Elemental Compositions of Wood Plastic Pellets Made from Sawdust and Refuse-Derived Fuel (RDF) Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation and Pelletization
2.2. Physical Properties of the Samples
2.3. Microstructure Evaluation of the Samples
2.4. Proximate Analysis of the Samples
2.5. Higher Heating Value of the Samples
2.6. Ultimate Analysis of the Samples
2.7. Elemental Analysis of Samples
2.8. FTIR-ATR Spectral Analysis of Samples
2.9. Data Analysis
3. Results and Discussion
3.1. Physical Characteristics of Pellets
3.2. SEM Images of Pellets
3.3. Proximate Analysis and Higher Heating Values (HHV) of Pellets
3.4. Ultimate Analysis Values of Pellets
3.5. Elemental Analysis Values of Pellets
3.6. FTIR Spectra of Pellets
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- García, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of Wood and Alternative Residual Biomass Blends for Producing Industrial Quality Pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- Zawiślak, K.; Sobczak, P.; Kraszkiewicz, A.; Niedziółka, I.; Parafiniuk, S.; Kuna-Broniowska, I.; Tanaś, W.; Żukiewicz-Sobczak, W.; Obidziński, S. The Use of Lignocellulosic Waste in the Production of Pellets for Energy Purposes. Renew. Energy 2020, 145, 997–1003. [Google Scholar] [CrossRef]
- Telmo, C.; Lousada, J. Heating Values of Wood Pellets from Different Species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Lehtikangas, P. Quality properties of pelletised sawdust, logging residues and bark. Biomass Bioenergy 2001, 20, 351–360. [Google Scholar] [CrossRef]
- Artemio, C.P.; Maginot, N.H.; Serafín, C.U.; Rahim, F.P.; Guadalupe, R.Q.J.; Fermín, C.M. Physical, mechanical and energy characterization of wood pellets obtained from three common tropical species. PeerJ 2018, 6, e5504. [Google Scholar] [CrossRef]
- Carroll, J.P.; Finnan, J. Physical and chemical properties of pellets from energy crops and cereal straws. Biosyst. Eng. 2012, 112, 151–159. [Google Scholar] [CrossRef]
- Limhengha, S.; Mahathaninwong, N.; Chucheep, T.; Karrila, S.; Tipayanon, T. Making Blends of Agarwood Waste with Empty Palm Bunches or Rubber Wood Sawdust for Pelletized Biofuels. BioResources 2021, 16, 2971–2986. [Google Scholar] [CrossRef]
- Kasikorn Research Center Market. Opportunity of Wood Pellet in Thailand. (n.d.). Available online: https://kasikornresearch.com/th (accessed on 6 June 2023).
- Asian Wood Pellet Producer & Market Snapshot|Biomassmagazine.com. (n.d.). Available online: https://biomassmagazine.com/articles/13880/asian-wood-pellet-producer-market-snapshot (accessed on 7 June 2023).
- Saosee, P.; Sajjakulnukit, B.; Gheewala, S.H. Life cycle assessment of wood pellet production in Thailand. Sustainability 2020, 12, 6996. [Google Scholar] [CrossRef]
- Thrän, D.; Schaubach, K.; Peetz, D.; Junginger, M.; Mai-Moulin, T.; Schipfer, F.; Olsson, O.; Lamers, P. The Dynamics of the Global Wood Pellet Markets and Trade—Key Regions, Developments and Impact Factors. Biofuels Bioprod. Biorefin. 2018, 13, 267–280. [Google Scholar] [CrossRef]
- Ratnasingam, J.; Ramasamy, G.; Wai, L.T.; Senin, A.L.; Muttiah, N. The prospects of rubberwood biomass energy production in Malaysia. BioResources 2015, 10, 2526–2548. [Google Scholar] [CrossRef]
- Li, W.; Wang, M.; Meng, F.; Zhang, Y.; Zhang, B. A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets. Energies 2022, 15, 7303. [Google Scholar] [CrossRef]
- Kan, R.; Kaosol, T.; Tekasakul, P. Characterization and elemental composition of lignite and rubber wood sawdust pellets. Eng. Appl. Sci. Res. 2016, 43, 259–262. [Google Scholar]
- Vounatsos, P.; Agraniotis, M.; Grammelis, P.; Kakaras, E.; Skiadi, O.; Zarmpoutis, T. Refuse-derived fuel classification in a mechanical–biological treatment plant and its valorization with techno-economic criteria. Int. J. Environ. Sci. Technol. 2015, 12, 1137–1146. [Google Scholar] [CrossRef]
- Jewiarz, M.; Mudryk, K.; Wróbel, M.; Frączek, J.; Dziedzic, K. Parameters affecting RDF-based pellet quality. Energies 2020, 13, 910. [Google Scholar] [CrossRef]
- Buekens, A. Refuse-Derived Fuel. In Incineration Technologies; SpringerBriefs in Applied Sciences and Technology; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Akdağ, A.S.; Atimtay, A.; Sanin, F.D. Comparison of Fuel Value and Combustion Characteristics of Two Different RDF Samples. Waste Manag. 2016, 47, 217–224. [Google Scholar] [CrossRef]
- Januszewski, J.; Brzezińska, D. RDF Fire and Explosion Hazards at Power Plants. Sustainability 2021, 13, 12718. [Google Scholar] [CrossRef]
- Khawaja, A.S.; Zaheer, M.A.; Ahmad, A.H.; Mirani, A.A.; Ali, Z. Advances in Limitations and Opportunities of Clean Biofuel Production to Promote Decarbonization. Fuel 2023, 342, 127662. [Google Scholar] [CrossRef]
- Hansen, T. Stranded Assets and Reduced Profits: Analyzing the Economic Underpinnings of the Fossil Fuel Industry’s Resistance to Climate Stabilization. Renew. Sustain. Energy Rev. 2022, 158, 112144. [Google Scholar] [CrossRef]
- Porichha, G.K.; Hu, Y.; Rao, K.T.V.; Xu, C.C. Crop Residue Management in India: Stubble Burning vs. Other Utilizations including Bioenergy. Energies 2021, 14, 4281. [Google Scholar] [CrossRef]
- Laosena, R.; Palamanit, A.; Luengchavanon, M.; Kittijaruwattana, J.; Nakason, C.; Lee, S.H.; Chotikhun, A. Characterization of Mixed Pellets Made from Rubberwood (Hevea brasiliensis) and Refuse-Derived Fuel (RDF) Waste as Pellet Fuel. Materials 2022, 15, 3093. [Google Scholar] [CrossRef]
- EN 15210-1; Solid Biofuels—Determination of Mechanical Durability of Pellets and Briquettes Part 1: Pellets. British Standards Institution: London, UK, 2010.
- ASTM D 5865-13; Standard Test Method for Gross Calorific Value of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D5373-93; Standard Test Methods for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 1997.
- Chotikhun, A.; Kittijaruwattana, J.; Pianroj, Y.; Tor, O.; Birinci, E.; Hengniran, P.; Lee, S.H. Some properties of white and torrefied pellets obtained from oil palm trunk as raw material. BioResources 2022, 17, 6818–6831. [Google Scholar] [CrossRef]
- Paszkowski, J.; Domański, M.; Caban, J.; Zarajczyk, J.; Pristavka, M.; Findura, P. The Use of Refuse Derived Fuel (RDF) in the Power Industry. Agric. Eng. 2020, 24, 83–90. [Google Scholar] [CrossRef]
- Kramens, J.; Vīgants, E.; Kanukuntla, S.P.; Goljandin, D.; Glušņova, J. Study of the application of pellets from textile material waste and biomass mixture in industrial and residental heating systems. In Environment. Technologies. Resources, Proceedings of the International Scientific and Practical Conference, Rezekne, Latvia, 15–16 June 2023; Rezekne Academy of Technologies: Rezekne, Latvia, 2023; Volume 1, pp. 86–92. [Google Scholar]
- Ilari, A.; Pedretti, E.F.; De Francesco, C.; Duca, D. Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources 2021, 10, 122. [Google Scholar] [CrossRef]
- Vounatsos, P.; Atsonios, K.; Itskos, G.; Agraniotis, M.; Grammelis, P.; Kakaras, E. Classification of Refuse Derived Fuel (RDF) and Model Development of a Novel Thermal Utilization Concept Through Air-Gasification. Waste Biomass Valor. 2016, 7, 1297–1308. [Google Scholar] [CrossRef]
- Ozkan, K.; Işık, Ş.; Günkaya, Z.; Özkan, A.; Banar, M. A heating value estimation of refuse derived fuel using the genetic programming model. Waste Manag. 2019, 100, 327–335. [Google Scholar] [CrossRef]
- Kobyashi, N.; Itaya, Y.; Piao, G.; Mori, S.; Kondo, M.; Hamai, M.; Yamaguchi, M. The behavior of flue gas from RDF combustion in a fluidized bed. Powder Technol. 2005, 151, 87–95. [Google Scholar] [CrossRef]
- Galvagno, S.; Casciaro, G.; Casu, S.; Martino, M.; Mingazzini, C.; Russo, A.; Portofino, S. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis. Waste Manag. 2009, 29, 678–689. [Google Scholar] [CrossRef]
- Nasrullah, M.; Vainikka, P.; Hannula, J.; Hurme, M.; Oinas, P. Elemental balance of SRF production process: Solid recovered fuel produced from municipal solid waste. Waste Manag. Res. 2016, 34, 38–46. [Google Scholar] [CrossRef]
- Miklecic, J.; Jirous-Rajkovic, V.; Antonovic, A.; Spanic, N. Discolouration of thermally modified wood during simulated indoor sunlight exposure. BioResources 2011, 6, 434–446. [Google Scholar] [CrossRef]
- Sarker, M.; Rashid, M.M.; Molla, M. Hydrocarbon fuels produced from municipal solid waste plastics. J. Environ. Sci. Eng. 2011, 5, 446–452. [Google Scholar]
- Nafees, A.; Althoey, F.; Khan, S.; Sikandar, M.A.; Alyami, S.H.; Rehman, M.F.; Javed, M.F.; Eldin, S.M. Plastic Concrete Mechanical Properties Prediction Based on Experimental Data. Case Stud. Constr. Mater. 2023, 18, e01831. [Google Scholar] [CrossRef]
- Nibudey, R.; Nagarnaik, P.; Parbat, D.; Pande, A. A Model for Compressive Strength of PET Fiber Reinforced Concrete. Am. J. Eng. Res. (AJER) 2013, 2, 367–372. [Google Scholar]
Sample | Sample Type | Diameter | Length | Density | Water Absorption | Mechanical | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Type | (mm) | (mm) | (g/cm3) | (%) | Durability (%) | ||||||
(Sawdust/RDF) | Mean | Mean | Mean | Mean | Mean | ||||||
100/0 | Control | 6.12 | ±(0.09) | 36.48 | ±(0.44) | 1.29 d | ±(0.08) | 9.68 d | ±(0.42) | 98.48 a | ±(0.30) |
70/30 | 70/30 | 6.18 | ±(0.01) | 42.81 | ±(0.77) | 1.12 a | ±(0.04) | 6.83 c | ±(0.59) | 98.26 a | ±(0.06) |
60/40 | 60/40 | 6.15 | ±(0.04) | 40.81 | ±(1.12) | 1.18 b | ±(0.15) | 5.56 b | ±(0.28) | 98.87 b | ±(0.04) |
50/50 | 50/50 | 6.19 | ±(0.03) | 41.29 | ±(1.35) | 1.24 c | ±(0.12) | 4.17 a | ±(0.50) | 99.06 b | ±(0.10) |
Sample | Proximate Analysis | HHV | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Type | MC | VM | AC | FC | (MJ/kg) | |||||
(Sawdust/RDF) | Mean (%) | Mean (%) | Mean (%) | Mean (%) | Mean | |||||
100/0 | 9.57 b | ±(0.26) | 72.11 d | ±(0.31) | 2.54 a | ±(0.09) | 15.78 b | ±(0.56) | 19.40 a | ±(0.07) |
70/30 | 11.27 d | ±(0.31) | 65.87 b | ±(0.36) | 9.85 b | ±(0.11) | 13.01 a | ±(0.45) | 21.19 b | ±(0.09) |
60/40 | 10.48 c | ±(0.06) | 65.17 a | ±(0.36) | 11.86 c | ±(0.15) | 12.48 a | ±(0.40) | 21.83 c | ±(0.14) |
50/50 | 5.38 a | ±(0.35) | 68.17 c | ±(0.49) | 13.86 d | ±(0.16) | 12.59 a | ±(0.55) | 22.09 d | ±(0.08) |
Sample | Sample Type | Ultimate Analysis (%) | |||||||
---|---|---|---|---|---|---|---|---|---|
Type | C | H | N | S | |||||
(Sawdust/RDF) | Mean | Mean | Mean | Mean | |||||
100/0 | Control | 51.20 a | ±(7.24) | 8.01 a | ±(1.13) | 0.27 a | ±(0.03) | 0.60 a | ±(0.03) |
70/30 | 70/30 | 47.46 a | ±(0.27) | 10.21 b | ±(1.10) | 0.47 b | ±(0.03) | 0.91 b | ±(0.02) |
60/40 | 60/40 | 47.67 a | ±(0.34) | 11.45 b | ±(0.69) | 0.50 b | ±(0.13) | 1.38 c | ±(0.15) |
50/50 | 50/50 | 49.87 a | ±(1.58) | 10.38 b | ±(1.00) | 0.69 c | ±(0.04) | 1.04 b | ±(0.08) |
Sample | Elemental Analysis | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Type | K | Na | Cl | Zn | Cu | Pb | Cd | Cr | As | Hg |
(Sawdust/RDF) | Mean | Mean | Mean | Mean | Mean | Mean | Mean | Mean | Mean | Mean |
(%) | (%) | (%) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | |
100/0 | 0.228 a ±(0.01) | 0.016 a ±(0.001) | 0.017 a ±(0.001) | 10.190 a ±(1.78) | 5.475 a ±(0.94) | 27.163 a ±(3.05) | 0.001 a ±(0.00) | 19.014 a ±(1.79) | 0.180 a ±(0.01) | 0.0001 a ±(0.00) |
70/30 | 0.237 a ±(0.09) | 0.101 b ±(0.003) | 0.092 b ±(0.004) | 328.492 b ±(16.90) | 61.763 b ±(5.67) | 57.449 bc ±(7.82) | 1.517 b ±(0.20) | 44.014 b ±(2.22) | 2.306 b ±(0.16) | 0.0001 a ±(0.00) |
60/40 | 0.234 a ±(0.01) | 0.122 c ±(0.002) | 0.116 c ±(0.003) | 380.599 c ±(7.74) | 70.076 b ±(11.09) | 48.275 b ±(7.51) | 2.287 c ±(0.14) | 64.274 c ±(3.45) | 2.927 c ±(0.19) | 0.0001 a ±(0.00) |
50/50 | 0.237 a ±(0.01) | 0.144 d ±(0.004) | 0.125 d ±(0.002) | 400.015 d ±(12.27) | 70.496 b ±(3.43) | 61.996 c ±(5.34) | 3.360 d ±(0.34) | 64.735 c ±(5.34) | 2.725 c ±(0.34) | 0.0001 a ±(0.00) |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
Zn | Between Groups | 498,363.018 | 3 | 166,121.006 | 1063.927 | 0.000 |
Within Groups | 2498.231 | 16 | 156.139 | |||
Total | 500,861.250 | 19 | ||||
Cu | Between Groups | 14,643.652 | 3 | 4881.217 | 92.952 | 0.000 |
Within Groups | 840.214 | 16 | 52.513 | |||
Total | 15,483.865 | 19 | ||||
Pb | Between Groups | 3586.758 | 3 | 1195.586 | 24.576 | 0.000 |
Within Groups | 778.374 | 16 | 48.648 | |||
Total | 4365.132 | 19 | ||||
Cd | Between Groups | 29.941 | 3 | 9.980 | 177.785 | 0.000 |
Within Groups | 0.898 | 16 | 0.056 | |||
Total | 30.839 | 19 | ||||
Cr | Between Groups | 7004.878 | 3 | 2334.959 | 253.536 | 0.000 |
Within Groups | 147.353 | 16 | 9.210 | |||
Total | 7152.231 | 19 | ||||
As | Between Groups | 23.944 | 3 | 7.981 | 112.429 | 0.000 |
Within Groups | 1.136 | 16 | 0.071 | |||
Total | 25.080 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chotikhun, A.; Laosena, R.; Kittijaruwattana, J.; Lee, S.H.; Sae-Ueng, K.; Nakason, C.; Pianroj, Y.; Salca, E.-A. Elemental Compositions of Wood Plastic Pellets Made from Sawdust and Refuse-Derived Fuel (RDF) Waste. Appl. Sci. 2023, 13, 11162. https://doi.org/10.3390/app132011162
Chotikhun A, Laosena R, Kittijaruwattana J, Lee SH, Sae-Ueng K, Nakason C, Pianroj Y, Salca E-A. Elemental Compositions of Wood Plastic Pellets Made from Sawdust and Refuse-Derived Fuel (RDF) Waste. Applied Sciences. 2023; 13(20):11162. https://doi.org/10.3390/app132011162
Chicago/Turabian StyleChotikhun, Aujchariya, Rattikal Laosena, Jitralada Kittijaruwattana, Seng Hua Lee, Kanokorn Sae-Ueng, Charoen Nakason, Yutthapong Pianroj, and Emilia-Adela Salca. 2023. "Elemental Compositions of Wood Plastic Pellets Made from Sawdust and Refuse-Derived Fuel (RDF) Waste" Applied Sciences 13, no. 20: 11162. https://doi.org/10.3390/app132011162
APA StyleChotikhun, A., Laosena, R., Kittijaruwattana, J., Lee, S. H., Sae-Ueng, K., Nakason, C., Pianroj, Y., & Salca, E. -A. (2023). Elemental Compositions of Wood Plastic Pellets Made from Sawdust and Refuse-Derived Fuel (RDF) Waste. Applied Sciences, 13(20), 11162. https://doi.org/10.3390/app132011162