Oat and Oat Processed Products—Technology, Composition, Nutritional Value, and Health
Abstract
:1. Introduction
2. Chemical Characterization of Oat Grain as a Raw Material in the Food Industry
3. Oat in Food Technology
Products | Process/Application Methods | Characteristic | Source | |
---|---|---|---|---|
Wholegrain products | Whole oat grains | Hydrothermal treatment | Decreased phytic acid content | Chen et al., 2020 [85] |
Germination treatment | Strengthened antioxidant activity | |||
Fermentation treatment | ||||
Flakes (also called oatmeal) | Defatting treatment | Enhanced stability | Sibakov et al., 2014 [86] Liu et al., 2019 [87] Konak et al., 2014 [88] Espinosa-Solis et al., 2019 [89] Sobota et al., 2015 [90] Hüttner et al., 2010 [91] | |
Flour, bran | Hydrothermal treatment | Used for production of the following:
| ||
Fermented drinks | Milk substitutes | Fermentation treatment | Intended for people suffering from the following:
| Mäkinen et al., 2016 [92] Cui et al., 2023 [48] Selmerón et al., 2015 [93] Staka et al., 2015 [94] Vasudha and Mishra 2013 [95] Angelov et al., 2018 [96] Brückner-Gühmann et al., 2019 [97] |
Probiotic microorganisms | ||||
Non-dairy yogurt | ||||
Oat concentrates | β-glucan, starch, and protein | Fermentation treatment Hydratation treatment Direct mixing | Isolates used in the production of the following:
| Ronda et al., 2015 [98] Krawęcka et al., 2020 [99] Brückner-Gühmann et al., 2019 [97] Lazaridou et al., 2014 [100] Omana et al., 2011 [101] Piñero et al., 2008 [102] |
4. Oat and Human Health
5. Oat in the Treatment of Diseases of Affluence
5.1. Oat in the Prevention and Treatment of Metabolic and Cardiovascular Diseases
5.2. Oat in Cancer Therapy
5.3. Oat in the Fight against Overweight and Obesity
5.4. Oat in the Diet of People with Inflammatory Bowel Disease
5.5. Oat in the Diet of People with Coeliac Disease
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Villaluenga, C.; Peñas, E. Health benefits of oat: Current evidence and molecular mechanisms. Curr. Opin. Food Sci. 2017, 14, 26–31. [Google Scholar] [CrossRef]
- Schlörmann, W.; Glei, M. Potential health benefits of β-glucan from barley and oat Processing of barley and oat in Germany. Ernahr. Umsch. 2017, 64, 145–149. [Google Scholar] [CrossRef]
- Gangopadhyay, N.; Hossain, M.; Rai, D.; Brunton, N. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies. Molecules 2015, 20, 10884–10909. [Google Scholar] [CrossRef] [PubMed]
- Kristek, A.; Schär, M.Y.; Soycan, G.; Alsharif, S.; Kuhnle, G.G.C.; Walton, G.; Spencer, J.P.E. The gut microbiota and cardiovascular health benefits: A focus on wholegrain oats. Nutr. Bull. 2018, 43, 358–373. [Google Scholar] [CrossRef]
- Othman, R.A.; Moghadasian, M.H.; Jones, P.J.H. Cholesterol-lowering effects of oat β-glucan. Nutr. Rev. 2011, 69, 299–309. [Google Scholar] [CrossRef]
- Chauhan, D.; Kumar, K.; Kumar, S.; Kumar, H. Effect of Incorporation of Oat Flour on Nutritional and Organoleptic Characteristics of Bread and Noodles. Curr. Res. Nutr. Food Sci. J. 2018, 6, 148–156. [Google Scholar] [CrossRef]
- Angioloni, A.; Collar, C. Suitability of Oat, Millet and Sorghum in Breadmaking. Food Bioprocess Technol. 2013, 6, 1486–1493. [Google Scholar] [CrossRef]
- Šubarić, D.; Babić, J.; Lalić, A.; Ačkar, Đ.; Kopjar, M. Isolation and characterisation of starch from different barley and oat varieties. Czech J. Food Sci. 2011, 29, 354–360. [Google Scholar] [CrossRef]
- Kozińska, N.; Tokarska, K.; Chudy, M.; Wojciechowski, K. Cytotoxicity of Quillaja saponaria Saponins towards Lung Cells Is Higher for Cholesterol-Rich Cells. Biophysica 2021, 1, 126–136. [Google Scholar] [CrossRef]
- Abdulwaliyu, I.; Arekemase, S.O.; Adudu, J.A.; Batari, M.L.; Egbule, M.N.; Okoduwa, S.I.R. Investigation of the medicinal significance of phytic acid as an indispensable anti-nutrient in diseases. Clin. Nutr. Exp. 2019, 28, 42–61. [Google Scholar] [CrossRef]
- Fabiano, G.A.; Shinn, L.M.; Antunes, A.E. Relationship between Oat Consumption, Gut Microbiota Modulation, and Short-Chain Fatty Acid Synthesis: An Integrative Review. Nutrients 2023, 15, 3534. [Google Scholar] [CrossRef] [PubMed]
- Leszczyńska, D. Potential use of oats. Przegląd Zbożowo-Młynarski 2021, 64, 39–41. [Google Scholar]
- Sterna, V.; Zute, S.; Brunava, L. Oat Grain Composition and its Nutrition Benefice. Agric. Agric. Sci. Procedia 2016, 8, 252–256. [Google Scholar] [CrossRef]
- Boukid, F. Oat proteins as emerging ingredients for food formulation: Where we stand? Eur. Food Res. Technol. 2021, 247, 535–544. [Google Scholar] [CrossRef]
- Mirmoghtadaie, L.; Kadivar, M.; Shahedi, M. Effects of succinylation and deamidation on functional properties of oat protein isolate. Food Chem. 2009, 114, 127–131. [Google Scholar] [CrossRef]
- Spaen, J.; Silva, J.V.C. Oat proteins: Review of extraction methods and techno-functionality for liquid and semi-solid applications. LWT 2021, 147, 111478. [Google Scholar] [CrossRef]
- Kriger, O.V.; Kashirskikh, E.V.; Babich, O.O.; Noskova, S.Y. Oat Protein Concentrate Production. Foods Raw Mater. 2018, 6, 47–55. [Google Scholar] [CrossRef]
- Li, R.; Xiong, Y.L. Ultrasound-induced structural modification and thermal properties of oat protein. LWT 2021, 149, 111861. [Google Scholar] [CrossRef]
- Mohamed, A.; Biresaw, G.; Xu, J.; Hojilla-Evangelista, M.P.; Rayas-Duarte, P. Oats protein isolate: Thermal, rheological, surface and functional properties. Food Res. Int. 2009, 42, 107–114. [Google Scholar] [CrossRef]
- Kilmartin, C. Avenin fails to induce a Th1 response in coeliac tissue following in vitro culture. Gut 2003, 52, 47–52. [Google Scholar] [CrossRef]
- Kouřimská, L.; Sabolová, M.; Horčička, P.; Rys, S.; Božik, M. Lipid content, fatty acid profile, and nutritional value of new oat cultivars. J. Cereal Sci. 2018, 84, 44–48. [Google Scholar] [CrossRef]
- Meesapyodsuk, D.; Qiu, X. A Peroxygenase Pathway Involved in the Biosynthesis of Epoxy Fatty Acids in Oat. Plant Physiol. 2011, 157, 454–463. [Google Scholar] [CrossRef]
- Doehlert, D.C.; Angelikousis, S.; Vick, B. Accumulation of Oxygenated Fatty Acids in Oat Lipids During Storage. Cereal Chem. J. 2010, 87, 532–537. [Google Scholar] [CrossRef]
- Sterna, V.; Zute, S.; Brunava, L.; Vicupe, Z. Lipid Composition of Oat Grain Grown in Latvia. 9th Balt. Conf. Food Sci. Technol. Food Consum. Well-Being 2014, 77–80. [Google Scholar]
- Sykut-Domańska, E.; Rzedzicki, Z.; Nita, Z. Chemical composition variability of naked and husked oat grain (Avena sativa L.). Cereal Res. Commun. 2013, 41, 327–337. [Google Scholar] [CrossRef]
- Zhu, F. Structures, properties, modifications, and uses of oat starch. Food Chem. 2017, 229, 329–340. [Google Scholar] [CrossRef] [PubMed]
- Rzedzicki, Z.; Zarzycki, P.; Wirkijowska, A.; Sobota, A.; Sykut-domańska, E.; Bartoszek, K.; Kuzawińska, E. Zboża niechlebowe źródłem błonnika w profilaktyce i zwalczaniu chorób cywilizacyjnych. Pol. J. Agron. 2016, 25, 19–26. [Google Scholar]
- Sykut-Domańska, E.; Rzedzicki, Z.; Zarzycki, P.; Sobota, A.; Błaszczak, W. Distribution of (1,3)(1,4)-Beta-D-Glucans in Grains of Polish Oat Cultivars and Lines (Avena sativa L.). Pol. J. Food Nutr. Sci. 2016, 66, 51–56. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, C.; Bao, Y.; Liu, F.; Wang, H.; Wang, Y. Oat: Current state and challenges in plant-based food applications. Trends Food Sci. Technol. 2023, 134, 56–71. [Google Scholar] [CrossRef]
- Ho, H.V.T.; Sievenpiper, J.L.; Zurbau, A.; Blanco Mejia, S.; Jovanovski, E.; Au-Yeung, F.; Jenkins, A.L.; Vuksan, V. The effect of oat β -glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: A systematic review and meta-analysis of randomised-controlled trials. Br. J. Nutr. 2016, 116, 1369–1382. [Google Scholar] [CrossRef]
- Pins, J.J.; Geleva, D.; Keenan, J.M.; Frazel, C.; O’Connor, P.J.; Cherney, L.M. Do whole-grain oat cereals reduce the need for antihypertensive medications and improve blood pressure control? J. Fam. Pract. 2002, 51, 353–359. [Google Scholar]
- Kaur, R.; Sharma, M.; Ji, D.; Xu, M.; Agyei, D. Structural Features, Modification, and Functionalities of Beta-Glucan. Fibers 2019, 8, 1. [Google Scholar] [CrossRef]
- Gibiński, M. Charakterystyka chemiczna i ż ywieniowa hydrolizatów owsianych o niskim stopniu scukrzenia. Food Sci. Technol. Qual. 2008, 6, 65–76. [Google Scholar]
- Gibiński, M. β–Glukany Owsa Jako Składnik Żywności Funkcjonalnej. Żywność Nauka Technol. Jakość 2008, 2, 15–29. [Google Scholar]
- Mohebbi, Z.; Homayouni, A.; Azizi, M.H.; Hosseini, S.J. Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties. J. Food Sci. Technol. 2018, 55, 101–110. [Google Scholar] [CrossRef]
- Holtekjølen, A.K.; Olsen, H.H.R.; Færgestad, E.M.; Uhlen, A.K.; Knutsen, S.H. Variations in water absorption capacity and baking performance of barley varieties with different polysaccharide content and composition. LWT Food Sci. Technol. 2008, 41, 2085–2091. [Google Scholar] [CrossRef]
- Skendi, A.; Biliaderis, C.G.; Papageorgiou, M.; Izydorczyk, M.S. Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chem. 2010, 119, 1159–1167. [Google Scholar] [CrossRef]
- Wirkijowska, A.; Rzedzicki, Z.; Kasprzak, M.; Błaszczak, W. Distribution of (1-3)(1-4)-β-d-glucans in kernels of selected cultivars of naked and hulled barley. J. Cereal Sci. 2012, 56, 496–503. [Google Scholar] [CrossRef]
- Marconi, E.; Graziano, M.; Cubadda, R. Composition and Utilization of Barley Pearling By-Products for Making Functional Pastas Rich in Dietary Fiber and β-Glucans. Cereal Chem. J. 2000, 77, 133–139. [Google Scholar] [CrossRef]
- Sykut-domańska, E. Charakterystyka wybranych sortymentów zbóż śniadaniowych dostępnych na rynku polskim i brytyjskim. Bromat. Chem. 2012, 45, 72–82. [Google Scholar]
- Achremowicz, B.; Haber, T.; Kaszuba, J.; Puchalski, C.; Wiśniewski, R. Płatki zbożowe—ocena porównawcza. Część I Porównanie składu chemicznego i mineralnego. Postępy Tech. Przetwórstwa Spożywczego 2016, 2, 97–102. [Google Scholar]
- de Oliveira Maximino, J.V.; Barros, L.M.; Pereira, R.M.; de Santi, I.I.; Aranha, B.C.; Busanello, C.; Viana, V.E.; Freitag, R.A.; Batista, B.L.; Costa de Oliveira, A.; et al. Mineral and Fatty Acid Content Variation in White Oat Genotypes Grown in Brazil. Biol. Trace Elem. Res. 2021, 199, 1194–1206. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Vu, M.; Korbas, M.; Bondici, V.F.; Karunakaran, C.; Christensen, D.; Bart Lardner, H.A.; Yu, P. Distribution of micronutrients in Arborg oat (Avena sativa L.) using synchrotron X-ray fluorescence imaging. Food Chem. 2023, 421, 135661. [Google Scholar] [CrossRef]
- Butt, M.S.; Tahir-Nadeem, M.; Khan, M.K.I.; Shabir, R.; Butt, M.S. Oat: Unique among the cereals. Eur. J. Nutr. 2008, 47, 68–79. [Google Scholar] [CrossRef]
- Weggemans, R.M.; Trautwein, E.A. Relation between soy-associated isoflavones and LDL and HDL cholesterol concentrations in humans: A meta-analysis. Eur. J. Clin. Nutr. 2003, 57, 940–946. [Google Scholar] [CrossRef] [PubMed]
- Saarinen, N.M.; Wärri, A.; Airio, M.; Smeds, A.; Mäkelä, S. Role of dietary lignans in the reduction of breast cancer risk. Mol. Nutr. Food Res. 2007, 51, 857–866. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.A.M.; Dimberg, L.; Åman, P.; Landberg, R. Recent findings on certain bioactive components in whole grain wheat and rye. J. Cereal Sci. 2014, 59, 294–311. [Google Scholar] [CrossRef]
- Cui, L.; Jia, Q.; Zhao, J.; Hou, D.; Zhou, S. A comprehensive review on oat milk: From oat nutrients and phytochemicals to its processing technologies, product features, and potential applications. Food Funct. 2023, 14, 5858–5869. [Google Scholar] [CrossRef]
- Zwer, P. Oats: Characteristics and quality requirements. In Cereal Grains; Wrigley, C.W., Batey, I.L.B.T.-C.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; pp. 163–182. ISBN 978-1-84569-563-7. [Google Scholar]
- Strychar, R. Oats: Chemistry and technology. In World Oat Production, Trade, and Usage.; Webster, F., Wood, P., Eds.; American Association of Cereal Chemists, Inc. (AACC): Saint Paul, MN, USA, 2011; pp. 1–10. [Google Scholar]
- Sobota, A.; Rzedzicki, Z.; Sobieraj, M. Badania Składu Chemicznego Płatków Musli. Bromatol. Chem. Toksykol. 2012, 45, 131–137. [Google Scholar]
- Aigster, A.; Duncan, S.E.; Conforti, F.D.; Barbeau, W.E. Physicochemical properties and sensory attributes of resistant starch-supplemented granola bars and cereals. LWT Food Sci. Technol. 2011, 44, 2159–2165. [Google Scholar] [CrossRef]
- Gambu, H.; Gibi, M.; Pastuszka, D.; Mickowska, B.; Ziobro, R.; Witkowicz, R. the Application of Residual Oats Flour in Bread Production in Order To Improve. Acta Sci. Pol. Technol. Aliment 2011, 10, 313–325. [Google Scholar]
- Raihan, M.; Saini, C.S. Evaluation of various properties of composite flour from oats, sorghum, amaranth and wheat flour and production of cookies thereof. Int. Food Res. J. 2017, 24, 2278–2284. [Google Scholar]
- Kim, H.J.; White, P.J. In Vitro Digestion Rate and Estimated Glycemic Index of Oat Flours from Typical and High β-Glucan Oat Lines. J. Agric. Food Chem. 2012, 60, 5237–5242. [Google Scholar] [CrossRef]
- Smulders, M.J.M.; van de Wiel, C.C.M.; van den Broeck, H.C.; van der Meer, I.M.; Israel-Hoevelaken, T.P.M.; Timmer, R.D.; van Dinter, B.-J.; Braun, S.; Gilissen, L.J.W.J. Oats in healthy gluten-free and regular diets: A perspective. Food Res. Int. 2018, 110, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Borowy, T.; Kubiak, M.S. Produkty przerobu owsa. Piekarstwo. Spec. Czas. Piekarzy 2012, 2, 47–49. [Google Scholar]
- Przygodzki, R.; Korbas, E.; Jóźwiak, I.; Langner, R. Właściwości Fizyczne Kasz Instant Nowej Generacji. Postępy Nauk. Technol. Przem. Rolno-Spożywczego 2012, 67, 52–63. [Google Scholar]
- Liska, D.J.; Dioum, E.; Chu, Y.; Mah, E. Narrative Review on the Effects of Oat and Sprouted Oat Components on Blood Pressure. Nutrients 2022, 14, 4772. [Google Scholar] [CrossRef]
- Brandolini, A.; Hidalgo, A. Wheat germ: Not only a by-product. Int. J. Food Sci. Nutr. 2012, 63, 71–74. [Google Scholar] [CrossRef]
- Oliinyk, S.; Samokhvalova, O.; Lapitska, N.; Kucheruk, Z. Studying the influence of meats from wheat and oat germs, and rose hips, on the formation of quality of rye w heat dough and bread. East. -Eur. J. Enterp. Technol. 2020, 1, 59–65. [Google Scholar] [CrossRef]
- Panfil, P.; Dorica, B.; Sorin, C.; Emilian, M.; Ersilia, A.; Iosif, G. Biochemical characterization of flour obtained from germinated cereals (wheat, barley and oat). Rom. Biotechnol. Lett. 2014, 19, 9772–9777. [Google Scholar]
- Kim, S.; Inglett, G.E.; Liu, S.X. Content and Molecular Weight Distribution of Oat β-Glucan in Oatrim, Nutrim, and C-Trim Products. Cereal Chem. J. 2008, 85, 701–705. [Google Scholar] [CrossRef]
- Klose, C.; Mauch, A.; Wunderlich, S.; Thiele, F.; Zarnkow, M.; Jacob, F.; Arendt, E.K. Brewing with 100% Oat Malt. J. Inst. Brew. 2011, 117, 411–421. [Google Scholar] [CrossRef]
- Gasiński, A.; Kawa-Rygielska, J.; Błażewicz, J.; Leszczyńska, D. Malting procedure and its impact on the composition of volatiles and antioxidative potential of naked and covered oat varieties. J. Cereal Sci. 2022, 107, 103537. [Google Scholar] [CrossRef]
- Briggs, D. Malts and Malting, 1st ed.; Springer: New York, NY, USA, 1998. [Google Scholar]
- Garavaglia, C.; Swinnen, J. The Craft Beer Revolution. Choices 2017, 32, 1–8. [Google Scholar]
- Garavaglia, C.; Swinnen, J. Economics of the Craft Beer Revolution: A Comparative International Perspective. In Economic Perspectives on Craft Beer; Garavaglia, C., Swinnen, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–51. ISBN 978-3-319-58235-1. [Google Scholar]
- Schnitzenbaumer, B.; Kaspar, J.; Titze, J.; Arendt, E.K. Implementation of commercial oat and sorghum flours in brewing. Eur. Food Res. Technol. 2014, 238, 515–525. [Google Scholar] [CrossRef]
- Strong, G.; England, K. Beer Judge Certification Program; University of California: Los Angeles, CA, USA, 2019. [Google Scholar]
- Ismail, B.P.; Senaratne-Lenagala, L.; Stube, A.; Brackenridge, A. Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Anim. Front. 2020, 10, 53–63. [Google Scholar] [CrossRef]
- González-Pérez, S.; Arellano, J.B. Vegetable protein isolates. In Handbook of Hydrocolloids; Phillips, G.O., Williams, P.A.B.T.-H., Second, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 383–419. ISBN 978-1-84569-414-2. [Google Scholar]
- Fuhrman, J.; Ferreri, D.M. Fueling the Vegetarian (Vegan) Athlete. Curr. Sports Med. Rep. 2010, 9, 233–241. [Google Scholar] [CrossRef]
- D’adamo, C.; Sahin, A. Soy Foods and Supplementation: A Review of Commonly Perceived Health Benefits and Risks. Altern. Ther. 2014, 20, 39–52. [Google Scholar]
- Aydar, E.F.; Tutuncu, S.; Ozcelik, B. Plant-based milk substitutes: Bioactive compounds, conventional and novel processes, bioavailability studies, and health effects. J. Funct. Foods 2020, 70, 103975. [Google Scholar] [CrossRef]
- Paul, A.A.; Kumar, S.; Kumar, V.; Sharma, R. Milk Analog: Plant based alternatives to conventional milk, production, potential and health concerns. Crit. Rev. Food Sci. Nutr. 2020, 60, 3005–3023. [Google Scholar] [CrossRef]
- Bernat, N.; Cháfer, M.; González-Martínez, C.; Rodríguez-García, J.; Chiralt, A. Optimisation of oat milk formulation to obtain fermented derivatives by using probiotic Lactobacillus reuteri microorganisms. Food Sci. Technol. Int. 2015, 21, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Steinert, R.; Raederstorff, D.; Wolever, T. Effect of Consuming Oat Bran Mixed in Water before a Meal on Glycemic Responses in Healthy Humans—A Pilot Study. Nutrients 2016, 8, 524. [Google Scholar] [CrossRef] [PubMed]
- Jane, M.; McKay, J.; Pal, S. Effects of daily consumption of psyllium, oat bran and polyGlycopleX on obesity-related disease risk factors: A critical review. Nutrition 2019, 57, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Inglett, G.E. Effect of Shortening Replacement with Oatrim on the Physical and Rheological Properties of Cakes. Cereal Chem. J. 2005, 82, 120–124. [Google Scholar] [CrossRef]
- Mathews, R.; Kamil, A.; Chu, Y. Global review of heart health claims for oat beta-glucan products. Nutr. Rev. 2020, 78, 78–97. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Tsantes, M.; Taoukis, P. Effect of high pressure homogenization on the production of yeast extract via autolysis and beta-glucan recovery. Innov. Food Sci. Emerg. Technol. 2020, 62, 102340. [Google Scholar] [CrossRef]
- Khorshidian, N.; Yousefi, M.; Shadnoush, M.; Mortazavian, A.M. An Overview of β-Glucan Functionality in Dairy Products. Curr. Nutr. Food Sci. 2018, 14, 280–292. [Google Scholar] [CrossRef]
- Mykhalevych, A.; Polishchuk, G.; Nassar, K.; Osmak, T.; Buniowska-Olejnik, M. β-Glucan as a Techno-Functional Ingredient in Dairy and Milk-Based Products—A Review. Molecules 2022, 27, 6313. [Google Scholar] [CrossRef]
- Chen, G.; Liu, Y.; Zeng, J.; Tian, X.; Bei, Q.; Wu, Z. Enhancing three phenolic fractions of oats (Avena sativa L.) and their antioxidant activities by solid-state fermentation with Monascus anka and Bacillus subtilis. J. Cereal Sci. 2020, 93, 102940. [Google Scholar] [CrossRef]
- Sibakov, J.; Abecassis, J.; Barron, C.; Poutanen, K. Electrostatic separation combined with ultra-fine grinding to produce β-glucan enriched ingredients from oat bran. Innov. Food Sci. Emerg. Technol. 2014, 26, 445–455. [Google Scholar] [CrossRef]
- Liu, S.; Li, Y.; Obadi, M.; Jiang, Y.; Chen, Z.; Jiang, S.; Xu, B. Effect of steaming and defatting treatments of oats on the processing and eating quality of noodles with a high oat flour content. J. Cereal Sci. 2019, 89, 102794. [Google Scholar] [CrossRef]
- Konak, Ü.İ.; Ercili-Cura, D.; Sibakov, J.; Sontag-Strohm, T.; Certel, M.; Loponen, J. CO2-defatted oats: Solubility, emulsification and foaming properties. J. Cereal Sci. 2014, 60, 37–41. [Google Scholar] [CrossRef]
- Espinosa-Solis, V.; Zamudio-Flores, P.B.; Tirado-Gallegos, J.M.; Ramírez-Mancinas, S.; Olivas-Orozco, G.I.; Espino-Díaz, M.; Hernández-González, M.; García-Cano, V.G.; Sánchez-Ortíz, O.; Buenrostro-Figueroa, J.J.; et al. Evaluation of Cooking Quality, Nutritional and Texture Characteristics of Pasta Added with Oat Bran and Apple Flour. Foods 2019, 8, 299. [Google Scholar] [CrossRef] [PubMed]
- Sobota, A.; Rzedzicki, Z.; Zarzycki, P.; Kuzawińska, E. Application of common wheat bran for the industrial production of high-fibre pasta. Int. J. Food Sci. Technol. 2015, 50, 111–119. [Google Scholar] [CrossRef]
- Hüttner, E.K.; Bello, F.D.; Arendt, E.K. Rheological properties and bread making performance of commercial wholegrain oat flours. J. Cereal Sci. 2010, 52, 65–71. [Google Scholar] [CrossRef]
- Mäkinen, O.E.; Wanhalinna, V.; Zannini, E.; Arendt, E.K. Foods for Special Dietary Needs: Non-dairy Plant-based Milk Substitutes and Fermented Dairy-type Products. Crit. Rev. Food Sci. Nutr. 2016, 56, 339–349. [Google Scholar] [CrossRef]
- Salmerón, I.; Thomas, K.; Pandiella, S.S. Effect of potentially probiotic lactic acid bacteria on the physicochemical composition and acceptance of fermented cereal beverages. J. Funct. Foods 2015, 15, 106–115. [Google Scholar] [CrossRef]
- Staka, A.; Bodnieks, E.; Puķītis, A. Impact of Oat-Based Products on Human Gastrointestinal Tract. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2015, 69, 145–151. [Google Scholar] [CrossRef]
- Vasudha, S.; Mishra, H.N. Non dairy probiotic beverages. Int. Food Res. J. 2013, 20, 7–15. [Google Scholar]
- Angelov, A.; Yaneva-Marinova, T.; Gotcheva, V. Oats as a matrix of choice for developing fermented functional beverages. J. Food Sci. Technol. 2018, 55, 2351–2360. [Google Scholar] [CrossRef]
- Brückner-Gühmann, M.; Vasil’eva, E.; Culetu, A.; Duta, D.; Sozer, N.; Drusch, S. Oat protein concentrate as alternative ingredient for non-dairy yoghurt-type product. J. Sci. Food Agric. 2019, 99, 5852–5857. [Google Scholar] [CrossRef] [PubMed]
- Ronda, F.; Perez-Quirce, S.; Lazaridou, A.; Biliaderis, C.G. Effect of barley and oat β-glucan concentrates on gluten-free rice-based doughs and bread characteristics. Food Hydrocoll. 2015, 48, 197–207. [Google Scholar] [CrossRef]
- Krawęcka, A.; Sobota, A.; Sykut-Domańska, E. Physicochemical, Sensory, and Cooking Qualities of Pasta Enriched with Oat β-Glucans, Xanthan Gum, and Vital Gluten. Foods 2020, 9, 1412. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, A.; Serafeimidou, A.; Biliaderis, C.G.; Moschakis, T.; Tzanetakis, N. Structure development and acidification kinetics in fermented milk containing oat β-glucan, a yogurt culture and a probiotic strain. Food Hydrocoll. 2014, 39, 204–214. [Google Scholar] [CrossRef]
- Omana, D.; Plastow, G.; Betti, M. The use of β-glucan as a partial salt replacer in high pressure processed chicken breast meat. Food Chem. 2011, 129, 768–776. [Google Scholar] [CrossRef]
- Piñero, M.P.; Parra, K.; Huerta-Leidenz, N.; Arenas de Moreno, L.; Ferrer, M.; Araujo, S.; Barboza, Y. Effect of oat’s soluble fibre (β-glucan) as a fat replacer on physical, chemical, microbiological and sensory properties of low-fat beef patties. Meat Sci. 2008, 80, 675–680. [Google Scholar] [CrossRef]
- Lange, E. Produkty Owsiane Jako Żywność Funkcjonalna. Żywność Nauka Technol. Jakość 2010, 3, 7–24. [Google Scholar]
- Zygmunt Zdrojewicz, A.L.A.W. Influence of consumption the oatmeal on human body. Med. Rodz. 2017, 20, 118–123. [Google Scholar]
- Daou, C.; Zhang, H. Oat Beta-Glucan: Its Role in Health Promotion and Prevention of Diseases. Compr. Rev. Food Sci. Food Saf. 2012, 11, 355–365. [Google Scholar] [CrossRef]
- El Khoury, D.; Cuda, C.; Luhovyy, B.L.; Anderson, G.H. Beta glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012, 2012, 851362. [Google Scholar] [CrossRef]
- Gidley, M.J.; Yakubov, G.E. Functional categorisation of dietary fibre in foods: Beyond ‘soluble’ vs ‘insoluble’. Trends Food Sci. Technol. 2019, 86, 563–568. [Google Scholar] [CrossRef]
- Gudej, S.; Filip, R.; Harasym, J.; Wilczak, J.; Dziendzikowska, K.; Oczkowski, M.; Jałosińska, M.; Juszczak, M.; Lange, E.; Gromadzka-Ostrowska, J. Clinical Outcomes after Oat Beta-Glucans Dietary Treatment in Gastritis Patients. Nutrients 2021, 13, 2791. [Google Scholar] [CrossRef]
- Pan, W.; Hao, S.; Zheng, M.; Lin, D.; Jiang, P.; Zhao, J.; Shi, H.; Yang, X.; Li, X.; Yu, Y. Oat-Derived β-Glucans Induced Trained Immunity Through Metabolic Reprogramming. Inflammation 2020, 43, 1323–1336. [Google Scholar] [CrossRef] [PubMed]
- Brennan, C.S. Dietary fibre, glycaemic response, and diabetes. Mol. Nutr. Food Res. 2005, 49, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Kristek, A.; Wiese, M.; Heuer, P.; Kosik, O.; Schär, M.Y.; Soycan, G.; Alsharif, S.; Kuhnle, G.G.C.; Walton, G.; Spencer, J.P.E. Oat bran, but not its isolated bioactive β -glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Br. J. Nutr. 2019, 121, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Zhouyao, H.; Malunga, L.N.; Chu, Y.F.; Eck, P.; Ames, N.; Thandapilly, S.J. The inhibition of intestinal glucose absorption by oat-derived avenanthramides. J. Food Biochem. 2022, 46, e14324. [Google Scholar] [CrossRef]
- Jenkins, A.; Jenkins, D.; Zdravkovic, U.; Würsch, P.; Vuksan, V. Depression of the glycemic index by high levels of β-glucan fiber in two functional foods tested in type 2 diabetes. Eur. J. Clin. Nutr. 2002, 56, 622–628. [Google Scholar] [CrossRef]
- Bae, I.Y.; Kim, S.M.; Lee, S.; Lee, H.G. Effect of enzymatic hydrolysis on cholesterol-lowering activity of oat β-glucan. N. Biotechnol. 2010, 27, 85–88. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Song, P.; Wang, C.; Man, Q.; Meng, L.; Cai, J.; Kurilich, A. Randomized controlled trial of oatmeal consumption versus noodle consumption on blood lipids of urban Chinese adults with hypercholesterolemia. Nutr. J. 2012, 11, 54. [Google Scholar] [CrossRef]
- Shimizu, C.; Kihara, M.; Aoe, S.; Araki, S.; Ito, K.; Hayashi, K.; Watari, J.; Sakata, Y.; Ikegami, S. Effect of high β-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men—A randomized, double-blinded, placebo-controlled trial. Plant Foods Hum. Nutr. 2008, 63, 21–25. [Google Scholar] [CrossRef]
- Theuwissen, E.; Mensink, R.P. Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 2008, 94, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Alvaro, A.; Solà, R.; Rosales, R.; Ribalta, J.; Anguera, A.; Masana, L.; Vallvé, J.C. Gene expression analysis of a human enterocyte cell line reveals downregulation of cholesterol biosynthesis in response to short-chain fatty acids. IUBMB Life 2008, 60, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Muntner, P.; Miles, M.A.; Jaeger, B.C.; Hannon, L.; Hardy, S.T.; Ostchega, Y.; Wozniak, G.; Schwartz, J.E. Blood Pressure Control Among US Adults, 2009 to 2012 Through 2017 to 2020. Hypertension 2022, 79, 1971–1980. [Google Scholar] [CrossRef] [PubMed]
- De Spirt, S.; Stahl, W.; Tronnier, H.; Sies, H.; Bejot, M.; Maurette, J.-M.; Heinrich, U. Intervention with flaxseed and borage oil supplements modulates skin condition in women. Br. J. Nutr. 2008, 101, 440–445. [Google Scholar] [CrossRef]
- Choromanska, A.; Kulbacka, J.; Rembialkowska, N.; Pilat, J.; Oledzki, R.; Harasym, J.; Saczko, J. Anticancer properties of low molecular weight oat beta-glucan—An in vitro study. Int. J. Biol. Macromol. 2015, 80, 23–28. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Sanyal, T. Anti-cancer property of Lenzites betulina (L) Fr. on cervical cancer cell lines and its anti-tumor effect on HeLa-implanted mice. bioRxiv 2019, 2019, 540567. [Google Scholar]
- Lee, J.S.; Lee, S.H.; Jang, Y.M.; Lee, J.D.; Lee, B.H.; Jung, J.Y. Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells. J. Korean Soc. Food Sci. Nutr. 2011, 40, 949–955. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, X.D.; Jiang, Z. The Application of Fungal Beta-glucans for the Treatment of Colon Cancer. Anticancer. Agents Med. Chem. 2013, 13, 725–730. [Google Scholar] [CrossRef]
- Baldassano, S.; Accardi, G.; Vasto, S. Beta-glucans and cancer: The influence of inflammation and gut peptide. Eur. J. Med. Chem. 2017, 142, 486–492. [Google Scholar] [CrossRef]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef]
- Zackular, J.P.; Rogers, M.A.M.; Ruffin, M.T.; Schloss, P.D. The Human Gut Microbiome as a Screening Tool for Colorectal Cancer. Cancer Prev. Res. 2014, 7, 1112. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.; Wisker, E.; Rave, G.; Feldheim, W. Fermentation in human subjects of nonstarch polysaccharides in mixed diets, but not in a barley fiber concentrate, could be predicted by in vitro fermentation using human fecal inocula. J. Nutr. 1997, 127, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Topping, D.L.; Clifton, P.M. Short-Chain Fatty Acids and Human Colonic Function: Roles of Resistant Starch and Nonstarch Polysaccharides. Physiol. Rev. 2018, 81, 1031–1064. [Google Scholar] [CrossRef] [PubMed]
- Pozuelo, M.J.; Agis-Torres, A.; Hervert-Hernández, D.; Elvira López-Oliva, M.; Muñoz-Martínez, E.; Rotger, R.; Goñi, I. Grape Antioxidant Dietary Fiber Stimulates Lactobacillus Growth in Rat Cecum. J. Food Sci. 2012, 77, H59–H62. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, U.; Johansson, M.; Nilsson, Å.; Björck, I.; Nyman, M. Dietary supplementation with β-glucan enriched oat bran increases faecal concentration of carboxylic acids in healthy subjects. Eur. J. Clin. Nutr. 2008, 62, 978–984. [Google Scholar] [CrossRef]
- Hinnebusch, B.F.; Meng, S.; Wu, J.T.; Archer, S.Y.; Hodin, R.A. The Effects of Short-Chain Fatty Acids on Human Colon Cancer Cell Phenotype Are Associated with Histone Hyperacetylation. J. Nutr. 2002, 132, 1012–1017. [Google Scholar] [CrossRef]
- Thomas, L.V.; Ockhuizen, T.; Suzuki, K. Exploring the influence of the gut microbiota and probiotics on health: A symposium report. Br. J. Nutr. 2014, 112, S1–S18. [Google Scholar] [CrossRef]
- Chaichian, S.; Moazzami, B.; Sadoughi, F.; Haddad Kashani, H.; Zaroudi, M.; Asemi, Z. Functional activities of beta-glucans in the prevention or treatment of cervical cancer. J. Ovarian Res. 2020, 13, 24. [Google Scholar] [CrossRef]
- Howarth, N.C.; Sc, M.; Saltzman, E.; Roberts, S.B.; Ph, D. Dietary Fiber and Weight Regulation. Nutr. Rev. 2001, 59, 129–139. [Google Scholar] [CrossRef]
- Baboota, R.K.; Bishnoi, M.; Ambalam, P.; Kondepudi, K.K.; Sarma, S.M.; Boparai, R.K.; Podili, K. Functional food ingredients for the management of obesity and associated co-morbidities—A review. J. Funct. Foods 2013, 5, 997–1012. [Google Scholar] [CrossRef]
- Patel, S. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J. Funct. Foods 2015, 14, 255–269. [Google Scholar] [CrossRef]
- Birketvedt, G.S.; Aaseth, J.; Florholmen, J.R.; Ryttig, K. Long Term Effect of Fibre Supplement and Reduced Energy Intake on Body Weight and Blood Lipids in Overweight Subjects. Acta Medica 2000, 43, 129–132. [Google Scholar] [CrossRef]
- Ludwig, D.S. Dietary Glycemic Index and Obesity. J. Nutr. 2000, 130, 280S–283S. [Google Scholar] [CrossRef] [PubMed]
- Liefschitz, C.H.; Grusak, M.A.; Butte, N.F. Carbohydrate digestion in humans from a β-glucan-enriched barley is reduced. J. Nutr. 2002, 132, 2593–2596. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, D.S.; Pereira, M.A.; Kroenke, C.H.; Hilner, J.E.; Van Horn, L.; Slattery, M.L.; Jacobs, D.R. Dietary Fiber, Weight Gain, and Cardiovascular Disease Risk Factors in Young Adults. JAMA 1999, 282, 1539. [Google Scholar] [CrossRef] [PubMed]
- Östman, E.; Rossi, E.; Larsson, H.; Brighenti, F.; Björck, I. Glucose and insulin responses in healthy men to barley bread with different levels of (1→3;1→4)-β-glucans; predictions using fluidity measurements of in vitro enzyme digests. J. Cereal Sci. 2006, 43, 230–235. [Google Scholar] [CrossRef]
- Weickert, M.; Möhlig, M.; Schöfl, C.; Arafat, A.; Otto, B.; Viehoff, H.; Koebnick, C.; Kohl, A.; Spranger, J.; Pfeiffer, A. Cereal fiber improves whole-body insulin. Diabetes Care 2006, 29, 773–780. [Google Scholar] [CrossRef]
- Kirwan, J.P.; Cyr-Campbell, D.; Campbell, W.W.; Scheiber, J.; Evans, W.J. Effects of moderate and high glycemic index meals on metabolism and exercise performance. Metabolism 2001, 50, 849–855. [Google Scholar] [CrossRef]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef]
- Cox, S.R.; Lindsay, J.O.; Fromentin, S.; Stagg, A.J.; McCarthy, N.E.; Galleron, N.; Ibraim, S.B.; Roume, H.; Levenez, F.; Pons, N.; et al. Effects of Low FODMAP Diet on Symptoms, Fecal Microbiome, and Markers of Inflammation in Patients With Quiescent Inflammatory Bowel Disease in a Randomized Trial. Gastroenterology 2020, 158, 176–188.e7. [Google Scholar] [CrossRef]
- Liu, B.; Lin, Q.; Yang, T.; Zeng, L.; Shi, L.; Chen, Y.; Luo, F. Oat β-glucan ameliorates dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. Food Funct. 2015, 6, 3454–3463. [Google Scholar] [CrossRef] [PubMed]
- Campmans-Kuijpers, M.J.E.; Dijkstra, G. Food and Food Groups in Inflammatory Bowel Disease (IBD): The Design of the Groningen Anti-Inflammatory Diet (GrAID). Nutrients 2021, 13, 1067. [Google Scholar] [CrossRef] [PubMed]
- Hallert, C.; Björck, I.; Nyman, M.; Pousette, A.; Grännö, C.; Svensson, H. Increasing Fecal Butyrate in Ulcerative Colitis Patients by Diet: Controlled Pilot Study. Inflamm. Bowel Dis. 2003, 9, 116–121. [Google Scholar] [CrossRef]
- Comino, I. Role of oats in celiac disease. World J. Gastroenterol. 2015, 21, 11825. [Google Scholar] [CrossRef]
- Fric, P.; Gabrovska, D.; Nevoral, J. Celiac disease, gluten-free diet, and oats. Nutr. Rev. 2011, 69, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Kaukinen, K.; Collin, P.; Huhtala, H.; Mäki, M. Long-Term Consumption of Oats in Adult Celiac Disease Patients. Nutrients 2013, 5, 4380–4389. [Google Scholar] [CrossRef]
- Silano, M.; Penas Pozo, E.; Uberti, F.; Manferdelli, S.; Del Pinto, T.; Felli, C.; Budelli, A.; Vincentini, O.; Restani, P. Diversity of oat varieties in eliciting the early inflammatory events in celiac disease. Eur. J. Nutr. 2014, 53, 1177–1186. [Google Scholar] [CrossRef]
- Marasco, G.; Cirota, G.G.; Rossini, B.; Lungaro, L.; Di Biase, A.R.; Colecchia, A.; Volta, U.; De Giorgio, R.; Festi, D.; Caio, G. Probiotics, Prebiotics and Other Dietary Supplements for Gut Microbiota Modulation in Celiac Disease Patients. Nutrients 2020, 12, 2674. [Google Scholar] [CrossRef]
- Garsed, K.; Scott, B.B. Can oats be taken in a gluten-free diet? A systematic review. Scand. J. Gastroenterol. 2007, 42, 171–178. [Google Scholar] [CrossRef]
- Pinto-Sánchez, M.I.; Causada-Calo, N.; Bercik, P.; Ford, A.C.; Murray, J.A.; Armstrong, D.; Semrad, C.; Kupfer, S.S.; Alaedini, A.; Moayyedi, P.; et al. Safety of Adding Oats to a Gluten-Free Diet for Patients With Celiac Disease: Systematic Review and Meta-analysis of Clinical and Observational Studies. Gastroenterology 2017, 153, 395–409.e3. [Google Scholar] [CrossRef]
- Lionetti, E.; Gatti, S.; Galeazzi, T.; Caporelli, N.; Francavilla, R.; Cucchiara, S.; Roggero, P.; Malamisura, B.; Iacono, G.; Tomarchio, S.; et al. Safety of Oats in Children with Celiac Disease: A Double-Blind, Randomized, Placebo-Controlled Trial. J. Pediatr. 2018, 194, 116–122.e2. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, V.; Hollén, E.; Pietz, G.; Magnusson, K.E.; Fälth-Magnusson, K.; Sundström, M.; Holmgren Peterson, K.; Sandström, O.; Hernell, O.; Hammarström, S.; et al. Noncontaminated dietary oats may hamper normalization of the intestinal immune status in childhood celiac disease. Clin. Transl. Gastroenterol. 2014, 5, e58. [Google Scholar] [CrossRef] [PubMed]
- Valido, E.; Stoyanov, J.; Bertolo, A.; Hertig-Godeschalk, A.; Zeh, R.M.; Flueck, J.L.; Minder, B.; Stojic, S.; Metzger, B.; Bussler, W.; et al. Systematic Review of the Effects of Oat Intake on Gastrointestinal Health. J. Nutr. 2021, 151, 3075–3090. [Google Scholar] [CrossRef] [PubMed]
- Kemppainen, T.A.; Heikkinen, M.T.; Ristikankare, M.K.; Kosma, V.-M.; Sontag-Strohm, T.S.; Brinck, O.; Salovaara, H.O.; Julkunen, R.J. Unkilned and large amounts of oats in the coeliac disease diet: A randomized, controlled study. Scand. J. Gastroenterol. 2008, 43, 1094–1101. [Google Scholar] [CrossRef]
Cereal Species and Product | Protein | Lipids | Carbohydrates | Dietary Fiber |
---|---|---|---|---|
Whole oat grain with husk (range) | 7.4–16.2 | 2.2–9.2 | 53–66 | 20–38 |
Whole oat grain without husk (range) | 10.5–24.5 | 3.1–15 | 62–75 | 7.8–12.2 |
Naked oat (range) | 14–19.5 | 8.3–11.4 | 69–72 | 8.6–12.1 |
Wheat (average) | 13.5 | 2.3 | 67.7 | 12.1 |
Rye (average) | 10.2 | 2.0 | 63.9 | 16.1 |
Whole barley grain without husk (average) | 12.0 | 2.4 | 65.9 | 15.4 |
Corn (average) | 10.5 | 4.3 | 71.9 | 9.4 |
Exogenous Amino Acids | Wheat | Rye | Triticale | Barley | Oat | FAO/WHO Standard |
---|---|---|---|---|---|---|
Lysine (Lys) | 26 | 38 | 34 | 32 | 42 | 55 |
Methionine (Met) | 17 | 17 | 17 | 17 | 25 | 17 |
Tryptophan (Trp) | 13 | 16 | 11 | 12 | 19 | 10 |
Valine (Val) | 46 | 53 | 42 | 54 | 53 | 50 |
Isoleucine (Ile) | 34 | 35 | 32 | 35 | 39 | 40 |
Leucine (Leu) | 69 | 75 | 77 | 72 | 74 | 70 |
Threonine (Thr) | 26 | 32 | 31 | 29 | 33 | 40 |
Phenylalanine (Phe) | 43 | 52 | 50 | 51 | 53 | 26 |
Sum | 274 | 318 | 294 | 302 | 338 | 308 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leszczyńska, D.; Wirkijowska, A.; Gasiński, A.; Średnicka-Tober, D.; Trafiałek, J.; Kazimierczak, R. Oat and Oat Processed Products—Technology, Composition, Nutritional Value, and Health. Appl. Sci. 2023, 13, 11267. https://doi.org/10.3390/app132011267
Leszczyńska D, Wirkijowska A, Gasiński A, Średnicka-Tober D, Trafiałek J, Kazimierczak R. Oat and Oat Processed Products—Technology, Composition, Nutritional Value, and Health. Applied Sciences. 2023; 13(20):11267. https://doi.org/10.3390/app132011267
Chicago/Turabian StyleLeszczyńska, Danuta, Anna Wirkijowska, Alan Gasiński, Dominika Średnicka-Tober, Joanna Trafiałek, and Renata Kazimierczak. 2023. "Oat and Oat Processed Products—Technology, Composition, Nutritional Value, and Health" Applied Sciences 13, no. 20: 11267. https://doi.org/10.3390/app132011267
APA StyleLeszczyńska, D., Wirkijowska, A., Gasiński, A., Średnicka-Tober, D., Trafiałek, J., & Kazimierczak, R. (2023). Oat and Oat Processed Products—Technology, Composition, Nutritional Value, and Health. Applied Sciences, 13(20), 11267. https://doi.org/10.3390/app132011267