A Comprehensive Survey of Recommender Systems Based on Deep Learning
Abstract
:1. Introduction
- We present a comprehensive examination of recommender systems, with a specific emphasis on their integration with deep learning. We categorize them in terms of their developmental perspective, providing a comprehensive view of the evolution of the recommender systems field.
- We conduct a review of the research progress of recommender systems integrated with deep learning, focusing on methods for applying deep learning to collaborative filtering. Specifically, we perform a comprehensive analysis of four recommendation approaches that incorporate deep learning: content-based recommendation, sequence recommendation, cross-domain recommendation, and social recommendation.
- We identify future research directions in the field of deep learning-based recommender systems, contributing to the advancement of the research community.
2. Related Work
3. Overview of the Recommender Systems
3.1. Content-Based Recommendation
- Personalized recommendations: These recommendations are based on the user’s historical interests, ensuring that the recommended content aligns with the user’s preferences.
- Simple principle with strong interpretability: Content-based recommendations can be made based on label dimensions or by embedding items into a vector space using similarity, making this strategy easy to implement. It is also readily accepted and validated by users.
- Addresses the cold-start problem to some extent: As long as sufficient content attributes are available, new items can be effectively handled without relying on other users’ behaviors.
3.2. Sequential Recommendation
3.2.1. Standard Sequence Recommendation
3.2.2. Long- and Short-Term Sequence Recommendation
3.2.3. Multi-Objective Sequence Recommendation
3.3. Cross-Domain Recommendation
3.3.1. Single-Target CDR
3.3.2. Dual-Target CDR
3.3.3. Multi-Target CDR
3.4. Social Recommendation
3.4.1. Traditional Collaborative Filtering-Based Social Recommender Systems
3.4.2. Deep Social Recommendation Based on Graph Embedding
3.4.3. Social Recommendation Based on GNN
4. Challenges and Developments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Lin, Q.; Lu, H. Recommending learning objects through attentive heterogeneous graph convolution and operation-aware neural network. IEEE Trans. Knowl. Data Eng. 2021, 35, 4178–4189. [Google Scholar] [CrossRef]
- Leiva, M.; Budán, M.C.D.; Simari, G.I. Guidelines for the analysis and design of argumentation-based recommendation systems. IEEE Intell. Syst. 2020, 35, 28–37. [Google Scholar] [CrossRef]
- Goldberg, K.; Roeder, T.; Gupta, D.; Perkins, C. Eigentaste: A constant time collaborative filtering algorithm. Inf. Retr. 2001, 4, 133–151. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Umar, A.M.; Linus, O.U.; Arshad, H.; Kazaure, A.A.; Gana, U.; Kiru, M.U. Comprehensive review of artificial neural network applications to pattern recognition. IEEE Access 2019, 7, 158820–158846. [Google Scholar] [CrossRef]
- Gheisari, M.; Wang, G.; Bhuiyan, M.Z.A. A survey on deep learning in big data. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; IEEE: Piscataway, NJ, USA, 2017; Volume 2, pp. 173–180. [Google Scholar]
- Covington, P.; Adams, J.; Sargin, E. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 19 September 2016; pp. 191–198. [Google Scholar]
- Sun, K.; Wang, L.; Xu, B.; Zhao, W.; Teng, S.W.; Xia, F. Network representation learning: From traditional feature learning to deep learning. IEEE Access 2020, 8, 205600–205617. [Google Scholar] [CrossRef]
- Han, S.; Qiao, Y.; Zhang, Y.; Lin, W.; Yang, J. Analyze users’ online shopping behavior using interconnected online interest-product network. In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Zhang, Y.; Qian, Y.; Gan, M.; Tang, X.; Lin, Z. Service Recommendation Based on User Dynamic Preference Extraction and Prediction. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; IEEE: Piscataway, NJ, USA, 2019; Volume 2642, pp. 121–126. [Google Scholar]
- Skarding, J.; Gabrys, B.; Musial, K. Foundations and modeling of dynamic networks using dynamic graph neural networks: A survey. IEEE Access 2021, 9, 79143–79168. [Google Scholar] [CrossRef]
- Ouyang, Y.; Guo, B.; Wang, Q.; Yu, Z. Cross-domain recommendation with cross-graph knowledge transfer network. In Proceedings of the ICC 2021-IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Jiang, M.; Cui, P.; Wang, F.; Zhu, W.; Yang, S. Scalable recommendation with social contextual information. IEEE Trans. Knowl. Data Eng. 2014, 26, 2789–2802. [Google Scholar] [CrossRef]
- Guo, G. Resolving data sparsity and cold start in recommender systems. In Proceedings of the User Modeling, Adaptation, and Personalization: 20th International Conference, UMAP 2012, Montreal, QC, Canada, 16–20 July 2012; Proceedings 20. Springer: Berlin/Heidelberg, Germany, 2012; pp. 361–364. [Google Scholar]
- Tang, J.; Hu, X.; Liu, H. Social recommendation: A review. Soc. Netw. Anal. Min. 2013, 3, 1113–1133. [Google Scholar] [CrossRef]
- Wang, H.; Kou, G.; Peng, Y. An iterative algorithm to derive priority from large-scale sparse pairwise comparison matrix. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 3038–3051. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. ACM Comput. Surv. (CSUR) 2019, 52, 1–38. [Google Scholar] [CrossRef]
- Yang, Z.; Ding, M.; Zou, X.; Tang, J.; Xu, B.; Zhou, C.; Yang, H. Region or global a principle for negative sampling in graph-based recommendation. IEEE Trans. Knowl. Data Eng. 2022, 35, 6264–6277. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Wang, S.; Hassan, A.E. Studying the Practices of Logging Exception Stack Traces in Open-Source Software Projects. IEEE Trans. Softw. Eng. 2021, 48, 4907–4924. [Google Scholar] [CrossRef]
- Gantner, Z.; Drumond, L.; Freudenthaler, C.; Rendle, S.; Schmidt-Thieme, L. Learning attribute-to-feature mappings for cold-start recommendations. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, NSW, Australia, 13–17 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 176–185. [Google Scholar]
- Ma, H.; Yang, H.; Lyu, M.R.; King, I. Sorec: Social recommendation using probabilistic matrix factorization. In Proceedings of the 17th ACM Conference on Information and Knowledge Man-Agement, Napa Valley, CA, USA, 26–30 October 2008; pp. 931–940. [Google Scholar]
- Mnih, A.; Salakhutdinov, R.R. Probabilistic matrix factorization. In Advances in Neural Information Processing Systems; 2007; Volume 20, Available online: https://proceedings.neurips.cc/paper/2007 (accessed on 18 September 2023).
- Jamali, M.; Ester, M. A matrix factorization technique with trust propagation for recommendation in social networks. In Proceedings of the Fourth ACM Conference on Recommender Systems, Barcelona, Spain, 26–30 September 2010; pp. 135–142. [Google Scholar]
- Ma, H.; Zhou, D.; Liu, C.; Lyu, M.R.; King, I. Recommender systems with social regularization. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; pp. 287–296. [Google Scholar]
- Sedhain, S.; Menon, A.K.; Sanner, S.; Xie, L. Autorec: Autoencoders meet collaborative filtering. In Proceedings of the 24th Intermnational Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 111–112. [Google Scholar]
- Devooght, R.; Bersini, H. Long and short-term recommendations with recurrent neural networks. In Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, Bratislava, Slovakia, 9–12 July 2017; pp. 13–21. [Google Scholar]
- Wu, S.; Sun, F.; Zhang, W.; Xie, X.; Cui, B. Graph neural networks in recommender systems: A survey. arXiv 2020, arXiv:2011.02260. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Wang, M.; Feng, F.; Chua, T.S. Neural graph collaborative filtering. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 165–174. [Google Scholar]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. arXiv 2017, arXiv:1706.02216. [Google Scholar]
- Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 974–983. [Google Scholar]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T.S. Neural collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar]
- Guo, H.; Tang, R.; Ye, Y.; Li, Z.; He, X. DeepFM: A factorization-machine based neural network for CTR prediction. arXiv 2017, arXiv:1703.04247. [Google Scholar]
- Wu, Y.; Su, L.; Wu, L.; Xiong, W. FedDeepFM: A Factorization Machine-Based Neural Network for Recommendation in Federated Learning. IEEE Access 2023, 11, 74182–74190. [Google Scholar] [CrossRef]
- Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing personalized markov chains for next-basket recommendation. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 811–820. [Google Scholar]
- Kang, W.C.; McAuley, J. Self-attentive sequential recommendation. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 197–206. [Google Scholar]
- Wang, K.; Wang, X.; Lu, X. POI recommendation method using LSTM-attention in LBSN considering privacy protection. Complex Intell. Syst. 2023, 9, 2801–2812. [Google Scholar] [CrossRef]
- Lv, F.; Jin, T.; Yu, C.; Sun, F.; Lin, Q.; Yang, K.; Ng, W. SDM: Sequential Deep Matching Model for Online Large-scale Recommender System. In Proceedings of the CIKM ’19: The 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019. [Google Scholar]
- Hidasi, B.; Karatzoglou, A.; Baltrunas, L.; Tikk, D. Session-based recommendations with recurrent neural networks. arXiv 2015, arXiv:1511.06939. [Google Scholar]
- Natarajan, S.; Vairavasundaram, S.; Kotecha, K.; Indragandhi, V.; Palani, S.; Saini, J.R.; Ravi, L. CD-SemMF: Cross-Domain Semantic Relatedness Based Matrix Factorization Model Enabled With Linked Open Data for User Cold Start Issue. IEEE Access 2022, 10, 52955–52970. [Google Scholar] [CrossRef]
- Zhu, F.; Chen, C.; Wang, Y.; Liu, G.; Zheng, X. Dtcdr: A framework for dual-target cross-domain recommendation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 1533–1542. [Google Scholar]
- Li, P.; Tuzhilin, A. Ddtcdr: Deep dual transfer cross domain recommendation. In Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, TX, USA, 3–7 February 2020; pp. 331–339. [Google Scholar]
- Krishnan, A.; Das, M.; Bendre, M.; Yang, H.; Sundaram, H. Transfer learning via contextual invariants for one-to-many cross-domain recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China, 25–30 July 2020; pp. 1081–1090. [Google Scholar]
- He, X.; Deng, K.; Wang, X.; Li, Y.; Zhang, Y.; Wang, M. Lightgcn: Simplifying and powering graph convolution network for recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China, 25–30 July 2020; pp. 639–648. [Google Scholar]
- Chen, L.; Wu, L.; Hong, R.; Zhang, K.; Wang, M. Revisiting graph based collaborative filtering: A linear residual graph convolutional network approach. Proc. AAAI Conf. Artif. Intell. 2020, 34, 27–34. [Google Scholar] [CrossRef]
- Ahmed, A.; Shervashidze, N.; Narayanamurthy, S. Distributed large-scale natural graph factorization. In Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, 13–17 May 2013; pp. 37–48. [Google Scholar]
- Li, Z.; Wu, S.; Cui, Z.; Zhang, X. GraphFM: Graph factorization machines for feature interaction modeling. arXiv 2021, arXiv:2105.11866. [Google Scholar]
- Wu, L.; Li, J.; Sun, P.; Hong, R.; Ge, Y.; Wang, M. Diffnet++: A neural influence and interest diffusion network for social recommendation. IEEE Trans. Knowl. Data Eng. 2020, 34, 4753–4766. [Google Scholar] [CrossRef]
- Goldberg, D.; Nichols, D.; Oki, B.M.; Terry, D. Using collaborative filtering to weave an information tapestry. Commun. ACM 1992, 35, 61–70. [Google Scholar] [CrossRef]
- Wu, C.Y.; Ahmed, A.; Beutel, A.; Smola, A.J.; Jing, H. Recurrent recommender networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, Cambridge, UK, 6–10 February 2017; pp. 495–503. [Google Scholar]
- Kamishima, T.; Akaho, S.; Asoh, H.; Sakuma, J. Efficiency Improvement of Neutrality-Enhanced Recommendation. In Proceedings of the Decisions@ RecSys, Hong Kong, China, 12–16 October 2013; pp. 1–8. [Google Scholar]
- Rendle, S. Factorization machines. In Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, NSW, Australia, 13–17 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 995–1000. [Google Scholar]
- Zhou, G.; Zhu, X.; Song, C.; Fan, Y.; Zhu, H.; Ma, X.; Yan, Y.; Jin, J.; Li, H.; Gai, K. Deep interest network for click-through rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1059–1068. [Google Scholar]
- Zhou, G.; Mou, N.; Fan, Y.; Pi, Q.; Bian, W.; Zhou, C.; Zhu, X.; Gai, K. Deep interest evolution network for click-through rate prediction. Proc. AAAI Conf. Artif. Intell. 2019, 33, 5941–5948. [Google Scholar] [CrossRef]
- Li, C.; Liu, Z.; Wu, M.; Xu, Y.; Zhao, H.; Huang, P.; Kang, G.; Chen, Q.; Li, W.; Lee, D.L. Multi-interest network with dynamic routing for recommendation at Tmall. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 2615–2623. [Google Scholar]
- Marcuzzo, M.; Zangari, A.; Albarelli, A.; Gasparetto, A. Recommendation systems: An insight into current development and future research challenges. IEEE Access 2022, 10, 86578–86623. [Google Scholar] [CrossRef]
- De Gemmis, M.; Lops, P.; Semeraro, G.; Basile, P. Integrating tags in a semantic content-based recommender. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 163–170. [Google Scholar]
- Mooney, R.J.; Roy, L. Content-based book recommending using learning for text categorization. In Proceedings of the Fifth ACM Conference on Digital Libraries, San Antonio, TX, USA, 2–7 June 2000; pp. 195–204. [Google Scholar]
- Waila, P.; Singh, V.; Singh, M. A Scientometric Analysis of Research in Recommender Systems. J. Scientometr. Res. 2016, 4, 71–84. [Google Scholar] [CrossRef]
- Wang, H.; Czerminski, R.; Jamieson, A.C. Neural networks and deep learning. In The Machine Age of Customer Insight; Emerald Publishing Limited: Bingley, UK, 2021; pp. 91–101. [Google Scholar]
- Lu, Y.T.; Yu, S.I.; Chang, T.C.; Hsu, J.Y.J. A content-based method to enhance tag recommendation. In Proceedings of the Twenty-First International Joint Conference on Artificial Intelligence, Pasadena, CA, USA, 11–17 July 2009. [Google Scholar]
- Peng, J.; Zeng, D.D.; Zhao, H.; Wang, F.Y. Collaborative filtering in social tagging systems based on joint item-tag recommendations. In Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, ON, Canada, 26–30 October 2010; pp. 809–818. [Google Scholar]
- Vasile, F.; Smirnova, E.; Conneau, A. Meta-prod2vec: Product embeddings using side-information for recommendation. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 225–232. [Google Scholar]
- Wu, L.; He, X.; Wang, X.; Zhang, K.; Wang, M. A survey on accuracy-oriented neural recommendation: From collaborative filtering to information-rich recommendation. IEEE Trans. Knowl. Data Eng. 2022, 35, 4425–4445. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Xu, M.; Liu, F.; Xu, W. A survey on sequential recommendation. In Proceedings of the 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20–22 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 106–111. [Google Scholar]
- Yang, Y.; Xiang, Y.; Xiong, L. Collaborative filtering and recommendation algorithm based on matrix factorization and user nearest neighbor model. J. Comput. Appl. 2012, 32, 395. [Google Scholar] [CrossRef]
- Wang, J.F.; Liu, R.D.; Liu, Y. Non-negative matrix factorization algorithm with bias in recommender system. J. Chin. Comput. Syst. 2018, 39, 69–73. [Google Scholar]
- Yoon, J.H.; Jang, B. Evolution of Deep Learning-Based Sequential Recommender Systems: From Current Trends to New Perspectives. IEEE Access 2023, 11, 54265–54279. [Google Scholar] [CrossRef]
- Park, K.; Lee, J.; Choi, J. Deep neural networks for news recommendations. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 2255–2258. [Google Scholar]
- Rendle, S.; Freudenthaler, C.; Gantner, Z.; Schmidt-Thieme, L. BPR: Bayesian personalized ranking from implicit feedback. arXiv 2012, arXiv:1205.2618. [Google Scholar]
- Kurgan, L.A.; Musilek, P. A survey of knowledge discovery and data mining process models. Knowl. Eng. Rev. 2006, 21, 1–24. [Google Scholar] [CrossRef]
- Villatel, K.; Smirnova, E.; Mary, J.; Preux, P. Recurrent neural networks for long and short-term sequential recommendation. arXiv 2018, arXiv:1807.09142. [Google Scholar]
- Thaipisutikul, T.; Shih, T.K.; Enkhbat, A.; Aditya, W. Exploiting long-and short-term preferences for deep context-aware recommendations. IEEE Trans. Comput. Soc. Syst. 2021, 9, 1237–1248. [Google Scholar] [CrossRef]
- Fattah, S.M.M.; Bouguettaya, A.; Mistry, S. Long-term IaaS selection using performance discovery. IEEE Trans. Serv. Comput. 2020, 15, 2129–2143. [Google Scholar] [CrossRef]
- Zheng, C.; Tao, D.; Wang, J.; Cui, L.; Ruan, W.; Yu, S. Memory augmented hierarchical attention network for next point-of-interest recommendation. IEEE Trans. Comput. Soc. Syst. 2020, 8, 489–499. [Google Scholar] [CrossRef]
- Ying, H.; Zhuang, F.; Zhang, F.; Liu, Y.; Xu, G.; Xie, X.; Xiong, H.; Wu, J. Sequential recommender system based on hierarchical attention network. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence, Vienna, Austria, 23–29 July 2018. [Google Scholar]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; Ma, J. Neural attentive session-based recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 1419–1428. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems; 2017; Volume 30, Available online: https://proceedings.neurips.cc/paper/2017 (accessed on 18 September 2023).
- Zhang, S.; Tay, Y.; Yao, L.; Sun, A.; An, J. Next item recommendation with self-attentive metric learning. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 9. [Google Scholar]
- Cho, K.; Van Merrienboer, B.; Bahdanau, D.; Bengio, Y. On the properties of neural machine translation: Encoder-decoder approaches. arXiv 2014, arXiv:1409.1259. [Google Scholar]
- Tsai, Y.H.H.; Bai, S.; Liang, P.P.; Kolter, J.Z.; Morency, L.P.; Salakhutdinov, R. Multimodal transformer for unaligned multimodal language sequences. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; Volume 2019, p. 6558. [Google Scholar]
- Azhir, E.; Hosseinzadeh, M.; Khan, F.; Mosavi, A. Performance Evaluation of Query Plan Recommendation with Apache Hadoop and Apache Spark. Mathematics 2022, 10, 3517. [Google Scholar] [CrossRef]
- Singer, U.; Roitman, H.; Eshel, Y.; Nus, A.; Guy, I.; Levi, O.; Hasson, I.; Kiperwasser, E. Sequential modeling with multiple attributes for watchlist recommendation in e-commerce. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February 2022; pp. 937–946. [Google Scholar]
- Tuan, T.X.; Phuong, T.M. 3D convolutional networks for session-based recommendation with content features. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31 August 2017; pp. 138–146. [Google Scholar]
- Yan, A.; Cheng, S.; Kang, W.C.; Wan, M.; McAuley, J. CosRec: 2D convolutional neural networks for sequential recommendation. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; ACM: New York, NY, USA, 2019; pp. 2173–2176. [Google Scholar]
- Tang, J.X.; Wang, K. Personalized top-n sequential recommendation via convolutional sequence embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. Association for Computing Machinery, Marina Del Rey, CA, USA, 5–9 February 2018; pp. 565–573. [Google Scholar]
- Tan, Y.K.; Xu, X.; Liu, Y. Improved recurrent neural networks for session-based recommendations. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016; pp. 17–22. [Google Scholar]
- Bogina, V.; Kuflik, T. Incorporating Dwell Time in Session-Based Recommendations with Recurrent Neural Networks. In Proceedings of the RecTemp@ RecSys, Como, Italy, 27–31 August 2017; pp. 57–59. [Google Scholar]
- Hidasi, B.; Karatzoglou, A. Recurrent neural networks with top-k gains for session-based recommendations. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018; pp. 843–852. [Google Scholar]
- Hidasi, B.; Quadrana, M.; Karatzoglou, A.; Tikk, D. Parallel recurrent neural network architectures for feature-rich session-based recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 241–248. [Google Scholar]
- Jannach, D.; Ludewig, M. When recurrent neural networks meet the neighborhood for session-based recommendation. In Proceedings of the Eleventh ACM Conference on Recommender Systems, Como, Italy, 27–31 August1 2017; pp. 306–310. [Google Scholar]
- Chen, X.; Xu, H.; Zhang, Y.; Tang, J.; Cao, Y.; Qin, Z.; Zha, H. Sequential recommendation with user memory networks. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, Marina Del Rey, CA, USA, 5–9 February 2018; pp. 108–116. [Google Scholar]
- Sun, F.; Liu, J.; Wu, J.; Pei, C.; Lin, X.; Ou, W.; Jiang, P. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China, 3–7 November 2019; pp. 1441–1450. [Google Scholar]
- Zhou, W.; Liu, Y.; Li, M.; Wang, Y.; Shen, Z.; Feng, L.; Zhu, Z. Dynamic Multi-Objective Optimization Framework with Interactive Evolution for Sequential Recommendation. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 1228–1241. [Google Scholar] [CrossRef]
- Cen, Y.; Zhang, J.; Zou, X.; Zhou, C.; Yang, H.; Tang, J. Controllable multi-interest framework for recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, CA, USA, 6–10 July 2020; pp. 2942–2951. [Google Scholar]
- Meng, W.; Yang, D.; Xiao, Y. Incorporating user micro-behaviors and item knowledge into multi-task learning for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, China, 25–30 July 2020; pp. 1091–1100. [Google Scholar]
- Yin, D.; Feng, S. Enhanced Attention Framework for Multi-Interest Sequential Recommendation. IEEE Access 2022, 10, 67703–67712. [Google Scholar] [CrossRef]
- Huang, X.; Qian, S.; Fang, Q.; Sang, J.; Xu, C. Csan: Contextual self-attention network for user sequential recommendation. In Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Republic of Korea, 22–26 October 2018; pp. 447–455. [Google Scholar]
- Hoppe, A.; Nicolle, C.; Roxin, A. Automatic ontology-based user profile learning from heterogeneous web resources in a big data context. Proc. VLDB Endow. 2013, 6, 1428–1433. [Google Scholar] [CrossRef]
- Gao, C.; He, X.; Gan, D.; Chen, X.; Feng, F.; Li, Y.; Chua, T.-S.; Yao, L.; Song, Y.; Jin, D. Learning to recommend with multiple cascading behaviors. IEEE Trans. Knowl. Data Eng. 2019, 33, 2588–2601. [Google Scholar] [CrossRef]
- Le, D.T.; Lauw, H.W.; Fang, Y. Modeling contemporaneous basket sequences with twin networks for next-item recommendation. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018. [Google Scholar]
- Li, Z.; Zhao, H.; Liu, Q.; Huang, Z.; Mei, T.; Chen, E. Learning from history and present: Next-item recommendation via discriminatively exploiting user behaviors. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1734–1743. [Google Scholar]
- Zhou, C.; Bai, J.; Song, J.; Liu, X.; Zhao, Z.; Chen, X.; Gao, J. Atrank: An attention-based user behavior modeling framework for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Fan, Z.; Liu, Z.; Zhang, J.; Xiong, Y.; Zheng, L.; Yu, P.S. Continuous-time sequential recommendation with temporal graph collaborative transformer. In Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Gold Coast, QLD, Australia, 1–5 November 2021; pp. 433–442. [Google Scholar]
- Liu, Z.; Chen, Y.; Li, J.; Yu, P.S.; McAuley, J.; Xiong, C. Contrastive self-supervised sequential recommendation with robust augmentation. arXiv 2021, arXiv:2108.06479. [Google Scholar]
- Memmel, C. What drives the short-term fluctuations of banks’ exposure to interest rate risk? Rev. Financ. Econ. 2020, 38, 674–686. [Google Scholar] [CrossRef]
- Luo, H.; Yang, N.; Philip, S.Y. Hybrid deep embedding for recommendations with dynamic aspect-level explanations. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 870–879. [Google Scholar]
- Choe, B.; Kang, T.; Jung, K. Recommendation system with hierarchical recurrent neural network for long-term time series. IEEE Access 2021, 9, 72033–72039. [Google Scholar] [CrossRef]
- Wang, S.; Cao, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.A.; Lian, D. A survey on session-based recommender systems. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Elkahky, A.M.; Song, Y.; He, X. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 278–288. [Google Scholar]
- Man, T.; Shen, H.; Jin, X.; Cheng, X. Cross-domain recommendation: An embedding and mapping approach. Int. Jt. Conf. Artif. Intell. 2017, 17, 2464–2470. [Google Scholar]
- Wang, C.-D.; Chen, Y.-H.; Xi, W.-D.; Huang, L.; Xie, G. Cross-Domain Explicit–Implicit-Mixed Collaborative Filtering Neural Network. IEEE Trans. Syst. Man Cybern. Syst. 2021, 52, 6983–6997. [Google Scholar] [CrossRef]
- Li, B. Cross-Domain Collaborative Filtering: A Brief Survey. In Proceedings of the 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence, Boca Raton, FL, USA, 7–9 November 2111; IEEE: Piscataway, NJ, USA, 2011; pp. 1085–1086. [Google Scholar]
- Gupta, A.; Budania, H.; Singh, P.; Singh, P.K. Facebook based choice filtering. In Proceedings of the 2017 IEEE 7th International Advance Computing Conference (IACC), Hyderabad, India, 5–7 January 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 875–879. [Google Scholar]
- Chen, H.; Wang, X.; Xie, R.; Zhou, Y.; Zhu, W. Cross-domain Recommendation with Behavioral Importance Perception. Proc. ACM Web Conf. 2023, 2023, 1294–1304. [Google Scholar]
- Zhu, Y.; Tang, Z.; Liu, Y.; Zhuang, F.; Xie, R.; Zhang, X.; Lin, L.; He, Q. Personalized transfer of user preferences for cross-domain recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Tempe, AZ, USA, 21–25 February 2022; pp. 1507–1515. [Google Scholar]
- Vodungbo, B.; Gautier, J.; Lambert, G.; Sardinha, A.B.; Lozano, M.; Sebban, S.; Ducousso, M.; Boutu, W.; Li, K.; Tudu, B.; et al. Laser-induced ultrafast demagnetization in the presence of a nanoscale magnetic domain network. Nat. Commun. 2012, 3, 999. [Google Scholar] [CrossRef]
- Shapira, B.; Rokach, L.; Freilikhman, S. Facebook single and cross domain data for recommendation systems. User Model. User-Adapt. Interact. 2013, 23, 211–247. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, H.; Zhao, W.X.; Zhu, Y.; Wang, S.; Zhang, F.; Wang, Z.; Wen, J.R. S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, Ireland, 19–23 October 2020; pp. 1893–1902. [Google Scholar]
- Tiroshi, A.; Kuflik, T. Domain ranking for cross domain collaborative filtering. In Proceedings of the User Modeling, Adaptation, and Personalization: 20th International Conference, UMAP 2012, Montreal, QC, Canada, 16–20 July 2012; Proceedings 20. Springer: Berlin/Heidelberg, Germany, 2012; pp. 328–333. [Google Scholar]
- Jiang, M.; Cui, P.; Yuan, N.J.; Xie, X.; Yang, S. Little is much: Bridging cross-platform behaviors through overlapped crowds. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Moreno, O.; Shapira, B.; Rokach, L.; Shani, G. Talmud: Transfer learning for multiple domains. In Proceedings of the 21st ACM International Conference on Information and Knowledge Management, Maui, HI, USA, 29 October–2 November 2012; pp. 425–434. [Google Scholar]
- Pan, W.; Yang, Q. Transfer learning in heterogeneous collaborative filtering domains. Artif. Intell. 2013, 197, 39–55. [Google Scholar] [CrossRef]
- Zhang, Z.; Jin, X.; Li, L.; Ding, G.; Yang, Q. Multi-domain active learning for recommendation. In Proceedings of the AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; Volume 30. [Google Scholar]
- Zhu, F.; Wang, Y.; Chen, C.; Liu, G.; Zheng, X. A graphical and attentional framework for dual-target cross-domain recommendation. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20), Yokohama, Japan, 7–15 January 2020; pp. 3001–3008. [Google Scholar]
- Liu, M.; Li, J.; Li, G.; Pan, P. Cross domain recommendation via bi-directional transfer graph collaborative filtering networks. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management, Virtual Event, Ireland, 19–23 October 2020; pp. 885–894. [Google Scholar]
- Cui, Q.; Wei, T.; Zhang, Y.; Zhang, Q. HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation. In Proceedings of the ORSUM@ RecSys, Online, 25–26 September 2020. [Google Scholar]
- Jamali, M.; Ester, M. Trustwalker: A random walk model for combining trust-based and item-based recommendation. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France, 28 June 2009–1 July 2009; pp. 397–406. [Google Scholar]
- Wang, X.; Lu, W.; Ester, M.; Wang, C.; Chen, C. Social recommendation with strong and weak ties. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016; pp. 5–14. [Google Scholar]
- Yang, X.; Steck, H.; Liu, Y. Circle-based recommendation in online social networks. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing China, 12–16 August 2012; pp. 1267–1275. [Google Scholar]
- Berg, R.; Kipf, T.N.; Welling, M. Graph convolutional matrix completion. arXiv 2017, arXiv:1706.02263. [Google Scholar]
- Perozzi, B.; Al-Rfou, R.; Skiena, S. Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 701–710. [Google Scholar]
- Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; Mei, Q. Line: Large-scale information network embedding. In Proceedings of the 24th International Conference on World Wide Web, Florence, Italy, 18–22 May 2015; pp. 1067–1077. [Google Scholar]
- Xie, M.; Yin, H.; Wang, H.; Xu, F.; Chen, W.; Wang, S. Learning graph-based poi embedding for location-based recommendation. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, Indianapolis, IN, USA, 24–28 October 2016; pp. 15–24. [Google Scholar]
- Yin, H.; Zou, L.; Nguyen, Q.V.H.; Huang, Z.; Zhou, X. Joint event-partner recommendation in event-based social networks. In Proceedings of the 2018 IEEE 34th International Conference on Data Engineering (ICDE), Paris, France, 16–19 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 929–940. [Google Scholar]
- Tang, J.; Qu, M.; Mei, Q. Pte: Predictive text embedding through large-scale heterogeneous text networks. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 1165–1174. [Google Scholar]
- Ma, R.; Qiu, X.; Zhang, Q. Co-attention memory network for multimodal microblog’s hashtag recommendation. IEEE Trans. Knowl. Data Eng. 2019, 33, 388–400. [Google Scholar] [CrossRef]
- Wang, Q.; Oàeilly-morgan, D.; Tragos, E.Z.; Hurley, N.; Smyth, B.; Lawlor, A.; Dong, R. Learning Domain-Independent Representations via Shared Weight Auto-Encoder for Transfer Learning in Recommender Systems. IEEE Access 2022, 10, 71961–71972. [Google Scholar] [CrossRef]
- Ye, L.; Xie, H.; Lin, Y.; Lui, J.C. Rewarding Social Recommendation in OSNs: Empirical Evidences, Modeling and Optimization. IEEE Trans. Knowl. Data Eng. 2020, 34, 4410–4424. [Google Scholar] [CrossRef]
- Ye, Q.; Cao, Y.; Chen, Y. Deep Learning-Based User Privacy Settings Recommendation in Online Social Networks. In Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18–23 July 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–9. [Google Scholar]
- Farmaki, A.; Olya, H.; Taheri, B. Unpacking the complex interactions among customers in online fan pages. J. Bus. Res. 2021, 125, 164–176. [Google Scholar] [CrossRef]
- Velickovic, P.; Cucurull, G.; Casanova, A. Graph attention networks. Stat 2017, 1050, 10–48550. [Google Scholar]
- Zhang, C.; Song, D.; Huang, C.; Swami, A.; Chawla, N.V. Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 793–803. [Google Scholar]
- Wu, L.; Sun, P.; Fu, Y.; Hong, R.; Wang, X.; Wang, M. A neural influence diffusion model for social recommendation. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 235–244. [Google Scholar]
- Fan, W.; Ma, Y.; Li, Q.; He, Y.; Zhao, E.; Tang, J.; Yin, D. Graph neural networks for social recommendation. In Proceedings of the The World Wide Web Conference, Lyon, France, 23–27 April 2019; pp. 417–426. [Google Scholar]
- Abdollahpouri, H.; Adomavicius, G.; Burke, R.; Guy, I.; Jannach, D.; Kamishima, T.; Krasnodebski, J.; Pizzato, L. Multistakeholder recommendation: Survey and research directions. User Model. User-Adapt. Interact. 2020, 30, 127–158. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, H. A deep graph neural network-based mechanism for social recommendations. IEEE Trans. Ind. Inform. 2020, 17, 2776–2783. [Google Scholar] [CrossRef]
- Lina, L.F.; Setiyanto, A. Privacy concerns in personalized advertising effectiveness on social media. Sriwij. Int. J. Dyn. Econ. Bus. 2021, 5, 147–156. [Google Scholar] [CrossRef]
- Koohang, A.; Sargent, C.S.; Nord, J.H.; Paliszkiewicz, J. Internet of Things (IoT): From awareness to continued use. Int. J. Inf. Manag. 2022, 62, 102442. [Google Scholar] [CrossRef]
- Zhong, W.; Yin, X.; Zhang, X.; Li, S.; Dou, W.; Wang, R.; Qi, L. Multi-dimensional quality-driven service recommendation with privacy-preservation in mobile edge environment. Comput. Commun. 2020, 157, 116–123. [Google Scholar] [CrossRef]
- Hasan, M.K.; Alkhalifah, A.; Islam, S.; Babiker, N.B.; Habib, A.A.; Aman, A.H.M.; Hossain, M.A. Blockchain technology on smart grid, energy trading, and big data: Security issues, challenges, and recommendations. Wirel. Commun. Mob. Comput. 2022, 2022, 9065768. [Google Scholar] [CrossRef]
- Zhang, J.; Askari, H.; Psounis, K.; Shafiq, Z. A Utility-Preserving Obfuscation Approach for YouTube Recommendations. Proc. Priv. Enhancing Technol. 2023, 4, 522–539. [Google Scholar] [CrossRef]
- Seaton, D.B.; Caspi, A.; Casini, R.; Downs, C.; Gibson, S.E.; Gilbert, H.; Glesener, L.; Guidoni, S.E.; Hughes, J.M.; McKenzie, D.; et al. Improving Multi-Dimensional Data Formats, Access, and Assimilation Tools for the Twenty-First Century. arXiv 2023, arXiv:2305.16535. [Google Scholar]
- Hallifax, D.; Houston, J.B. Binding of drugs to hepatic microsomes: Comment and assessment of current prediction methodology with recommendation for improvement. Drug Metab. Dispos. 2006, 34, 724–726. [Google Scholar] [CrossRef]
- Castells, P.; Hurley, N.; Vargas, S. Novelty and diversity in recommender systems. In Recommender Systems Handbook; Springer: New York, NY, USA, 2021; pp. 603–646. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, H.; Xiong, F.; Chen, H. A Comprehensive Survey of Recommender Systems Based on Deep Learning. Appl. Sci. 2023, 13, 11378. https://doi.org/10.3390/app132011378
Zhou H, Xiong F, Chen H. A Comprehensive Survey of Recommender Systems Based on Deep Learning. Applied Sciences. 2023; 13(20):11378. https://doi.org/10.3390/app132011378
Chicago/Turabian StyleZhou, Hongde, Fei Xiong, and Hongshu Chen. 2023. "A Comprehensive Survey of Recommender Systems Based on Deep Learning" Applied Sciences 13, no. 20: 11378. https://doi.org/10.3390/app132011378
APA StyleZhou, H., Xiong, F., & Chen, H. (2023). A Comprehensive Survey of Recommender Systems Based on Deep Learning. Applied Sciences, 13(20), 11378. https://doi.org/10.3390/app132011378