A Heterogeneous Parallel Algorithm for Euler-Lagrange Simulations of Liquid in Supersonic Flow
Abstract
:1. Introduction
2. Algorithm and Code Structures
2.1. Gas-Phase Governing Equations
2.2. Liquid-Phase Equations
2.3. CPU/GPU Heterogeneous Parallel Algorithm
2.3.1. CPU/GPU Heterogeneous Parallel Architecture
2.3.2. A Novel Method for Dynamic Management of Droplets
2.3.3. A Method for Droplet Location
3. Results and Discussion
3.1. Code Validation
3.2. Performance Analysis
4. Conclusions
- Taking full advantage of CPU and GPU, an efficient parallel model for simulation of a liquid jet in supersonic flow is developed, in which the data-intensive and highly parallel tasks such as the kernel computation of gas phase and liquid phase are implemented on GPU, whereas the logical and data dependent tasks like the data transfer and general control are executed on CPU.
- An effective method for droplet dynamic management and efficient calculation on the CPU/GPU model is proposed, in which a redundantly allocated array on the GPU and the CPU is used to manage and calculate the simulated droplets, and a method based on the two-pointer method is applied to subtract the disappeared droplets.
- A droplet-locating algorithm is developed, in which a determination criterion based on scalar product and a search approach by traveling through the neighboring cell is applied to address the cell.
- Simulation of a liquid jet in supersonic crossflow is implemented to verify the reliability of the CPU/GPU mode. The result agrees well with the experiment.
- A simulation of a jet spray in supersonic flow is executed using CPU mode and CPU/GPU mode, respectively, to analyze the method’s efficiency and limitations. Although the speedup diminishes with increasing droplet number, the benefit is still very substantial even for the worst-case scenario studied, i.e., when the ratio of droplets to grids is 1.5, the overall speedup is 20.2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, J.; Zhang, J.; Bao, W.; Yu, D. Research progress on strut-equipped supersonic combustors for scramjet application. Prog. Aerosp. Sci. 2018, 103, 1–30. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, P.; Xia, Z.; Feng, Y.; Li, C.; Zhao, L.; Ma, L. Experimental Study of the Formation and Evolution of Gas Jets in Supersonic Combustion Chambers. Appl. Sci. 2023, 13, 2202. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, D.; Wang, Y.; Zhang, D. A Mixing Process Influenced by Wall Jet-Induced Shock Waves in Supersonic Flow. Appl. Sci. 2022, 12, 8384. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, S.; Le, J.; Su, T.; Yue, M.; Zhong, F.; Tian, X. Investigation of combustion and flame stabilization modes in a hydrogen fueled scramjet combustor. Int. J. Hydrog. Energy 2016, 41, 19218–19230. [Google Scholar] [CrossRef]
- Tian, Y.; Shi, W.; Zhong, F.; Le, J. Pilot hydrogen enhanced combustion in an ethylene-fueled scramjet combustor at Mach 4. Phys. Fluids 2021, 33, 015105. [Google Scholar] [CrossRef]
- Waltrup, P.J. Upper bounds on the flight speed of hydrocarbon-fueled scramjet-powered vehicles. J. Propuls. Power 2001, 17, 1199–1204. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, Z.G.; Wang, H.B.; Sun, M.B. Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion wall. Acta Astronaut. 2016, 129, 161–173. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, S.; Le, J.; Zhong, F.; Tian, X. Investigation of combustion process of a kerosene fueled combustor with air throttling. Combust. Flame 2017, 179, 74–85. [Google Scholar] [CrossRef]
- Tian, Y.; Xiao, B.G.; Zhang, S.P.; Xing, J.W. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine. Aerosp. Sci. Technol. 2015, 46, 451–458. [Google Scholar] [CrossRef]
- Liu, X.; Li, P.; Li, F.; Wang, H.; Sun, M.; Wang, C.; Yang, Y.; Xiong, D.; Wang, Y. Effect of kerosene injection states on mixing and combustion characteristics in a cavity-based supersonic combustor. Chin. J. Aeronaut. 2023. [Google Scholar] [CrossRef]
- Tian, Y.; Le, J.; Yang, S.; Zhong, F. Investigation of Combustion Characteristics in a Kerosene-Fueled Supersonic Combustor with Air Throttling. AIAA J. 2020, 58, 5379–5388. [Google Scholar] [CrossRef]
- Li, F.; Wang, Z.G.; Li, P.B.; Sun, M.B.; Wang, H.B. The spray distribution of a liquid jet in supersonic crossflow in the near-wall region. Phys. Fluids 2022, 34, 063301. [Google Scholar] [CrossRef]
- Li, P.; Wang, Z.; Bai, X.-S.; Wang, H.; Sun, M.; Wu, L.; Liu, C. Three-dimensional flow structures and droplet-gas mixing process of a liquid jet in supersonic crossflow. Aerosp. Sci. Technol. 2019, 90, 140–156. [Google Scholar] [CrossRef]
- Li, P.; Li, C.; Wang, H.; Sun, M.; Liu, C.; Wang, Z.; Huang, Y. Distribution characteristics and mixing mechanism of a liquid jet injected into a cavity-based supersonic combustor. Aerosp. Sci. Technol. 2019, 94, 105401. [Google Scholar] [CrossRef]
- Li, C.; Li, C.; Xiao, F.; Li, Q.; Zhu, Y. Experimental study of spray characteristics of liquid jets in supersonic crossflow. Aerosp. Sci. Technol. 2019, 95, 105426. [Google Scholar] [CrossRef]
- Li, C.Y.; Li, P.B.; Li, C.; Li, Q.L.; Zhou, Y.Z. Experimental and numerical investigation of cross-sectional structures of liquid jets in supersonic crossflow. Aerosp. Sci. Technol. 2020, 103, 105926. [Google Scholar] [CrossRef]
- Yoo, Y.-L.; Han, D.-H.; Hong, J.-S.; Sung, H.-G. A large eddy simulation of the breakup and atomization of a liquid jet into a cross turbulent flow at various spray conditions. Int. J. Heat Mass Transf. 2017, 112, 97–112. [Google Scholar] [CrossRef]
- Dai, Q.; Luo, K.; Jin, T.; Fan, J. Direct numerical simulation of turbulence modulation by particles in compressible isotropic turbulence. J. Fluid Mech. 2017, 832, 438–482. [Google Scholar] [CrossRef]
- Dai, Q.; Jin, T.; Luo, K.; Fan, J. Direct numerical simulation of particle dispersion in a three-dimensional spatially developing compressible mixing layer. Phys. Fluids 2018, 30, 113301. [Google Scholar] [CrossRef]
- Lin, K.-C.; Kennedy, P.J.; Jackson, T.A. Structures of water jets in a Mach 1.94 supersonic crossflow. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004; pp. AIAA 2004-971. [Google Scholar]
- Wu, L.Y.; Chang, Y.; Zhang, K.L.; Li, Q.L.; Li, C.Y. Model for three-dimensional distribution of liquid fuel in supersonic crossflows. In Proceedings of the 21st AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, China, 6–9 March 2017; pp. AIAA 2017-2419. [Google Scholar]
- Li, P.; Wang, Z.; Sun, M.; Wang, H. Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow. Acta Astronaut. 2017, 134, 333–344. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Pan, Y.; Yang, L.; An, B.; Zhu, J. Characterization of kerosene distribution around the ignition cavity in a scramjet combustor. Acta Astronaut. 2017, 134, 11–16. [Google Scholar] [CrossRef]
- Li, P.B.; Wang, H.B.; Sun, M.B.; Liu, C.Y.; Li, F. Numerical study on the mixing and evaporation process of a liquid kerosene jet in a scramjet combustor. Aerosp. Sci. Technol. 2021, 119, 107095. [Google Scholar] [CrossRef]
- Song, J.; Jeong, H.; Jeong, J. Performance Optimization of Object Tracking Algorithms in OpenCV on GPUs. Appl. Sci. 2022, 12, 7801. [Google Scholar] [CrossRef]
- Mo, T.; Li, G. Parallel Accelerated Fifth-Order WENO Scheme-Based Pipeline Transient Flow Solution Model. Appl. Sci. 2022, 12, 7350. [Google Scholar] [CrossRef]
- Guo, M.; Dong, Z.; Keutzer, K. SANA: Sensitivity-Aware Neural Architecture Adaptation for Uniform Quantization. Appl. Sci. 2023, 13, 10329. [Google Scholar] [CrossRef]
- Liu, R.K.-S.; Wu, C.-T.; Kao, N.S.-C.; Sheu, T.W.-H. An improved mixed Lagrangian–Eulerian (IMLE) method for modelling incompressible Navier–Stokes flows with CUDA programming on multi-GPUs. Comput. Fluids 2019, 184, 99–106. [Google Scholar] [CrossRef]
- Salvadore, F.; Bernardini, M.; Botti, M. GPU accelerated flow solver for direct numerical simulation of turbulent flows. J. Comput. Phys. 2013, 235, 129–142. [Google Scholar] [CrossRef]
- Jonker, H.J.J.; Schalkwijk, J.; Siebesma, A.P.; Van Meijgaard, E. Weather Forecasting Using GPU-Based Large-Eddy Simulations. Bull. Am. Meteorol. Soc. 2015, 96, 715–723. [Google Scholar] [CrossRef]
- Lai, J.; Li, H.; Tian, Z. CPU/GPU Heterogeneous Parallel CFD Solver and Optimizations. In Proceedings of the 2018 International Conference on Service Robotics Technologies-ICSRT ‘18—ICSRT ‘18, Chengdu China, 16–19 March 2018; pp. 88–92. [Google Scholar]
- Sweet, J.; Richter, D.H.; Thain, D. GPU acceleration of Eulerian–Lagrangian particle-laden turbulent flow simulations. Int. J. Multiph. Flow 2018, 99, 437–445. [Google Scholar] [CrossRef]
- Ge, W.; Sankaran, R.; Chen, J.H. Development of a CPU/GPU portable software library for Lagrangian–Eulerian simulations of liquid sprays. Int. J. Multiph. Flow 2020, 128, 103293. [Google Scholar] [CrossRef]
- Xua, J.; Qi, H.B.; Fang, X.J.; Lu, L.Q.; Ge, W.; Wang, X.W.; Xu, M.; Chen, F.G.; He, X.F.; Li, J.H. Quasi-real-time simulation of rotating drum using discrete element method with parallel GPU computing. Particuology 2011, 9, 446–450. [Google Scholar] [CrossRef]
- Xu, M.; Chen, F.; Liu, X.; Ge, W.; Li, J. Discrete particle simulation of gas–solid two-phase flows with multi-scale CPU–GPU hybrid computation. Chem. Eng. J. 2012, 207–208, 746–757. [Google Scholar] [CrossRef]
- Ikebata, A.; Xiao, F. GPU-accelerated large-scale simulations of interfacial multiphase fluids for real-case applications. Comput. Fluids 2016, 141, 235–249. [Google Scholar] [CrossRef]
- Lai, J.; Tian, Z.; Yu, H.; Li, H. Numerical investigation of supersonic transverse jet interaction on CPU/GPU system. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 81. [Google Scholar] [CrossRef]
- Lai, J.; Yu, H.; Tian, Z.; Li, H. Hybrid MPI and CUDA Parallelization for CFD Applications on Multi-GPU HPC Clusters. Sci. Program. 2020, 2020, 8862123. [Google Scholar] [CrossRef]
- Wright, M.J.; Candler, G.V.; Prampolini, M. Data-parallel lower-upper relaxation method for the Navier-Stokes equations. AIAA J. 1996, 34, 1371–1377. [Google Scholar] [CrossRef]
- Tofighian, H.; Amani, E.; Saffar-Avval, M. Parcel-number-density control algorithms for the efficient simulation of particle-laden two-phase flows. J. Comput. Phys. 2019, 387, 569–588. [Google Scholar] [CrossRef]
- Chorda, R.; Blasco, J.A.; Fueyo, N. An efficient particle-locating algorithm for application in arbitrary 2D and 3D grids. Int. J. Multiph. Flow 2002, 28, 1565–1580. [Google Scholar] [CrossRef]
- Liu, M.J.; Sun, M.B.; Zhao, G.Y.; Meng, Y.; Huang, Y.H.; Ma, G.W.; Wang, H.B. Effect of combustion mode on thrust performance in a symmetrical tandem-cavity scramjet combustor. Aerosp. Sci. Technol. 2022, 130, 107904. [Google Scholar] [CrossRef]
- Xiong, D.P.; Sun, M.B.; Yu, J.F.; Hu, Z.W.; Yang, Y.X.; Wang, H.B.; Wang, Z.G. Effects of confinement and curvature on a jet in a supersonic cross-flow. Proc. Inst. Mech. Eng. Part G 2022, 236, 3518–3530. [Google Scholar] [CrossRef]
- Ma, G.W.; Sun, M.B.; Zhao, G.Y.; Liang, C.H.; Wang, H.B.; Yu, J.F. Effect of injection scheme on asymmetric phenomenon in rectangular and circular scramjets. Chin. J. Aeronaut. 2023, 36, 216–230. [Google Scholar] [CrossRef]
- Grant, G.; Tabakoff, W. Erosion Prediction in Turbomachinery Resulting from Environmental Solid Particles. J. Aircr. 1975, 12, 471–478. [Google Scholar] [CrossRef]
- Im, K.-S.; Zhang, Z.-C.; Cook, G., Jr.; Lai, M.-C.; Chon, M.S. Simulation of Liquid and Gas Phase Characteristics of Aerated-Liquid Jets in Quiescent and Cross Flow Conditions. Int. J. Automot. Technol. 2019, 20, 207–213. [Google Scholar] [CrossRef]
Density | Viscosity | Surface Tension |
---|---|---|
988 kg/m3 | 2.67 × 10−3 kg/(m·s) | 0.075 N/m |
Supersonic Crossflow (Air) | Jet-Exit Flow (Water) | ||
---|---|---|---|
Mach number | 1.94 | Gas-liquid momentum ratio | 7 |
Static temperature | 304.1 K | Injector nozzle diameter | 0.5 mm |
Static pressure | 29 KPa | Water temperature | 298 K |
Velocity | 678.13 m/s | Injection velocity | 32.73 m/s |
Indices | Intel Xeon Gold 5218 | Tesla V100 | |
---|---|---|---|
No. of cores/shading units | 16 | 5120 | |
DP theoretical performance | 1.18 TFlop/s | 14 TFlop/s | |
Base/boost frequency | 2300/3900 MHz | 1230/1380 MHz | |
Cache | L1 | 1 MB | 128 KB (per SM) |
L2 | 16 MB | 6 MB | |
L3 | 22 MB | - | |
Max Memory Bandwidth | 897 GB/s | 900 GB/s | |
TDP | 250 W | 125 W |
Case | Number of Grids (Million) | Number of Droplets (Million) | Droplet-to-Grid Ratio |
---|---|---|---|
Case1 | 0.64 | 0.06 | 0.09375 |
Case2 | 0.64 | 0.12 | 0.1875 |
Case3 | 0.64 | 0.24 | 0.375 |
Case4 | 0.64 | 0.48 | 0.75 |
Case5 | 0.64 | 0.96 | 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, M.; Wang, H.; Li, P.; Wang, C.; Zhao, G.; Yang, Y.; Xiong, D. A Heterogeneous Parallel Algorithm for Euler-Lagrange Simulations of Liquid in Supersonic Flow. Appl. Sci. 2023, 13, 11202. https://doi.org/10.3390/app132011202
Liu X, Sun M, Wang H, Li P, Wang C, Zhao G, Yang Y, Xiong D. A Heterogeneous Parallel Algorithm for Euler-Lagrange Simulations of Liquid in Supersonic Flow. Applied Sciences. 2023; 13(20):11202. https://doi.org/10.3390/app132011202
Chicago/Turabian StyleLiu, Xu, Mingbo Sun, Hongbo Wang, Peibo Li, Chao Wang, Guoyan Zhao, Yixin Yang, and Dapeng Xiong. 2023. "A Heterogeneous Parallel Algorithm for Euler-Lagrange Simulations of Liquid in Supersonic Flow" Applied Sciences 13, no. 20: 11202. https://doi.org/10.3390/app132011202
APA StyleLiu, X., Sun, M., Wang, H., Li, P., Wang, C., Zhao, G., Yang, Y., & Xiong, D. (2023). A Heterogeneous Parallel Algorithm for Euler-Lagrange Simulations of Liquid in Supersonic Flow. Applied Sciences, 13(20), 11202. https://doi.org/10.3390/app132011202