Radiomics in Gynaecological Imaging: A State-of-the-Art Review
Abstract
:1. Introduction
2. Application of Radiomics in the Female Pelvis: From Segmentation to Features Extraction
3. Endometrial Cancer
3.1. Deep Myometrial Invasion
3.2. Nodal Involvement
3.3. Lymph Vascular Space Invasion and Tumour Grading
3.4. Prognosis
First Author | Publication Year | Study Type | Geographical Area | Sample Size | Main Findings | ML Method | PMID |
---|---|---|---|---|---|---|---|
Ytre-Hauge S [40] | 2018 | Prospective | E | 180 | ADC can predict DMI while contrast-enhanced T1WI high-risk histological subtype, recurrence- and progression-free survival | N/A | 30102441 |
Yan BC [48] | 2020 | Retrospective, Multicentre | A | 622 | The model had an AUC of 0.935 for the training set, and 0.909 and 0.885 for validation sets 1 and 2, in the assessments of pelvic LNM | RF | 32749583 |
Yan BC [55] | 2020 | Retrospective, Multicentre | A | 717 | The nomogram showed an AUC of 0.896 in the primary group, 0.877 in the validation group 1, and 0.919 in the validation group 2 in predicting high-risk patients preoperatively | LASSO, LiR, LoR | 32681608 |
Celli V [51] | 2022 | Retrospective, Multicentre | E | 64 | ADC can predict the LVSI predictive model based on an AUC of 0.59. By combining ADC and T2WI, the AUC raised to 0.74 | LoR | 36497362 |
Lefebvre TL [44] | 2022 | Retrospective, Multicentre | A | 157 | Radiomics models for DMI, LVSI, high-grade, and FIGO stages led to AUCs of 0.81, 0.80, 0.74, and 0.84, respectively, in the test and training sets | RF | 35819326 |
Lin Z [58] | 2023 | Retrospective, Multicentre | A | 421 | The model based on clinicopathological and radiomics features showed better performance for the prediction of recurrence | LASSO | 37171486 |
Li X [45] | 2023 | Retrospective, Multicentre | A | 413 | The signature model based on T2WI reported AUCs of 0.79, 0.82, 0.91, and 0.85 for DMI, high-risk EC, histological type, and LVSI, respectively | LASSO | 37190137 |
Zheng T [53] | 2023 | Retrospective, Multicentre | A | 403 | Compared with the clinical model and radiomics model, the combined model showed superior performance; the AUCs were 0.920, 0.882, and 0.881 for the training, internal validation, and external validation sets, respectively | N/A | 37097730 |
3.5. CT-Based Radiomics
4. Cervical Cancer
4.1. Primary Tumour
4.2. Nodal Involvement, Lymph Vascular Space Invasion, and Parametrial Invasion
4.3. Response to Treatment
First Author | Publication Year | Study Type | Geographical Area | Sample Size | Main Findings | ML Method | PMID |
---|---|---|---|---|---|---|---|
Bowen SR [99] | 2018 | Prospective | N | 21 | Histogram quantiles change throughout radiotherapy; some intensity histogram quantiles appeared to be associated with favourable tumour response, including large early RT changes in ADC skewness (AUC = 0.86) | N/A | 29044908 |
Meng J [113] | 2018 | Prospective | A | 34 | Two radiomics feature (one from T2WI and one from ADC) were the best-selected predictors of recurrence, yielding an AUC of 0.885 | LoR | 30061666 |
Lucia F [120] | 2019 | Retrospective, Multicentre | E | 190 | The ADC model can predict disease-free survival with an accuracy of 90% (sensitivity 92–93%, specificity 87–89%) | N/A | 30535746 |
Sun C [100] | 2019 | Retrospective, Multicentre | A | 275 | The combined model of the intratumoural zone of T1WI and T2WI and intratumoural zone of T2WI achieved an AUC of 0.998 for predicting the clinical response to neoadjuvant chemotherapy | RF | 31395503 |
Fang J [119] | 2020 | Retrospective, Multicentre | A | 248 | The radiomics score demonstrated better prognostic performance in estimating disease-free survival in comparison with clinicopathological features | LASSO, Cox regression | 32089742 |
Tian X [101] | 2020 | Retrospective, Multicentre | A | 277 | Radiomics signature can adequately distinguish chemotherapeutic responders from non-responders in both primary and validation cohorts and remain relatively stable across centres, with an AUC of 0.803–0.821 | LoR | 32117732 |
Dong T [86] | 2020 | Retrospective, Multicentre | A | 226 | A logistic regression model incorporating five radiomic features and two clinicopathological features had an accuracy of 89.20% for predicting the LN status | LoR | 32373511 |
Hou L [87] | 2020 | Retrospective, Multicentre | A | 168 | Radiomics features on T2WI, ADC, and contrast-enhanced T1WI are associated with LNM. Moreover, the radiomic signature can depict LNM with an AUC of 0.825 | LASSO | 32974143 |
Gui B [104] | 2021 | Retrospective, Multicentre | E | 183 | A radiomics model can predict pathological complete response after neoadjuvant chemoradiotherapy by using T2WI with an AUC of 0.80 | N/A | 33807494 |
Liu Y [88] | 2021 | Retrospective, Multicentre | A | 219 | A CT-based radiomic model can predict normal-size LNM with an AUCs of 0.912 in the training cohort, 0.859 in the internal validation cohort, and 0.800 in the external validation cohort | SVM | 33975178 |
Ikushima H [111] | 2022 | Retrospective, Multicentre | A | 204 | Radiomics combined with clinical parameters can increase the prediction of OFR after chemotherapy, with an AUC of 0.709 | LASSO | 34865079 |
Liu Y [75] | 2023 | Retrospective | A | 235 | Radiomics can differentiate adenocarcinoma and squamous cell carcinoma with an AUC of 0.777 and 0.750 on T2WI and T1WI. AUC can depict low- and high-FIGO stages (AUC = 0.716 and 0.676). Good results were found also in the detection of tumour grade. | LASSO | 34918963 |
Shi J [89] | 2022 | Retrospective, Multicentre | A | 169 | A radiomic signature nomogram can predict LNM status better than a radiomics or clinical model alone (AUC = 0.891 vs. 0.830 vs. 0.812) | LASSO | 34968703 |
Liu B [126] | 2022 | Retrospective, Multicentre | A | 263 | A radiomic signature consisting of four radiomic features for disease-free survival prediction demonstrated better prognostic performance in both primary and validation cohorts (C-index: 0.736 and 0.758, respectively) compared with a clinical-based model (C-index: 0.603 and 0.649, respectively) | LASSO, Cox regression | 35145910 |
Autorino R [127] | 2022 | Retrospective, Multicentre | E | 175 | A radiomic model can predict overall survival before starting chemoradiotherapy with an AUC of 0.73 | LoR | 35325372 |
Wei G [129] | 2022 | Retrospective, Multicentre | A | 83 | Authors developed two radiomics models to predict the overall survival by concurrent chemoradiotherapy alone or concurrent chemoradiotherapy followed by adjuvant chemotherapy, with AUCs of 0.832 and 0.879, respectively | Elastic Net Regression, LASSO, Cox regression | 35636572 |
Wu Y [96] | 2023 | Retrospective, Multicentre | A | 168 | The nomogram showed high predictive performance in the training (AUC: 0.883) and test cohort (AUC: 0.830) for predicting LVSI | Spearman, LASSO | 36929220 |
Zhang Y [109] | 2023 | Retrospective, Multicentre | A | 285 | Radiomics signature showed favourable predictive values in differentiating responders from non-responders to neoadjuvant chemotherapy with high AUCs (over 0.90) | LoR, LASSO | 36980381 |
5. Mesenchymal Tumours
6. Ovarian Pathologies
6.1. CT
6.2. MRI
First Author | Publication Year | Study Type | Geographical Area | Sample Size | Main Findings | ML Method | PMID |
---|---|---|---|---|---|---|---|
Wei W [154] | 2019 | Retrospective, Multicentre | A | 142 | Radiomics signature’s accuracy was 79.7% and 70% for the prediction of 18-month and 3-year recurrence risk in the independent external validation cohort | LASSO, Cox regression | 31024855 |
Veeraraghavan H [164] | 2020 | Retrospective, Multicentre | N | 75 | The clinical–genomic model revealed an association between progression-free survival to chemotherapy | Cox regression | 33212885 |
Pan S [148] | 2020 | Retrospective, Multicentre | A | 103 | The combined nomogram had an AUC of 0.92 for the differentiation in the external validation cohort | LASSO | 32547958 |
Li S [149] | 2021 | Retrospective, Multicentre | A | 134 | Good performance of the radiomics (AUC 0.83) and nomogram (AUC 0.95) for the differential diagnosis between benign and malignant ovarian tumours in the external validation tests | LASSO | 33888749 |
Jian J [158] | 2021 | Retrospective, Multicentre | A | 294 | The combined radiomics model had an AUC of 0.847 in the external validation cohort for differentiation between type I and type II epithelial ovarian cancers | LASSO | 32743768 |
Song X [161] | 2021 | Prospective | A | 89 | The radiomics model and nomogram had an AUC of 0.928 and 0.944 in the validation cohort, respectively, for the prediction of peritoneal metastasis | LASSO, LoR | 33948702 |
Rundo L [156] | 2022 | Retrospective, Multicentre | E | 109 | CT radiomic model based on omental deposits predicted response to neoadjuvant chemotherapy treatment | Elastic Net regression | 35785153 |
Wang M [151] | 2022 | Retrospective, Multicentre | A | 665 | Radiomics model had an AUC of 0.836 for differentiating high-grade and non-high-grade serous carcinoma in the testing cohort | LoR | 36469315 |
HU J [153] | 2022 | Retrospective | A | 217 | The radiomics model had a c-index of 0.858 for the prediction of overall survival and 0.700 for the prediction of disease-free survival in patients with high-grade serous ovarian cancer | Cox regression | 35800777 |
Li J [150] | 2022 | Retrospective | A | 1329 | The machine learning classifier provided an AUC of 0.91 for the radiomics model and 0.96 for the mixed model for the differential diagnosis between benign and malignant ovarian tumours | KNN, SVM, RF, LoR, MLP, XGBoost | 36016613 |
Wei M [157] | 2022 | Retrospective, Multicentre | A | 417 | The combined model had an AUC of 0.86 for the differentiation between benign and borderline epithelial ovarian tumours in the external validation set | LoR | 35943620 |
Fotopolou C [155] | 2022 | Retrospective, Multicentre | E | 323 | The radiomic prognostic vector score was independently associated with significantly worse progression-free survival | Cox regression | 34923575 |
Lu J [162] | 2023 | Retrospective | A | 128 | The radiomic–clinical nomogram had an AUC of 0.900 for the prediction of residual tumour in the separate validation cohort | LASSO | 36587996 |
Li H [163] | 2023 | Retrospective, Multicentre | A | 301 | The combined radiomics nomogram had an AUC of 0.799 for the prediction of platinum resistance in the testing cohort | LoR | 36995415 |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gjelsteen, A.C.; Ching, B.H.; Meyermann, M.W.; Prager, D.A.; Murphy, T.F.; Berkey, B.D.; Mitchell, L.A. CT, MRI, PET, PET/CT, and ultrasound in the evaluation of obstetric and gynecologic patients. Surg. Clin. N. Am. 2008, 88, 361–390. [Google Scholar] [CrossRef]
- Forstner, R.; Cunha, T.M.; Hamm, B. (Eds.) MRI and CT of the Female Pelvis, 2nd ed.; Medical Radiology: Diagnostic Imaging; Springer: Cham, Switzerland, 2019; ISBN 9783319425733. [Google Scholar]
- Daoud, T.; Sardana, S.; Stanietzky, N.; Klekers, A.R.; Bhosale, P.; Morani, A.C. Recent Imaging Updates and Advances in Gynecologic Malignancies. Cancers 2022, 14, 5528. [Google Scholar] [CrossRef]
- Michalet, M.; Azria, D.; Tardieu, M.; Tibermacine, H.; Nougaret, S. Radiomics in Radiation Oncology for Gynecological Malignancies: A Review of Literature. Br. J. Radiol. 2021, 94, 20210032. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-L.; Ren, J.; Jin, Z.-Y.; Liu, X.-Y.; He, Y.-L.; Li, Y.; Xue, H.-D. A Systematic Review and Meta-Analysis of CT and MRI Radiomics in Ovarian Cancer: Methodological Issues and Clinical Utility. Insights Imaging 2023, 14, 117. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, V.; Kontopantelis, E.; Cuccu, I.; Sgamba, L.; Golia D’Augè, T.; Pernazza, A.; Della Rocca, C.; Manganaro, L.; Catalano, C.; Perniola, G.; et al. Magnetic Resonance Imaging-Radiomics in Endometrial Cancer: A Systematic Review and Meta-Analysis. Int. J. Gynecol. Cancer 2023, 33, 1070–1076. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Zhang, Q.; Wang, S.; Zhang, J.; An, J.; Xie, L.; Yu, X.; Zhao, X. MRI-Based Radiomics Value for Predicting the Survival of Patients with Locally Advanced Cervical Squamous Cell Cancer Treated with Concurrent Chemoradiotherapy. Cancer Imaging 2022, 22, 35. [Google Scholar] [CrossRef] [PubMed]
- Shur, J.D.; Doran, S.J.; Kumar, S.; Ap Dafydd, D.; Downey, K.; O’Connor, J.P.B.; Papanikolaou, N.; Messiou, C.; Koh, D.-M.; Orton, M.R. Radiomics in Oncology: A Practical Guide. RadioGraphics 2021, 41, 1717–1732. [Google Scholar] [CrossRef] [PubMed]
- Nougaret, S.; Lakhman, Y.; Gourgou, S.; Kubik-Huch, R.; Derchi, L.; Sala, E.; Forstner, R.; The European Society of Radiology (ESR) and the European Society of Urogenital Radiology (ESUR). MRI in Female Pelvis: An ESUR/ESR Survey. Insights Imaging 2022, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- O’Malley, M.E.; Halpern, E.; Mueller, P.R.; Gazelle, G.S. Helical CT Protocols for the Abdomen and Pelvis: A Survey. Am. J. Roentgenol. 2000, 175, 109–113. [Google Scholar] [CrossRef]
- Zhou, S.K.; Rueckert, D.; Fichtinger, G. (Eds.) Handbook of Medical Image Computing and Computer Assisted Intervention; The Elsevier and MICCAI Society Book Series; Academic Press: London, UK; San Diego, CA, USA, 2020; ISBN 9780128161760. [Google Scholar]
- Ma, Z.; Tavares, J.M.R.S.; Jorge, R.N.; Mascarenhas, T. A Review of Algorithms for Medical Image Segmentation and Their Applications to the Female Pelvic Cavity. Comput. Methods Biomech. Biomed. Eng. 2010, 13, 235–246. [Google Scholar] [CrossRef]
- Navab, N.; Hornegger, J.; Wells, W.M.; Frangi, A. (Eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: New York, NY, USA, 2015; ISBN 9783319245737. [Google Scholar]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and Deep Learning Methods for Radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeon, J.; Hong, Y.; Jeong, D.; Jang, Y.; Jeon, B.; Baek, H.J.; Cho, E.; Shim, H.; Chang, H.-J. Generative Adversarial Network with Radiomic Feature Reproducibility Analysis for Computed Tomography Denoising. Comput. Biol. Med. 2023, 159, 106931. [Google Scholar] [CrossRef]
- Foltyn-Dumitru, M.; Schell, M.; Rastogi, A.; Sahm, F.; Kessler, T.; Wick, W.; Bendszus, M.; Brugnara, G.; Vollmuth, P. Impact of Signal Intensity Normalization of MRI on the Generalizability of Radiomic-Based Prediction of Molecular Glioma Subtypes. Eur. Radiol. 2023, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Yuzkan, S.; Mutlu, S.; Bulut, E.; Kavukoglu, I. Publications Poorly Report the Essential RadiOmics ParametERs (PROPER): A Meta-Research on Quality of Reporting. Eur. J. Radiol. 2023, 167, 111088. [Google Scholar] [CrossRef]
- Orlhac, F.; Frouin, F.; Nioche, C.; Ayache, N.; Buvat, I. Validation of A Method to Compensate Multicenter Effects Affecting CT Radiomics. Radiology 2019, 291, 53–59. [Google Scholar] [CrossRef]
- Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial Cancer. Lancet 2022, 399, 1412–1428. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.; Brewer, M.A. Endometrial Cancer: Is This a New Disease? Am. Soc. Clin. Oncol. Educ. Book 2017, 37, 435–442. [Google Scholar] [CrossRef]
- Sorosky, J.I. Endometrial Cancer. Obstet. Gynecol. 2012, 120, 383–397. [Google Scholar] [CrossRef]
- Colombo, N.; Creutzberg, C.; Amant, F.; Bosse, T.; González-Martín, A.; Ledermann, J.; Marth, C.; Nout, R.; Querleu, D.; Mirza, M.R.; et al. ESMO-ESGO-ESTRO Consensus Conference on Endometrial Cancer: Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2016, 27, 16–41. [Google Scholar] [CrossRef]
- Braun, M.M.; Overbeek-Wager, E.A.; Grumbo, R.J. Diagnosis and Management of Endometrial Cancer. Am. Fam. Physician 2016, 93, 468–474. [Google Scholar]
- Nougaret, S.; Horta, M.; Sala, E.; Lakhman, Y.; Thomassin-Naggara, I.; Kido, A.; Masselli, G.; Bharwani, N.; Sadowski, E.; Ertmer, A.; et al. Endometrial Cancer MRI Staging: Updated Guidelines of the European Society of Urogenital Radiology. Eur. Radiol. 2019, 29, 792–805. [Google Scholar] [CrossRef] [PubMed]
- Faria, S.C.; Devine, C.E.; Rao, B.; Sagebiel, T.; Bhosale, P. Imaging and Staging of Endometrial Cancer. Semin. Ultrasound CT MR 2019, 40, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Berek, J.S.; Matias-Guiu, X.; Creutzberg, C.; Fotopoulou, C.; Gaffney, D.; Kehoe, S.; Lindemann, K.; Mutch, D.; Concin, N.; Endometrial Cancer Staging Subcommittee; et al. FIGO Staging of Endometrial Cancer: 2023. Int. J. Gynecol. Obstet. 2023, 162, 383–394. [Google Scholar] [CrossRef]
- Ulrich, L.S.G. Endometrial Cancer, Types, Prognosis, Female Hormones and Antihormones. Climacteric 2011, 14, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Murali, R.; Soslow, R.A.; Weigelt, B. Classification of Endometrial Carcinoma: More than Two Types. Lancet Oncol. 2014, 15, e268–e278. [Google Scholar] [CrossRef]
- Bokhman, J.V. Two Pathogenetic Types of Endometrial Carcinoma. Gynecol. Oncol. 1983, 15, 10–17. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated Genomic Characterization of Endometrial Carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef]
- Larson, D.M.; Connor, G.P.; Broste, S.K.; Krawisz, B.R.; Johnson, K.K. Prognostic Significance of Gross Myometrial Invasion with Endometrial Cancer. Obstet. Gynecol. 1996, 88, 394–398. [Google Scholar] [CrossRef]
- Ludwig, H. Prognostic Factors in Endometrial Cancer. Int. J. Gynaecol. Obstet. 1995, 49, S1–S7. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP Guidelines for the Management of Patients with Endometrial Carcinoma. Int. J. Gynecol. Cancer 2021, 31, 12–39. [Google Scholar] [CrossRef]
- Otero-García, M.M.; Mesa-Álvarez, A.; Nikolic, O.; Blanco-Lobato, P.; Basta-Nikolic, M.; de Llano-Ortega, R.M.; Paredes-Velázquez, L.; Nikolic, N.; Szewczyk-Bieda, M. Role of MRI in Staging and Follow-up of Endometrial and CC: Pitfalls and Mimickers. Insights Imaging 2019, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Bús, D.; Nagy, G.; Póka, R.; Vajda, G. Clinical Impact of Preoperative Magnetic Resonance Imaging in the Evaluation of Myometrial Infiltration and Lymph-Node Metastases in Stage I Endometrial Cancer. Pathol. Oncol. Res. 2021, 27, 611088. [Google Scholar] [CrossRef]
- Manganaro, L.; Nicolino, G.M.; Dolciami, M.; Martorana, F.; Stathis, A.; Colombo, I.; Rizzo, S. Radiomics in Cervical and Endometrial Cancer. Br. J. Radiol. 2021, 94, 20201314. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, Z.; Liu, C.; Chu, R.; Li, X.; Li, M.; Yu, D.; Qiao, X.; Kong, B.; Song, K. Radiomics-Based Fertility-Sparing Treatment in Endometrial Carcinoma: A Review. Insights Imaging 2023, 14, 127. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y.; Forghani, B.; Forghani, R.; Dohan, A.; Zeng, X.Z.; Chamming’s, F.; Arseneau, J.; Fu, L.; Gilbert, L.; Gallix, B.; et al. Endometrial Carcinoma: MR Imaging-Based Texture Model for Preoperative Risk Stratification-A Preliminary Analysis. Radiology 2017, 284, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, A.; Cuocolo, R.; Del Grosso, R.; Nardiello, A.; Romeo, V.; Travaglino, A.; Raffone, A.; Bifulco, G.; Zullo, F.; Insabato, L.; et al. Deep Myometrial Infiltration of Endometrial Cancer on MRI: A Radiomics-Powered Machine Learning Pilot Study. Acad. Radiol. 2021, 28, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Ytre-Hauge, S.; Dybvik, J.A.; Lundervold, A.; Salvesen, Ø.O.; Krakstad, C.; Fasmer, K.E.; Werner, H.M.; Ganeshan, B.; Høivik, E.; Bjørge, L.; et al. Preoperative Tumour Texture Analysis on MRI Predicts High-Risk Disease and Reduced Survival in Endometrial Cancer. J. Magn. Reson. Imaging 2018, 48, 1637–1647. [Google Scholar] [CrossRef]
- Fasmer, K.E.; Hodneland, E.; Dybvik, J.A.; Wagner-Larsen, K.; Trovik, J.; Salvesen, Ø.; Krakstad, C.; Haldorsen, I.H.S. Whole-Volume Tumour MRI Radiomics for Prognostic Modeling in Endometrial Cancer. J. Magn. Reson. Imaging 2021, 53, 928–937. [Google Scholar] [CrossRef]
- Zhu, X.; Ying, J.; Yang, H.; Fu, L.; Li, B.; Jiang, B. Detection of Deep Myometrial Invasion in Endometrial Cancer MR Imaging Based on Multi-Feature Fusion and Probabilistic Support Vector Machine Ensemble. Comput. Biol. Med. 2021, 134, 104487. [Google Scholar] [CrossRef]
- Han, Y.; Xu, H.; Ming, Y.; Liu, Q.; Huang, C.; Xu, J.; Zhang, J.; Li, Y. Predicting Myometrial Invasion in Endometrial Cancer Based on Whole-Uterine Magnetic Resonance Radiomics. J. Cancer Res. Ther. 2020, 16, 1648–1655. [Google Scholar] [CrossRef]
- Lefebvre, T.L.; Ueno, Y.; Dohan, A.; Chatterjee, A.; Vallières, M.; Winter-Reinhold, E.; Saif, S.; Levesque, I.R.; Zeng, X.Z.; Forghani, R.; et al. Development and Validation of Multiparametric MRI-Based Radiomics Models for Preoperative Risk Stratification of Endometrial Cancer. Radiology 2022, 305, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dessi, M.; Marcus, D.; Russell, J.; Aboagye, E.O.; Ellis, L.B.; Sheeka, A.; Park, W.-H.E.; Bharwani, N.; Ghaem-Maghami, S.; et al. Prediction of Deep Myometrial Infiltration, Clinical Risk Category, Histological Type, and Lymphovascular Space Invasion in Women with Endometrial Cancer Based on Clinical and T2-Weighted MRI Radiomic Features. Cancers 2023, 15, 2209. [Google Scholar] [CrossRef] [PubMed]
- Otani, S.; Himoto, Y.; Nishio, M.; Fujimoto, K.; Moribata, Y.; Yakami, M.; Kurata, Y.; Hamanishi, J.; Ueda, A.; Minamiguchi, S.; et al. Radiomic Machine Learning for Pretreatment Assessment of Prognostic Risk Factors for Endometrial Cancer and Its Effects on Radiologists’ Decisions of Deep Myometrial Invasion. Magn. Reson. Imaging 2022, 85, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, H.; Wang, S.; Fang, M.; Zhong, L.; Fan, W.; Dong, D.; Tian, J.; Zhao, X. Multiplanar MRI-Based Predictive Model for Preoperative Assessment of Lymph Node Metastasis in Endometrial Cancer. Front. Oncol. 2019, 9, 1007. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.C.; Li, Y.; Ma, F.H.; Zhang, G.F.; Feng, F.; Sun, M.H.; Lin, G.W.; Qiang, J.W. Radiologists with MRI-Based Radiomics Aids to Predict the Pelvic Lymph Node Metastasis in Endometrial Cancer: A Multicentre Study. Eur. Radiol. 2021, 31, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Ørtoft, G.; Lausten-Thomsen, L.; Høgdall, C.; Hansen, E.S.; Dueholm, M. Lymph-Vascular Space Invasion (LVSI) as a Strong and Independent Predictor for Non-Locoregional Recurrences in Endometrial Cancer: A Danish Gynecological Cancer Group Study. J. Gynecol. Oncol. 2019, 30, e84. [Google Scholar] [CrossRef] [PubMed]
- Bereby-Kahane, M.; Dautry, R.; Matzner-Lober, E.; Cornelis, F.; Sebbag-Sfez, D.; Place, V.; Mezzadri, M.; Soyer, P.; Dohan, A. Prediction of Tumour Grade and Lymphovascular Space Invasion in Endometrial Adenocarcinoma with MR Imaging-Based Radiomic Analysis. Diagn. Interv. Imaging 2020, 101, 401–411. [Google Scholar] [CrossRef]
- Celli, V.; Guerreri, M.; Pernazza, A.; Cuccu, I.; Palaia, I.; Tomao, F.; Di Donato, V.; Pricolo, P.; Ercolani, G.; Ciulla, S.; et al. MRI- and Histologic-Molecular-Based Radio-Genomics Nomogram for Preoperative Assessment of Risk Classes in Endometrial Cancer. Cancers 2022, 14, 5881. [Google Scholar] [CrossRef]
- Long, L.; Sun, J.; Jiang, L.; Hu, Y.; Li, L.; Tan, Y.; Cao, M.; Lan, X.; Zhang, J. MRI-Based Traditional Radiomics and Computer-Vision Nomogram for Predicting Lymphovascular Space Invasion in Endometrial Carcinoma. Diagn. Interv. Imaging 2021, 102, 455–462. [Google Scholar] [CrossRef]
- Zheng, T.; Pan, J.; Du, D.; Liang, X.; Yi, H.; Du, J.; Wu, S.; Liu, L.; Shi, G. Preoperative Assessment of High-Grade Endometrial Cancer Using a Radiomic Signature and Clinical Indicators. Future Oncol. 2023, 19, 587–601. [Google Scholar] [CrossRef]
- Lefebvre, T.L.; Ciga, O.; Bhatnagar, S.R.; Ueno, Y.; Saif, S.; Winter-Reinhold, E.; Dohan, A.; Soyer, P.; Forghani, R.; Siddiqi, K.; et al. Predicting Histopathology Markers of Endometrial Carcinoma with a Quantitative Image Analysis Approach Based on Spherical Harmonics in Multiparametric MRI. Diagn. Interv. Imaging 2023, 104, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.C.; Li, Y.; Ma, F.H.; Feng, F.; Sun, M.H.; Lin, G.W.; Zhang, G.F.; Qiang, J.W. Preoperative Assessment for High-Risk Endometrial Cancer by Developing an MRI- and Clinical-Based Radiomics Nomogram: A Multicentre Study. J. Magn. Reson. Imaging 2020, 52, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Gu, H.; Fan, W.; Wang, Y.; Chen, S.; Chen, X.; Wang, Z. MRI-Based Radiomic Model for Preoperative Risk Stratification in Stage I Endometrial Cancer. J. Cancer 2021, 12, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Jacob, H.; Dybvik, J.A.; Ytre-Hauge, S.; Fasmer, K.E.; Hoivik, E.A.; Trovik, J.; Krakstad, C.; Haldorsen, I.S. An MRI-Based Radiomic Prognostic Index Predicts Poor Outcome and Specific Genetic Alterations in Endometrial Cancer. J. Clin. Med. 2021, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wang, T.; Li, Q.; Bi, Q.; Wang, Y.; Luo, Y.; Feng, F.; Xiao, M.; Gu, Y.; Qiang, J.; et al. Development and Validation of MRI-Based Radiomics Model to Predict Recurrence Risk in Patients with Endometrial Cancer: A Multicentre Study. Eur. Radiol. 2023, 33, 5814–5824. [Google Scholar] [CrossRef] [PubMed]
- Ytre-Hauge, S.; Salvesen, Ø.O.; Krakstad, C.; Trovik, J.; Haldorsen, I.S. Tumour Texture Features from Preoperative CT Predict High-Risk Disease in Endometrial Cancer. Clin. Radiol. 2021, 76, 79.e13–79.e20. [Google Scholar] [CrossRef] [PubMed]
- CC. Available online: https://www.who.int/health-topics/cervical-cancer (accessed on 17 September 2023).
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO Staging for Carcinoma of the Cervix Uteri. Int. J. Gynaecol. Obstet. 2019, 145, 129–135. [Google Scholar] [CrossRef]
- Cibula, D.; Pötter, R.; Planchamp, F.; Avall-Lundqvist, E.; Fischerova, D.; Haie-Meder, C.; Köhler, C.; Landoni, F.; Lax, S.; Lindegaard, J.C.; et al. The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients with CC. Virchows Arch. 2018, 472, 919–936. [Google Scholar] [CrossRef]
- Manganaro, L.; Lakhman, Y.; Bharwani, N.; Gui, B.; Gigli, S.; Vinci, V.; Rizzo, S.; Kido, A.; Cunha, T.M.; Sala, E.; et al. Staging, Recurrence and Follow-up of Uterine CC Using MRI: Updated Guidelines of the European Society of Urogenital Radiology after Revised FIGO Staging 2018. Eur. Radiol. 2021, 31, 7802–7816. [Google Scholar] [CrossRef]
- Liu, B.; Gao, S.; Li, S. A Comprehensive Comparison of CT, MRI, Positron Emission Tomography or Positron Emission Tomography/CT, and Diffusion Weighted Imaging-MRI for Detecting the Lymph Nodes Metastases in Patients with CC: A Meta-Analysis Based on 67 Studies. Gynecol. Obstet. Investig. 2017, 82, 209–222. [Google Scholar] [CrossRef]
- Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. Magnetic Resonance Imaging for Detection of Parametrial Invasion in CC: An Updated Systematic Review and Meta-Analysis of the Literature between 2012 and 2016. Eur. Radiol. 2018, 28, 530–541. [Google Scholar] [CrossRef]
- Vincens, E.; Balleyguier, C.; Rey, A.; Uzan, C.; Zareski, E.; Gouy, S.; Pautier, P.; Duvillard, P.; Haie-Meder, C.; Morice, P. Accuracy of Magnetic Resonance Imaging in Predicting Residual Disease in Patients Treated for Stage IB2/II Cervical Carcinoma with Chemoradiation Therapy: Correlation of Radiologic Findings with Surgicopathologic Results. Cancer 2008, 113, 2158–2165. [Google Scholar] [CrossRef]
- Hodneland, E.; Kaliyugarasan, S.; Wagner-Larsen, K.S.; Lura, N.; Andersen, E.; Bartsch, H.; Smit, N.; Halle, M.K.; Krakstad, C.; Lundervold, A.S.; et al. Fully Automatic Whole-Volume Tumour Segmentation in CC. Cancers 2022, 14, 2372. [Google Scholar] [CrossRef]
- Fiset, S.; Welch, M.L.; Weiss, J.; Pintilie, M.; Conway, J.L.; Milosevic, M.; Fyles, A.; Traverso, A.; Jaffray, D.; Metser, U.; et al. Repeatability and Reproducibility of MRI-Based Radiomic Features in CC. Radiother. Oncol. 2019, 135, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Traverso, A.; Kazmierski, M.; Welch, M.L.; Weiss, J.; Fiset, S.; Foltz, W.D.; Gladwish, A.; Dekker, A.; Jaffray, D.; Wee, L.; et al. Sensitivity of Radiomic Features to Inter-Observer Variability and Image Pre-Processing in Apparent Diffusion Coefficient (ADC) Maps of Cervix Cancer Patients. Radiother. Oncol. 2020, 143, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Ramli, Z.; Karim, M.K.A.; Effendy, N.; Abd Rahman, M.A.; Kechik, M.M.A.; Ibahim, M.J.; Haniff, N.S.M. Stability and Reproducibility of Radiomic Features Based on Various Segmentation Techniques on CC DWI-MRI. Diagnostics 2022, 12, 3125. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, Y.; Zhao, C.; Zheng, L.; Pan, N.; Qiu, J.; Zhang, Z.; Niu, X.; Yuan, Z. Reproducibility of Radiomics Features Derived from Intravoxel Incoherent Motion Diffusion-Weighted MRI of CC. Acta Radiol. 2021, 62, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Takada, A.; Yokota, H.; Watanabe Nemoto, M.; Horikoshi, T.; Matsushima, J.; Uno, T. A Multi-Scanner Study of MRI Radiomics in Uterine CC: Prediction of in-Field Tumour Control after Definitive Radiotherapy Based on a Machine Learning Method Including Peritumoural Regions. Jpn. J. Radiol. 2020, 38, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Cheng, R.; Liu, S.; Qu, F.; Yin, X.; Wang, Q.; Xiao, B.; Ye, Z. Radiomics Analysis of Apparent Diffusion Coefficient in CC: A Preliminary Study on Histological Grade Evaluation. J. Magn. Reson. Imaging 2019, 49, 280–290. [Google Scholar] [CrossRef]
- Wang, W.; Jiao, Y.; Zhang, L.; Fu, C.; Zhu, X.; Wang, Q.; Gu, Y. Multiparametric MRI-Based Radiomics Analysis: Differentiation of Subtypes of CC in the Early Stage. Acta Radiol. 2022, 63, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, T.; Dong, T.-F.; Zhang, W.; Wen, G. MRI-Based Radiomics Analysis to Evaluate the Clinicopathological Characteristics of Cervical Carcinoma: A Multicentre Study. Acta Radiol. 2023, 64, 395–403. [Google Scholar] [CrossRef]
- Kan, Y.; Dong, D.; Zhang, Y.; Jiang, W.; Zhao, N.; Han, L.; Fang, M.; Zang, Y.; Hu, C.; Tian, J.; et al. Radiomic Signature as a Predictive Factor for Lymph Node Metastasis in Early-Stage CC. J. Magn. Reson. Imaging 2019, 49, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.Y.; Zhang, R.; Dong, R.T.; Hu, Q.Y.; Yu, T.; Liu, F.; Luo, Y.H.; Dong, Y. Feasibility of an ADC-Based Radiomics Model for Predicting Pelvic Lymph Node Metastases in Patients with Stage IB-IIA Cervical Squamous Cell Carcinoma. Br. J. Radiol. 2019, 92, 20180986. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gao, T.; Yang, J.; Yan, X.; Wang, Y.; Zhou, X.; Tian, J.; Huang, L.; Zhang, M. Preoperative Prediction of Pelvic Lymph Nodes Metastasis in Early-Stage CC Using Radiomics Nomogram Developed Based on T2-Weighted MRI and Diffusion-Weighted Imaging. Eur. J. Radiol. 2019, 114, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Wang, S.; Chen, X.; Wang, Y.; Dong, L.; Liu, Z.; Tian, J.; Wang, M. Radiomics Analysis of Magnetic Resonance Imaging Improves Diagnostic Performance of Lymph Node Metastasis in Patients with CC. Radiother. Oncol. 2019, 138, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; He, B.; Dong, D.; Liu, P.; Duan, H.; Li, W.; Li, P.; Wang, L.; Fan, H.; Wang, S.; et al. Noninvasive CT Radiomic Model for Preoperative Prediction of Lymph Node Metastasis in Early Cervical Carcinoma. Br. J. Radiol. 2020, 93, 20190558. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Ma, F.; Li, Y.; Li, Y.; Li, M.; Zhang, G.; Qiang, J. Multiparametric MRI-Based Radiomics Nomogram for Predicting Lymph Node Metastasis in Early-Stage CC. J. Magn. Reson. Imaging 2020, 52, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Yao, H.; Long, R.; Wu, L.; Xia, H.; Li, J.; Liu, Z.; Liang, C. A Preoperative Radiomics Model for the Identification of Lymph Node Metastasis in Patients with Early-Stage Cervical Squamous Cell Carcinoma. Br. J. Radiol. 2020, 93, 20200358. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liu, M.; Sun, J.; Li, M.; Liu, D.; Li, L.; Fang, J.; Wang, X.; Zhang, J. Feasibility of MRI-Based Radiomics Features for Predicting Lymph Node Metastases and VEGF Expression in CC. Eur. J. Radiol. 2021, 134, 109429. [Google Scholar] [CrossRef]
- Liu, X.-F.; Yan, B.-C.; Li, Y.; Ma, F.-H.; Qiang, J.-W. Radiomics Nomogram in Assisting Lymphadenectomy Decisions by Predicting Lymph Node Metastasis in Early-Stage Endometrial Cancer. Front. Oncol. 2022, 12, 894918. [Google Scholar] [CrossRef]
- Zhang, Z.; Wan, X.; Lei, X.; Wu, Y.; Zhang, J.; Ai, Y.; Yu, B.; Liu, X.; Jin, J.; Xie, C.; et al. Intra- and Peri-Tumoural MRI Radiomics Features for Preoperative Lymph Node Metastasis Prediction in Early-Stage CC. Insights Imaging 2023, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Yang, C.; Cui, B.; Zhang, T.; Sun, X.; Song, K.; Wang, L.; Kong, B.; Yang, X. Development and Validation of a Deep Learning Radiomics Model Predicting Lymph Node Status in Operable CC. Front. Oncol. 2020, 10, 464. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhou, W.; Ren, J.; Du, X.; Xin, L.; Zhao, X.; Cui, Y.; Zhang, R. Radiomics Analysis of Multiparametric MRI for the Preoperative Prediction of Lymph Node Metastasis in CC. Front. Oncol. 2020, 10, 1393. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fan, H.; Dong, D.; Liu, P.; He, B.; Meng, L.; Chen, J.; Chen, C.; Lang, J.; Tian, J. Computed Tomography-Based Radiomic Model at Node Level for the Prediction of Normal-Sized Lymph Node Metastasis in CC. Transl. Oncol. 2021, 14, 101113. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Dong, Y.; Jiang, W.; Qin, F.; Wang, X.; Cui, L.; Liu, Y.; Jin, Y.; Luo, Y.; Jiang, X. MRI-Based Peritumoural Radiomics Analysis for Preoperative Prediction of Lymph Node Metastasis in Early-Stage CC: A Multi-Centre Study. Magn. Reson. Imaging 2022, 88, 1–8. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Zhe, X.; Tang, M.; Zhang, X.; Lei, X.; Zhang, L. A Meta-Analysis of MRI-Based Radiomic Features for Predicting Lymph Node Metastasis in Patients with CC. Eur. J. Radiol. 2022, 151, 110243. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Li, Y.; Liu, X.-Y.; Zhao, J.; He, Y.-L.; Jin, Z.-Y.; Xue, H.-D. Diagnostic Performance of ADC Values and MRI-Based Radiomics Analysis for Detecting Lymph Node Metastasis in Patients with CC: A Systematic Review and Meta-Analysis. Eur. J. Radiol. 2022, 156, 110504. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wang, S.; Dong, D.; Yin, F.; Chen, A.; Wang, S.; Zhao, G.; Fang, M.; Tian, J.; et al. MR-Based Radiomics Nomogram of CC in Prediction of the Lymph-Vascular Space Invasion Preoperatively. J. Magn. Reson. Imaging 2019, 49, 1420–1426. [Google Scholar] [CrossRef]
- Jiang, X.; Li, J.; Kan, Y.; Yu, T.; Chang, S.; Sha, X.; Zheng, H.; Luo, Y.; Wang, S. MRI Based Radiomics Approach with Deep Learning for Prediction of Vessel Invasion in Early-Stage CC. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 995–1002. [Google Scholar] [CrossRef]
- Xiao, M.; Li, Y.; Ma, F.; Zhang, G.; Qiang, J. Multiparametric MRI Radiomics Nomogram for Predicting Lymph-Vascular Space Invasion in Early-Stage CC. Br. J. Radiol. 2022, 95, 20211076. [Google Scholar] [CrossRef]
- Cui, L.; Yu, T.; Kan, Y.; Dong, Y.; Luo, Y.; Jiang, X. Multi-Parametric MRI-Based Peritumoural Radiomics on Prediction of Lymph-Vascular Space Invasion in Early-Stage CC. Diagn. Interv. Radiol. 2022, 28, 312–321. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, S.; Chen, Y.; Liao, Y.; Yin, X.; Li, T.; Wang, R.; Luo, X.; Xu, W.; Zhou, J.; et al. A Multicentre Study on Preoperative Assessment of Lymphovascular Space Invasion in Early-Stage CC Based on Multimodal MR Radiomics. J. Magn. Reson. Imaging 2023, 58, 1638–1648. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Gao, T.; Guo, H.; Wang, Y.; Zhou, X.; Tian, J.; Huang, L.; Zhang, M. Preoperative Prediction of Parametrial Invasion in Early-Stage CC with MRI-Based Radiomics Nomogram. Eur. Radiol. 2020, 30, 3585–3593. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Lin, J.; Song, F.; Wu, D.; Qian, Z. The Value of MR-Based Radiomics in Identifying Residual Disease in Patients with Carcinoma in Situ after Cervical Conization. Sci. Rep. 2020, 10, 19890. [Google Scholar] [CrossRef] [PubMed]
- Bowen, S.R.; Yuh, W.T.C.; Hippe, D.S.; Wu, W.; Partridge, S.C.; Elias, S.; Jia, G.; Huang, Z.; Sandison, G.A.; Nelson, D.; et al. Tumour Radiomic Heterogeneity: Multiparametric Functional Imaging to Characterize Variability and Predict Response Following CC Radiation Therapy. J. Magn. Reson. Imaging 2018, 47, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Tian, X.; Liu, Z.; Li, W.; Li, P.; Chen, J.; Zhang, W.; Fang, Z.; Du, P.; Duan, H.; et al. Radiomic Analysis for Pretreatment Prediction of Response to Neoadjuvant Chemotherapy in Locally Advanced CC: A Multicentre Study. EBioMedicine 2019, 46, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Sun, C.; Liu, Z.; Li, W.; Duan, H.; Wang, L.; Fan, H.; Li, M.; Li, P.; Wang, L.; et al. Prediction of Response to Preoperative Neoadjuvant Chemotherapy in Locally Advanced CC Using Multicentre CT-Based Radiomic Analysis. Front. Oncol. 2020, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, X.; Zheng, T.; Shi, Q.; Cui, Y.; Wang, Y.; Liu, L. Optimisation and Evaluation of the Random Forest Model in the Efficacy Prediction of Chemoradiotherapy for Advanced CC Based on Radiomics Signature from High-Resolution T2 Weighted Images. Arch. Gynecol. Obstet. 2021, 303, 811–820. [Google Scholar] [CrossRef]
- Ligero, M.; Garcia-Ruiz, A.; Viaplana, C.; Villacampa, G.; Raciti, M.V.; Landa, J.; Matos, I.; Martin-Liberal, J.; Ochoa-de-Olza, M.; Hierro, C.; et al. A CT-Based Radiomics Signature Is Associated with Response to Immune Checkpoint Inhibitors in Advanced Solid Tumours. Radiology 2021, 299, 109–119. [Google Scholar] [CrossRef]
- Gui, B.; Autorino, R.; Miccò, M.; Nardangeli, A.; Pesce, A.; Lenkowicz, J.; Cusumano, D.; Russo, L.; Persiani, S.; Boldrini, L.; et al. Pretreatment MRI Radiomics Based Response Prediction Model in Locally Advanced CC. Diagnostics 2021, 11, 631. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, K.; Jia, H.; Xia, B.; Zang, C.; Liu, Y.; Qian, L.; Dong, J. IVIM-DWI and MRI-Based Radiomics in CC: Prediction of Concurrent Chemoradiotherapy Sensitivity in Combination with Clinical Prognostic Factors. Magn. Reson. Imaging 2022, 91, 37–44. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, L.; Jin, J.; Wang, G. Application and Clinical Value of Machine Learning-Based CC Diagnosis and Prediction Model in Adjuvant Chemotherapy for CC: A Single-Centre, Controlled, Non-Arbitrary Size Case-Control Study. Contrast Media Mol. Imaging 2022, 2022, 2432291. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Q.; Chen, Y.; Wang, S.; Zhang, J.; An, J.; Xie, L.; Yu, X.; Zhao, X. MRI-Based Radiomics for Pretreatment Prediction of Response to Concurrent Chemoradiotherapy in Locally Advanced Cervical Squamous Cell Cancer. Abdom. Radiol. 2023, 48, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, D.; Nishibuchi, I.; Kawamura, M.; Yoshida, T.; Koh, I.; Tomono, K.; Sekine, M.; Takahashi, H.; Kikuchi, Y.; Kudo, Y.; et al. Radiomic Analysis for Pretreatment Prediction of Recurrence Post-Radiotherapy in Cervical Squamous Cell Carcinoma Cancer. Diagnostics 2022, 12, 2346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, C.; Xiao, Z.; Lv, F.; Liu, Y. A Deep Learning Radiomics Nomogram to Predict Response to Neoadjuvant Chemotherapy for Locally Advanced CC: A Two-Centre Study. Diagnostics 2023, 13, 1073. [Google Scholar] [CrossRef] [PubMed]
- Jajodia, A.; Gupta, A.; Prosch, H.; Mayerhoefer, M.; Mitra, S.; Pasricha, S.; Mehta, A.; Puri, S.; Chaturvedi, A. Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in CC. Tomography 2021, 7, 344–357. [Google Scholar] [CrossRef] [PubMed]
- Ikushima, H.; Haga, A.; Ando, K.; Kato, S.; Kaneyasu, Y.; Uno, T.; Okonogi, N.; Yoshida, K.; Ariga, T.; Isohashi, F.; et al. Prediction of Out-of-Field Recurrence after Chemoradiotherapy for CC Using a Combination Model of Clinical Parameters and Magnetic Resonance Imaging Radiomics: A Multi-Institutional Study of the Japanese Radiation Oncology Study Group. J. Radiat. Res. 2022, 63, 98–106. [Google Scholar] [CrossRef]
- Wang, J.; Mao, Y.; Gao, X.; Zhang, Y. Recurrence Risk Stratification for Locally Advanced CC Using Multi-Modality Transformer Network. Front. Oncol. 2023, 13, 1100087. [Google Scholar] [CrossRef]
- Meng, J.; Liu, S.; Zhu, L.; Zhu, L.; Wang, H.; Xie, L.; Guan, Y.; He, J.; Yang, X.; Zhou, Z. Texture Analysis as Imaging Biomarker for Recurrence in Advanced CC Treated with CCRT. Sci. Rep. 2018, 8, 11399. [Google Scholar] [CrossRef]
- Ren, K.; Shen, L.; Qiu, J.; Sun, K.; Chen, T.; Xuan, L.; Yang, M.; She, H.-Y.; Shen, L.; Zhu, H.; et al. Treatment Planning Computed Tomography Radiomics for Predicting Treatment Outcomes and Haematological Toxicities in Locally Advanced CC Treated with Radiotherapy: A Retrospective Cohort Study. BJOG 2023, 130, 222–230. [Google Scholar] [CrossRef]
- Qin, X.; Wang, C.; Gong, G.; Wang, L.; Su, Y.; Yin, Y. Functional MRI Radiomics-Based Assessment of Pelvic Bone Marrow Changes after Concurrent Chemoradiotherapy for CC. BMC Cancer 2022, 22, 1149. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Xiang, X.; Zhou, X.; Ren, S.; Zhou, Q.; Dong, W.; Lin, H.; Wang, S.; Zhang, Y.; Lin, H.; et al. Development and Validation of an Interpretable Radiomic Nomogram for Severe Radiation Proctitis Prediction in Postoperative CC Patients. Front. Microbiol. 2022, 13, 1090770. [Google Scholar] [CrossRef]
- Yu, W.; Xu, H.; Chen, F.; Shou, H.; Chen, Y.; Jia, Y.; Zhang, H.; Ding, J.; Xiong, H.; Wang, Y.; et al. Development and Validation of a Radiomics-Based Nomogram for the Prediction of Postoperative Malnutrition in Stage IB1-IIA2 Cervical Carcinoma. Front. Nutr. 2023, 10, 1113588. [Google Scholar] [CrossRef] [PubMed]
- Lucia, F.; Visvikis, D.; Desseroit, M.-C.; Miranda, O.; Malhaire, J.-P.; Robin, P.; Pradier, O.; Hatt, M.; Schick, U. Prediction of Outcome Using Pretreatment 18F-FDG PET/CT and MRI Radiomics in Locally Advanced CC Treated with Chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 768–786. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Zhang, B.; Wang, S.; Jin, Y.; Wang, F.; Ding, Y.; Chen, Q.; Chen, L.; Li, Y.; Li, M.; et al. Association of MRI-Derived Radiomic Biomarker with Disease-Free Survival in Patients with Early-Stage CC. Theranostics 2020, 10, 2284–2292. [Google Scholar] [CrossRef]
- Lucia, F.; Visvikis, D.; Vallières, M.; Desseroit, M.-C.; Miranda, O.; Robin, P.; Bonaffini, P.A.; Alfieri, J.; Masson, I.; Mervoyer, A.; et al. External Validation of a Combined PET and MRI Radiomics Model for Prediction of Recurrence in CC Patients Treated with Chemoradiotherapy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 864–877. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Hahm, M.H.; Bae, B.K.; Chong, G.O.; Jeong, S.Y.; Na, S.; Jeong, S.; Kim, J.-C. Magnetic Resonance Imaging Features of Tumour and Lymph Node to Predict Clinical Outcome in Node-Positive CC: A Retrospective Analysis. Radiat. Oncol. 2020, 15, 86. [Google Scholar] [CrossRef]
- Li, H.; Zhu, M.; Jian, L.; Bi, F.; Zhang, X.; Fang, C.; Wang, Y.; Wang, J.; Wu, N.; Yu, X. Radiomic Score as a Potential Imaging Biomarker for Predicting Survival in Patients with CC. Front. Oncol. 2021, 11, 706043. [Google Scholar] [CrossRef]
- Zhou, Y.; Gu, H.-L.; Zhang, X.-L.; Tian, Z.-F.; Xu, X.-Q.; Tang, W.-W. Multiparametric Magnetic Resonance Imaging-Derived Radiomics for the Prediction of Disease-Free Survival in Early-Stage Squamous CC. Eur. Radiol. 2022, 32, 2540–2551. [Google Scholar] [CrossRef]
- Zheng, R.-R.; Cai, M.-T.; Lan, L.; Huang, X.W.; Yang, Y.J.; Powell, M.; Lin, F. An MRI-Based Radiomics Signature and Clinical Characteristics for Survival Prediction in Early-Stage CC. Br. J. Radiol. 2022, 95, 20210838. [Google Scholar] [CrossRef]
- Cai, M.; Yao, F.; Ding, J.; Zheng, R.; Huang, X.; Yang, Y.; Lin, F.; Hu, Z. MRI Radiomic Features: A Potential Biomarker for Progression-Free Survival Prediction of Patients with Locally Advanced CC Undergoing Surgery. Front. Oncol. 2021, 11, 749114. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, Z.; Xu, Z.-L.; Zhao, H.-L.; Wen, D.-D.; Li, Y.-A.; Zhang, F.; Hou, B.-X.; Huan, Y.; Wei, L.-C.; et al. Predicting Disease-Free Survival with Multiparametric MRI-Derived Radiomic Signature in CC Patients Underwent CCRT. Front. Oncol. 2021, 11, 812993. [Google Scholar] [CrossRef] [PubMed]
- Autorino, R.; Gui, B.; Panza, G.; Boldrini, L.; Cusumano, D.; Russo, L.; Nardangeli, A.; Persiani, S.; Campitelli, M.; Ferrandina, G.; et al. Radiomics-Based Prediction of Two-Year Clinical Outcome in Locally Advanced CC Patients Undergoing Neoadjuvant Chemoradiotherapy. Radiol. Med. 2022, 127, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Song, J.; Duan, S.; Cheng, W.; Chen, T.; Liu, X. MRI Radiomics Combined with Clinicopathologic Features to Predict Disease-Free Survival in Patients with Early-Stage CC. Br. J. Radiol. 2022, 95, 20211229. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Jiang, P.; Tang, Z.; Qu, A.; Deng, X.; Guo, F.; Sun, H.; Zhang, Y.; Gu, L.; Zhang, S.; et al. MRI Radiomics in Overall Survival Prediction of Local Advanced CC Patients Tread by Adjuvant Chemotherapy Following Concurrent Chemoradiotherapy or Concurrent Chemoradiotherapy Alone. Magn. Reson. Imaging 2022, 91, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, L.; Zhang, K.; Su, R.; Jia, H.; Qian, L.; Dong, J. Nomograms Combining Clinical and Imaging Parameters to Predict Recurrence and Disease-Free Survival After Concurrent Chemoradiotherapy in Patients with Locally Advanced CC. Acad. Radiol. 2023, 30, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Jha, A.K.; Mithun, S.; Sherkhane, U.B.; Jaiswar, V.; Osong, B.; Purandare, N.; Kannan, S.; Prabhash, K.; Gupta, S.; Vanneste, B.; et al. Systematic Review and Meta-Analysis of Prediction Models Used in CC. Artif. Intell. Med. 2023, 139, 102549. [Google Scholar] [CrossRef]
- Capozzi, V.A.; Monfardini, L.; Ceni, V.; Cianciolo, A.; Butera, D.; Gaiano, M.; Berretta, R. Endometrial Stromal Sarcoma: A Review of Rare Mesenchymal Uterine Neoplasm. J. Obstet. Gynaecol. Res. 2020, 46, 2221–2236. [Google Scholar] [CrossRef]
- Baird, D.D.; Dunson, D.B.; Hill, M.C.; Cousins, D.; Schectman, J.M. High Cumulative Incidence of Uterine Leiomyoma in Black and White Women: Ultrasound Evidence. Am. J. Obstet. Gynecol. 2003, 188, 100–107. [Google Scholar] [CrossRef]
- D’Angelo, E.; Prat, J. Uterine Sarcomas: A Review. Gynecol. Oncol. 2010, 116, 131–139. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, X.; Zhou, Z.; Shi, Y.; Wu, Q.; Lin, K. Differentiating Cellular Leiomyoma from Uterine Sarcoma and Atypical Leiomyoma Using Multi-Parametric MRI. Front. Oncol. 2022, 12, 1005191. [Google Scholar] [CrossRef]
- Causa Andrieu, P.; Woo, S.; Kim, T.-H.; Kertowidjojo, E.; Hodgson, A.; Sun, S. New Imaging Modalities to Distinguish Rare Uterine Mesenchymal Cancers from Benign Uterine Lesions. Curr. Opin. Oncol. 2021, 33, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Gity, M.; Alidoosti, A.; Oghabian, Z.; Rahimifar, P.; Seyed Ebrahimi, S.M.; Tabibian, E.; Oghabian, M.A. A Machine Learning Approach for Distinguishing Uterine Sarcoma from Leiomyomas Based on Perfusion Weighted MRI Parameters. Eur. J. Radiol. 2019, 110, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Tabibian, E.; Rahimi Dehgolan, M.; Rahmani, M.; Akhavan, S.; Sheikh Hasani, S.; Nili, F.; Hashemi, H. A Diagnostic Algorithm Using Multi-Parametric MRI to Differentiate Benign from Malignant Myometrial Tumours: Machine-Learning Method. Sci. Rep. 2020, 10, 7404. [Google Scholar] [CrossRef]
- Xie, H.; Hu, J.; Zhang, X.; Ma, S.; Liu, Y.; Wang, X. Preliminary Utilization of Radiomics in Differentiating Uterine Sarcoma from Atypical Leiomyoma: Comparison on Diagnostic Efficacy of MRI Features and Radiomic Features. Eur. J. Radiol. 2019, 115, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, M.; Nakaura, T.; Namimoto, T.; Iyama, Y.; Kidoh, M.; Hirata, K.; Nagayama, Y.; Oda, S.; Sakamoto, F.; Shiraishi, S.; et al. A Multiparametric MRI-Based Machine Learning to Distinguish between Uterine Sarcoma and Benign Leiomyoma: Comparison with 18F-FDG PET/CT. Clin. Radiol. 2019, 74, 167.e1–167.e7. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.; Zhang, X.; Ma, S.; Liu, Y.; Wang, X. Preoperative Differentiation of Uterine Sarcoma from Leiomyoma: Comparison of Three Models Based on Different Segmentation Volumes Using Radiomics. Mol. Imaging Biol. 2019, 21, 1157–1164. [Google Scholar] [CrossRef]
- Yang, X.; Stamp, M. Computer-Aided Diagnosis of Low Grade Endometrial Stromal Sarcoma (LGESS). Comput. Biol. Med. 2021, 138, 104874. [Google Scholar] [CrossRef]
- Nougaret, S.; Tardieu, M.; Vargas, H.A.; Reinhold, C.; Vande Perre, S.; Bonanno, N.; Sala, E.; Thomassin-Naggara, I. Ovarian Cancer: An Update on Imaging in the Era of Radiomics. Diagn. Interv. Imaging 2019, 100, 647–655. [Google Scholar] [CrossRef]
- Vernuccio, F.; Cannella, R.; Comelli, A.; Salvaggio, G.; Lagalla, R.; Midiri, M. Radiomica e intelligenza artificiale: Nuove frontiere in medicina. Recent. Progress. Med. 2020, 111, 130–135. [Google Scholar] [CrossRef]
- Qi, L.; Chen, D.; Li, C.; Li, J.; Wang, J.; Zhang, C.; Li, X.; Qiao, G.; Wu, H.; Zhang, X.; et al. Diagnosis of Ovarian Neoplasms Using Nomogram in Combination with Ultrasound Image-Based Radiomics Signature and Clinical Factors. Front. Genet. 2021, 12, 753948. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Ding, J.; Lin, F.; Xu, X.; Jiang, Q.; Zhang, L.; Fu, Y.; Yang, Y.; Lan, L. Nomogram Based on Ultrasound Radiomics Score and Clinical Variables for Predicting Histologic Subtypes of Epithelial Ovarian Cancer. Br. J. Radiol. 2022, 95, 20211332. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Ding, J.; Hu, Z.; Cai, M.; Liu, J.; Huang, X.; Zheng, R.; Lin, F.; Lan, L. Ultrasound-Based Radiomics Score: A Potential Biomarker for the Prediction of Progression-Free Survival in Ovarian Epithelial Cancer. Abdom. Radiol. 2021, 46, 4936–4945. [Google Scholar] [CrossRef]
- Pan, S.; Ding, Z.; Zhang, L.; Ruan, M.; Shan, Y.; Deng, M.; Pang, P.; Shen, Q. A Nomogram Combined Radiomic and Semantic Features as Imaging Biomarker for Classification of Ovarian Cystadenomas. Front. Oncol. 2020, 10, 895. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, J.; Xiong, Y.; Pang, P.; Lei, P.; Zou, H.; Zhang, M.; Fan, B.; Luo, P. A Radiomics Approach for Automated Diagnosis of Ovarian Neoplasm Malignancy in Computed Tomography. Sci. Rep. 2021, 11, 8730. [Google Scholar] [CrossRef]
- Li, J.; Zhang, T.; Ma, J.; Zhang, N.; Zhang, Z.; Ye, Z. Machine-Learning-Based Contrast-Enhanced Computed Tomography Radiomic Analysis for Categorization of Ovarian Tumours. Front. Oncol. 2022, 12, 934735. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Perucho, J.A.U.; Hu, Y.; Choi, M.H.; Han, L.; Wong, E.M.F.; Ho, G.; Zhang, X.; Ip, P.; Lee, E.Y.P. Computed Tomographic Radiomics in Differentiating Histologic Subtypes of Epithelial Ovarian Carcinoma. JAMA Netw. Open 2022, 5, e2245141. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, S.; Manganaro, L.; Dolciami, M.; Gasparri, M.L.; Papadia, A.; Del Grande, F. Computed Tomography Based Radiomics as a Predictor of Survival in Ovarian Cancer Patients: A Systematic Review. Cancers 2021, 13, 573. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Z.; Zuo, R.; Zheng, C.; Lu, B.; Cheng, X.; Lu, W.; Zhao, C.; Liu, P.; Lu, Y. Development of Survival Predictors for High-Grade Serous Ovarian Cancer Based on Stable Radiomic Features from Computed Tomography Images. iScience 2022, 25, 104628. [Google Scholar] [CrossRef]
- Wei, W.; Liu, Z.; Rong, Y.; Zhou, B.; Bai, Y.; Wei, W.; Wang, S.; Wang, M.; Guo, Y.; Tian, J. A Computed Tomography-Based Radiomic Prognostic Marker of Advanced High-Grade Serous Ovarian Cancer Recurrence: A Multicentre Study. Front. Oncol. 2019, 9, 255. [Google Scholar] [CrossRef]
- Fotopoulou, C.; Rockall, A.; Lu, H.; Lee, P.; Avesani, G.; Russo, L.; Petta, F.; Ataseven, B.; Waltering, K.-U.; Koch, J.A.; et al. Validation Analysis of the Novel Imaging-Based Prognostic Radiomic Signature in Patients Undergoing Primary Surgery for Advanced High-Grade Serous Ovarian Cancer (HGSOC). Br. J. Cancer 2022, 126, 1047–1054. [Google Scholar] [CrossRef] [PubMed]
- Rundo, L.; Beer, L.; Escudero Sanchez, L.; Crispin-Ortuzar, M.; Reinius, M.; McCague, C.; Sahin, H.; Bura, V.; Pintican, R.; Zerunian, M.; et al. Clinically Interpretable Radiomics-Based Prediction of Histopathologic Response to Neoadjuvant Chemotherapy in High-Grade Serous Ovarian Carcinoma. Front. Oncol. 2022, 12, 868265. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Zhang, Y.; Bai, G.; Ding, C.; Xu, H.; Dai, Y.; Chen, S.; Wang, H. T2-Weighted MRI-Based Radiomics for Discriminating between Benign and Borderline Epithelial Ovarian Tumours: A Multicentre Study. Insights Imaging 2022, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.; Li, Y.; Pickhardt, P.J.; Xia, W.; He, Z.; Zhang, R.; Zhao, S.; Zhao, X.; Cai, S.; Zhang, J.; et al. MR Image-Based Radiomics to Differentiate Type Ι and Type ΙΙ Epithelial Ovarian Cancers. Eur. Radiol. 2021, 31, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Li, H.M.; Gong, J.; Li, R.M.; Xiao, Z.B.; Qiang, J.W.; Peng, W.J.; Gu, Y.J. Development of MRI-Based Radiomics Model to Predict the Risk of Recurrence in Patients with Advanced High-Grade Serous Ovarian Carcinoma. AJR Am. J. Roentgenol. 2021, 217, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, H.; Wang, Y.; Liu, X.; Ling, L.; Zhang, G.; Yang, G.; Zhang, H. MR-Based Radiomics-Clinical Nomogram in Epithelial Ovarian Tumour Prognosis Prediction: Tumour Body Texture Analysis across Various Acquisition Protocols. J. Ovarian Res. 2022, 15, 6. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-L.; Ren, J.-L.; Yao, T.-Y.; Zhao, D.; Niu, J. Radiomics Based on Multisequence Magnetic Resonance Imaging for the Preoperative Prediction of Peritoneal Metastasis in Ovarian Cancer. Eur. Radiol. 2021, 31, 8438–8446. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cai, S.; Wang, F.; Wu, P.-Y.; Pan, X.; Qiang, J.; Li, H.; Zeng, M. Development of a Prediction Model for Gross Residual in High-Grade Serous Ovarian Cancer by Combining Preoperative Assessments of Abdominal and Pelvic Metastases and Multiparametric MRI. Acad. Radiol. 2023, 30, 1823–1831. [Google Scholar] [CrossRef]
- Li, H.; Cai, S.; Deng, L.; Xiao, Z.; Guo, Q.; Qiang, J.; Gong, J.; Gu, Y.; Liu, Z. Prediction of Platinum Resistance for Advanced High-Grade Serous Ovarian Carcinoma Using MRI-Based Radiomics Nomogram. Eur. Radiol. 2023, 33, 5298–5308. [Google Scholar] [CrossRef]
- Veeraraghavan, H.; Vargas, H.; Jimenez-Sanchez, A.; Micco, M.; Mema, E.; Lakhman, Y.; Crispin-Ortuzar, M.; Huang, E.; Levine, D.; Grisham, R.; et al. Integrated Multi-Tumour Radio-Genomic Marker of Outcomes in Patients with High Serous Ovarian Carcinoma. Cancers 2020, 12, 3403. [Google Scholar] [CrossRef]
- Beer, L.; Sahin, H.; Bateman, N.W.; Blazic, I.; Vargas, H.A.; Veeraraghavan, H.; Kirby, J.; Fevrier-Sullivan, B.; Freymann, J.B.; Jaffe, C.C.; et al. Integration of Proteomics with CT-Based Qualitative and Radiomic Features in High-Grade Serous Ovarian Cancer Patients: An Exploratory Analysis. Eur. Radiol. 2020, 30, 4306–4316. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Jiang, W.; Yue, Q.; Ye, R.; Li, Y.; Hong, J.; Zhang, M. Radiomic Model to Predict the Expression of PD-1 and Overall Survival of Patients with Ovarian Cancer. Int. Immunopharmacol. 2022, 113, 109335. [Google Scholar] [CrossRef] [PubMed]
- Avesani, G.; Tran, H.E.; Cammarata, G.; Botta, F.; Raimondi, S.; Russo, L.; Persiani, S.; Bonatti, M.; Tagliaferri, T.; Dolciami, M.; et al. CT-Based Radiomics and Deep Learning for BRCA Mutation and Progression-Free Survival Prediction in Ovarian Cancer Using a Multicentric Dataset. Cancers 2022, 14, 2739. [Google Scholar] [CrossRef] [PubMed]
- Nougaret, S.; McCague, C.; Tibermacine, H.; Vargas, H.A.; Rizzo, S.; Sala, E. Radiomics and Radiogenomics in Ovarian Cancer: A Literature Review. Abdom. Radiol. 2021, 46, 2308–2322. [Google Scholar] [CrossRef] [PubMed]
- Ponsiglione, A.; Stanzione, A.; Spadarella, G.; Baran, A.; Cappellini, L.A.; Lipman, K.G.; Van Ooijen, P.; Cuocolo, R. Ovarian Imaging Radiomics Quality Score Assessment: An EuSoMII Radiomics Auditing Group Initiative. Eur. Radiol. 2023, 33, 2239–2247. [Google Scholar] [CrossRef] [PubMed]
- Spadarella, G.; Stanzione, A.; Akinci D’Antonoli, T.; Andreychenko, A.; Fanni, S.C.; Ugga, L.; Kotter, E.; Cuocolo, R. Systematic Review of the Radiomics Quality Score Applications: An EuSoMII Radiomics Auditing Group Initiative. Eur. Radiol. 2022, 33, 1884–1894. [Google Scholar] [CrossRef] [PubMed]
- Cannella, R.; Vernuccio, F.; Klontzas, M.E.; Ponsiglione, A.; Petrash, E.; Ugga, L.; Pinto Dos Santos, D.; Cuocolo, R. Systematic Review with Radiomics Quality Score of Cholangiocarcinoma: An EuSoMII Radiomics Auditing Group Initiative. Insights Imaging 2023, 14, 21. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, P.N.; Vernuccio, F.; Maino, C.; Cannella, R.; Otero-García, M.; Ippolito, D. Radiomics in Gynaecological Imaging: A State-of-the-Art Review. Appl. Sci. 2023, 13, 11839. https://doi.org/10.3390/app132111839
Franco PN, Vernuccio F, Maino C, Cannella R, Otero-García M, Ippolito D. Radiomics in Gynaecological Imaging: A State-of-the-Art Review. Applied Sciences. 2023; 13(21):11839. https://doi.org/10.3390/app132111839
Chicago/Turabian StyleFranco, Paolo Niccolò, Federica Vernuccio, Cesare Maino, Roberto Cannella, Milagros Otero-García, and Davide Ippolito. 2023. "Radiomics in Gynaecological Imaging: A State-of-the-Art Review" Applied Sciences 13, no. 21: 11839. https://doi.org/10.3390/app132111839
APA StyleFranco, P. N., Vernuccio, F., Maino, C., Cannella, R., Otero-García, M., & Ippolito, D. (2023). Radiomics in Gynaecological Imaging: A State-of-the-Art Review. Applied Sciences, 13(21), 11839. https://doi.org/10.3390/app132111839