500 | RT 50 b | 15 15 | 3.2 >7.0 | [52] |
Cocktail of 5 strains | Raw beef | 5.8 | 500 | RT | 7 | 1.7 | [53] |
ATCC 33862 | Human milk | nr | 450 | RT | 15 | ≥6.8 | [54] |
485 | Milk | 6.7 | 345 | 50 a | 5 5 | 5.5 >8.0 | [55] |
765 | Milk | ||||||
Special Foods | |||||||
nr | Dry-cured ham | nr | 600 | RT | 6 | 0.6 | [56] |
Cooked ham | 6 | 1.1 | |||||
Marinated beef | 6 | 2.7 |
Strain | Food Products | pH | Pressure (MPa) | Temperature (°C) | Time (min) | Log Reduction | Reference | |
---|---|---|---|---|---|---|---|---|
O157:H7 | NCTC 12079 | Poultry meat | nr | 600 | RT 50 a | 15 15 | 1.5 8.0 | [51] |
O157:H7 | NCTC 12079 | UHT milk | nr | 600 500 | RT 50 a | 15 15 | 0.5 8.0 | [51] |
- | ATCC 25922 | UHT milk 2% fat | nr | 600 | RT | 15 | ≥7.0 | [48] |
- | Cocktail of 5 strains | Raw milk | nr | 600 | RT | 5 | 6.8 | [68] |
O157:H7 | Cocktail of 8 strains | Coconut water | 5.2 | 593 | RT | 3 | ≥6.6 | [69] |
O157:H7 | Cocktail of 3 strains | Ground beef (17% fat) | nr | 500 | RT | 15 | 7.0 | [70] |
- | Cocktail of 5 strains | Raw beef | 5.8 | 500 | RT | 7 | 4.4 | [53] |
- | CECT 405 (ATCC 10536) | Fresh goat cheese | 6.5 | 450–500 | RT | 5 | >8.5 | [71] |
- | ATCC 25922 | Pork slurry | nr | 400–500 | RT | 10 | >6.0 | [47] |
Acidic juices | ||||||||
O157:H7 | NCTC 12079 | Orange juice | 3.4–4.5 | 550 | RT | 5 | >7.0 | [72] |
O157:H7 | ATCC 43894 | Mango juice | 4.5 | 550 | RT | 5 | >8.0 | [73] |
O157:H7 | C9490 | Orange juice | 3.8 | 500 | RT | 5 | >7.0 | [74] |
Apple juice | 3.5 | 5 | >7.0 | |||||
Tomato juice | 4.1 | 5 | >7.0 |
Strain | Food Products | pH | Pressure (MPa) | Time (min) | Log Reduction | Reference |
---|---|---|---|---|---|---|
ATCC 7644 | UHT milk 2% fat | nr | 600 | 15 | ≥7.0 | [48] |
Cocktail of 5 strains | Raw milk | nr | 600 | 5 | 5.9 | [68] |
Cocktail of 4 strains | Cooked pork sausage 28% fat | 6.2 | 600 | 3 | ≥7.5 | [81] |
Cocktail of 7 strains | Coconut water | 5.2 | 593 | 3 | ≥6.0 | [69] |
Cocktail of 5 strains | Raw beef | 5.8 | 500 | 7 | ≥6.5 | [53] |
nr | Goat cheese | nr | 500 | 5 | >5.6 | [82] |
ATCC 7644 | Human milk | nr | 450 | 15 | ≥7.9 | [54] |
CECT 4032 (DSM 15675) | Apple cubes | nr | 400 | 5 | >5.0 | [83] |
NCTC 11994 | Milk | nr | 375 | 15 | 0.5 | [84] |
(DSM 15675) | Poultry meat | 15 | 2.0 |
Serovars | Strains | Food Products | pH | Pressure (MPa) | Time (min) | Log Reduction | Reference |
---|---|---|---|---|---|---|---|
- | Cocktail of 5 strains | Raw milk | nr | 600 | 5 | 6.3 | [68] |
- | Cocktail of 9 strains | Coconut water | 5.2 | 593 | 3 | ≥6.6 | [69] |
S. enterica enteritidis | Cocktail of 3 strains | Chicken fillets | nr | 500 | 10 | ≥7.0 | [91] |
S. enterica enteritidis | nr | Eggs (hard-cooked and peeled) | nr | 550 | 5 | 6.5 | [92] |
S. enterica | Cocktail of 5 strains | Raw beef | 5.8 | 500 | 7 | ≥6.5 | [53] |
S. enterica enteritidis | nr | Liquid whole egg | 8.0 | 450 | 15 | 5.1 | [93] |
S. enterica enteritidis | SE-4 | Liquid whole egg | nr | 400 | 10 | 6.0 | [94] |
S. enterica typhimurium | ATCC 14028 | Pork slurry | nr | 400 | 10 | 6.5 | [47] |
S. enterica typhimurium | ATCC 7136 | Strained chicken baby food | nr | 340 | 15 | 2.0 | [95] |
Special Foods | |||||||
S. enterica typhimurium | Cocktail of 3 strains | Ten Italian salamis aw 0.88–0.95 | 5.1–6.1 | 600 | 5 | 1.9–5.0 | [96] |
Species | Strains | Food Products | pH | Pressure (MPa) | Time (min) | Log Reduction | Reference |
---|---|---|---|---|---|---|---|
Vibrio vulnificus | MO-624 | Oyster | nr | 586 | 0 | >6.5 | [106] |
Vibrio parahaemolyticus | TX-2103, serotype O3:K6 | Oyster | nr | 586 | 0 | >5.5 | [106] |
V. vulnificus | MLT 403 | Oyster | nr | 300 | 2 | >7.0 | [104] |
V. parahaemolyticus | 10 different strains | Homogenized oyster | nr | 300 | 3 | >6.0 | [105] |
V. parahaemolyticus | ATCC 43996 | Oyster | nr | 300 | 2 | 7.0 | [104] |
V. vulnificus | nr | Homogenized oyster | nr | 275 | 3 | >7.0 | [105] |
V. parahaemolyticus | T-3765-1 | Clam juice | 7.5 | 170 | 10 | >5.0 | [107] |
Vegetative cells | Strain | Meat products | pH | Pressure (MPa) | Time (min) | Log Reduction | Reference |
---|---|---|---|---|---|---|---|
Streptococcus faecalis | nr | Pork slurry | nr | 600 | 10 | >6.0 | [47] |
Cronobacter sakazakii | ATCC 51329 | Human milk | nr | 450 | 15 | ≥5.9 | [54] |
Campylobacter jejuni | T1 | Pork slurry | nr | 400 | 10 | >6.0 | [47] |
C. jejuni | ATCC 35921 | Chicken purée Soy drink | nr | 400 400 | 10 10 | ≥8.0 ≥8.0 | [113] |
Milk | nr | 375 | 10 | ≥8.0 | |||
Yersinia enterocolitica | nr | Pork slurry | nr | 400 | 10 | >6.0 | [47] |
Y. enterocolitica | 9610 | Ground pork | 6.0 | 304 | 15 | >7.0 | [114] |
Citrobacter freundii | nr | Minced beef | 5.6–5.8 | 300 | 20 | >6.0 | [115] |
Aeromonas hydrophila | ATCC 7965 | Ground pork | 6.0 | 253 | 15 | >6.0 | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, F.V.M.; Evelyn. Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Appl. Sci. 2023, 13, 1193. https://doi.org/10.3390/app13021193
Silva FVM, Evelyn. Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Applied Sciences. 2023; 13(2):1193. https://doi.org/10.3390/app13021193
Chicago/Turabian StyleSilva, Filipa Vinagre M., and Evelyn. 2023. "Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens" Applied Sciences 13, no. 2: 1193. https://doi.org/10.3390/app13021193
APA StyleSilva, F. V. M., & Evelyn. (2023). Pasteurization of Food and Beverages by High Pressure Processing (HPP) at Room Temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and Other Microbial Pathogens. Applied Sciences, 13(2), 1193. https://doi.org/10.3390/app13021193