Mediating the Connection: The Role of Pain in the Relationship between Shoulder Muscle Strength, Joint Position Sense, and Sub-Acromial Impingement Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Settings
2.3. Participants
2.3.1. Inclusion Criteria for SIS Participants
2.3.2. Exclusion Criteria for SIS Participants
2.3.3. Inclusion Criteria for Healthy Participants (Comparison Group)
2.3.4. Exclusion Criteria for Healthy Participants (Comparison Group)
2.4. Ethical Considerations
2.5. Shoulder Muscle Strength Evaluation Using Hand-Held Dynamometer
2.6. Assessment of Shoulder JPS Using an Inclinometer
2.7. Assessment of Pain among SIS Patients Using Visual Analog Scale (VAS)
2.8. Sample Size Calculation
2.9. Data Analysis Section
3. Results
4. Discussion
4.1. Clinical Significance
4.2. Strengths of the Study
4.3. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, J.-H. Search for medical information and treatment options for musculoskeletal disorders through an artificial intelligence chatbot: Focusing on shoulder impingement syndrome. medRxiv 2022. [Google Scholar] [CrossRef]
- Lucas, J.; van Doorn, P.; Hegedus, E.; Lewis, J.; van der Windt, D. A systematic review of the global prevalence and incidence of shoulder pain. BMC Musculoskelet. Disord. 2022, 23, 1073. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Chen, Y.T.; Thompson, L.; Kjoenoe, A.; Juul-Kristensen, B.; Cavalheri, V.; McKenna, L. No relationship between the acromiohumeral distance and pain in adults with subacromial pain syndrome: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 20611. [Google Scholar] [CrossRef] [PubMed]
- Via, R.G.; Bosco, F.; Giustra, F.; Lavia, A.D.; Artiaco, S.; Risitano, S.; Giachino, M.; Massè, A. Acute Rockwood type III ACJ dislocation: Conservative vs surgical approach. A systematic review and meta-analysis of current concepts in literature. Injury 2022, 53, 3094–3101. [Google Scholar]
- Cuff, A.; Littlewood, C. Subacromial impingement syndrome–what does this mean to and for the patient? A qualitative study. Musculoskelet. Sci. Pract. 2018, 33, 24–28. [Google Scholar] [CrossRef]
- Bolia, I.K.; Collon, K.; Bogdanov, J.; Lan, R.; Petrigliano, F.A. Management options for shoulder impingement syndrome in athletes: Insights and future directions. Open Access J. Sports Med. 2021, 12, 43–53. [Google Scholar] [CrossRef]
- Tyagi, A.; Kale, A.; Desouza, C. To determine the efficacy of Neer’s test in the diagnosis of subacromial impingement of the shoulder. Int. J. Orthop. 2020, 6, 901–904. [Google Scholar] [CrossRef]
- Geyer, M.; Schönfeld, C. Novel insights into the pathogenesis of osteoarthritis. Curr. Rheumatol. Rev. 2018, 14, 98–107. [Google Scholar] [CrossRef]
- Efstathiou, M.A.; Giannaki, C.D.; Roupa, Z.; Hadjisavvas, S.; Stefanakis, M. Evidence of distorted proprioception and postural control in studies of experimentally induced pain: A critical review of the literature. Scand. J. Pain 2022, 22, 445–456. [Google Scholar] [CrossRef]
- Sarkodie-Gyan, T.; Yu, H. The Human Locomotor System: Physiological and Technological Foundations. In The Human Locomotor System: Physiological and Technological Foundations; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–76. [Google Scholar]
- Chiddarwar, V.; de Zoete, R.M.; Dickson, C.; Lathlean, T. Effectiveness of combined surgical and exercise-based interventions following primary traumatic anterior shoulder dislocation: A systematic review and meta-analysis. Br. J. Sports Med. 2023, 11, 236. [Google Scholar] [CrossRef]
- Simpson, H. The Effects of Injury on the Neuromotor Control of the Shoulder; East Carolina University: Greenville, SC, USA, 2020. [Google Scholar]
- Hazari, A.; Maiya, A.G.; Nagda, T.V.; Hazari, A.; Maiya, A.G.; Nagda, T.V. Kinematics and Kinetics of Shoulder Complex, Elbow, and Wrist. In Conceptual Biomechanics and Kinesiology; Springer: Singapore, 2021; pp. 67–95. [Google Scholar]
- Russell, M.S. The Effect of Neck Muscle Fatigue on Shoulder Humeral Rotation Proprioception; University of Ontario Institute of Technology (Canada): Oshawa, ON, Canada, 2020. [Google Scholar]
- Kantak, S.S.; Johnson, T.; Zarzycki, R. Linking pain and motor control: Conceptualization of movement deficits in patients with painful conditions. Phys. Ther. 2022, 102, pzab289. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, K. Proprioception and Kinesthesia: The sixth sense organ. Adv. Health Exerc. 2021, 1, 12–17. [Google Scholar]
- Jooya, P.; Delavari, F. The Proprioceptive System. In Biophysics and Neurophysiology of the Sixth Sense; Springer: Cham, Switzerland, 2019; pp. 85–98. [Google Scholar]
- Schmidt, M.D.; Glasmachers, T.; Iossifidis, I. The concepts of muscle activity generation driven by upper limb kinematics. BioMed. Eng. OnLine 2023, 22, 63. [Google Scholar] [CrossRef]
- Arora, K.; Chakrabarty, S. A Simplified Model of Motor Control. bioRxiv 2022. [Google Scholar] [CrossRef]
- McNeill, E.; Campbell, M.J.; Toth, A.J.; Harrison, A.J. Watch, Imagine, and Perform? The Effect of Motor Simulation Interventions on Sensorimotor Task Performance; University of Limerick: Limerick, Ireland, 2022. [Google Scholar]
- Brewer, C. Athletic Movement Skills: Training for Sports Performance; Human Kinetics: Champaign, IL, USA, 2017. [Google Scholar]
- Gibson, K.; Growse, A.; Korda, L.; Wray, E.; MacDermid, J.C. The effectiveness of rehabilitation for nonoperative management of shoulder instability: A systematic review. J. Hand Ther. 2004, 17, 229–242. [Google Scholar] [CrossRef]
- Viglialoro, R.M.; Condino, S.; Turini, G.; Carbone, M.; Ferrari, V.; Gesi, M. Review of the augmented reality systems for shoulder rehabilitation. Information 2019, 10, 154. [Google Scholar] [CrossRef]
- Kibler, W.B.; Sciascia, A.; Tokish, J.; Kelly IV, J.D.; Thomas, S.; Bradley, J.P.; Reinold, M.; Ciccotti, M. Disabled throwing shoulder 2021 update: Part 1—Anatomy and mechanics. Arthrosc. J. Arthrosc. Relat. Surg. 2022, 38, 1714–1726. [Google Scholar] [CrossRef]
- Lv, S.; Wang, Q.; Ni, Q.; Qi, C.; Ma, Y.; Li, S.; Xu, Y. Progress of Muscle Chain Theory in Shoulder Pain Rehabilitation: Potential Ideas for Pulmonary Rehabilitation. Evid.-Based Complement. Altern. Med. 2022, 2022, 2537957. [Google Scholar] [CrossRef]
- Lansdaal, J.R.; van den Bekerom, M.P.; Cools, A.M.; Jones, V.; Lefevre, N.; Servien, E. Specific Aspects of Throwing Sports in Recreational and Competitive Sport. In Prevention of Injuries and Overuse in Sports: Directory for Physicians, Physiotherapists, Sport Scientists and Coaches; Springer: Berlin/Heidelberg, Germany, 2016; pp. 101–115. [Google Scholar]
- Başkurt, Z.; Başkurt, F.; Gelecek, N.; Özkan, M.H. The effectiveness of scapular stabilization exercise in the patients with subacromial impingement syndrome. J. Back Musculoskelet. Rehabil. 2011, 24, 173–179. [Google Scholar] [CrossRef]
- Lefèvre-Colau, M.-M.; Nguyen, C.; Palazzo, C.; Srour, F.; Paris, G.; Vuillemin, V.; Poiraudeau, S.; Roby-Brami, A.; Roren, A. Kinematic patterns in normal and degenerative shoulders. Part II: Review of 3-D scapular kinematic patterns in patients with shoulder pain, and clinical implications. Ann. Phys. Rehabil. Med. 2018, 61, 46–53. [Google Scholar] [CrossRef]
- Garving, C.; Jakob, S.; Bauer, I.; Nadjar, R.; Brunner, U.H. Impingement syndrome of the shoulder. Dtsch. Ärzteblatt Int. 2017, 114, 765. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S. Pain in Perspective; BoD–Books on Demand: Norderstedt, Germany, 2012. [Google Scholar]
- de la Barra Ortiz, H.A.; Matamala, A.M.; Inostroza, F.L.; Araya, C.L.; Mondaca, V.N. Efficacy of biofeedback in rehabilitation of musculoskeletal disorders: A systematic review. Postep. Rehabil. 2022, 36, 41. [Google Scholar] [CrossRef]
- Tamin, T.Z. Anatomy, Kinesiology, Pathomechanics, and Diagnosis of Shoulder Impingement Symptomp. In Proceedings of the 11th National Congress and the 18th Annual Scientific Meeting of Indonesian Physical Medicine and Rehabilitation Association (KONAS XI and PIT XVIII PERDOSRI 2019), Jakarta, Indonesia, 20–23 November 2019; pp. 20–23. [Google Scholar]
- Alfaya, F.F.; Reddy, R.S.; Alkhamis, B.A.; Kandakurti, P.K.; Mukherjee, D. Shoulder Proprioception and Its Correlation with Pain Intensity and Functional Disability in Individuals with Subacromial Impingement Syndrome—A Cross-Sectional Study. Diagnostics 2023, 13, 2099. [Google Scholar] [CrossRef] [PubMed]
- Ager, A.L.; Roy, J.-S.; Roos, M.; Belley, A.F.; Cools, A.; Hébert, L.J. Shoulder proprioception: How is it measured and is it reliable? A systematic review. J. Hand Ther. 2017, 30, 221–231. [Google Scholar] [CrossRef]
- Akhtar, M.; Karimi, H.; Gilani, S.A.; Ahmad, A.; Raza, A. The effectiveness of routine physiotherapy with and without neuromobilization on pain and functional disability in patients with shoulder impingement syndrome; a randomized control clinical trial. BMC Musculoskelet. Disord. 2020, 21, 770. [Google Scholar] [CrossRef]
- Zheng, X.; Reneman, M.F.; Preuper, R.H.S.; Otten, E.; Lamoth, C.J. Relationship between physical activity and central sensitization in chronic low back pain: Insights from machine learning. Comput. Methods Programs Biomed. 2023, 232, 107432. [Google Scholar] [CrossRef]
- Beletsky, A.; Nwachukwu, B.U.; Gorodischer, T.; Chahla, J.; Forsythe, B.; Cole, B.J.; Verma, N.N. Psychometric properties of visual analog scale assessments for function, pain, and strength compared with disease-specific upper extremity outcome measures in rotator cuff repair. JSES Int. 2020, 4, 619–624. [Google Scholar] [CrossRef]
- Keenan, K.A.; Akins, J.S.; Varnell, M.; Abt, J.; Lovalekar, M.; Lephart, S.; Sell, T.C. Kinesiology taping does not alter shoulder strength, shoulder proprioception, or scapular kinematics in healthy, physically active subjects and subjects with Subacromial Impingement Syndrome. Phys. Ther. Sport 2017, 24, 60–66. [Google Scholar] [CrossRef]
- Dilek, B.; Gulbahar, S.; Gundogdu, M.; Ergin, B.; Manisali, M.; Ozkan, M.; Akalin, E. Efficacy of proprioceptive exercises in patients with subacromial impingement syndrome: A single-blinded randomized controlled study. Am. J. Phys. Med. Rehabil. 2016, 95, 169–182. [Google Scholar] [CrossRef]
- İğrek, S.; Çolak, T.K. Comparison of the effectiveness of proprioceptive neuromuscular facilitation exercises and shoulder mobilization patients with Subacromial Impingement Syndrome: A randomized clinical trial. J. Bodyw. Mov. Ther. 2022, 30, 42–52. [Google Scholar] [CrossRef]
- Mendez-Rebolledo, G.; Ager, A.L.; Ledezma, D.; Montanez, J.; Guerrero-Henriquez, J.; Cruz-Montecinos, C. Role of active joint position sense on the upper extremity functional performance tests in college volleyball players. PeerJ 2022, 10, e13564. [Google Scholar] [CrossRef] [PubMed]
- Makki, A.T. Subacromial Impingement Syndrome: A Study Using Clinical, Functional and Electromyography Assessments; The University of Liverpool (United Kingdom): Liverpool, UK, 2012. [Google Scholar]
- Aceituno-Gómez, J.; Avendaño-Coy, J.; Gómez-Soriano, J.; García-Madero, V.M.; Ávila-Martín, G.; Serrano-Muñoz, D.; González-González, J.; Criado-Álvarez, J.J. Efficacy of high-intensity laser therapy in subacromial impingement syndrome: A three-month follow-up controlled clinical trial. Clin. Rehabil. 2019, 33, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Sahin, E.; Dilek, B.; Baydar, M.; Gundogdu, M.; Ergin, B.; Manisali, M.; Akalin, E.; Gulbahar, S. Shoulder proprioception in patients with subacromial impingement syndrome. J. Back Musculoskelet. Rehabil. 2017, 30, 857–862. [Google Scholar] [CrossRef]
- Mehrpour, Z.; Bagheri, S.; Letafatkar, A.; Mehrabian, H. The Effect of a Water-Based Training Program on Pain, Range of Motion and Joint Position Sense in Elite Female Swimmers with Impingement Syndrome. J. Adv. Sport Technol. 2020, 4, 72–81. [Google Scholar]
- Gliga, A.C.; Neagu, N.E.; Voidazan, S.; Popoviciu, H.V.; Bataga, T. Effects of a Novel Proprioceptive Rehabilitation Device on Shoulder Joint Position Sense, Pain and Function. Medicina 2022, 58, 1248. [Google Scholar] [CrossRef] [PubMed]
- Alahmari, K.A.; Reddy, R.S.; Silvian, P.; Ahmad, I.; Kakarparthi, V.N.; Rengaramanujam, K. Intra and inter-rater reliability for deep neck flexor and neck extensor muscle endurance tests in subjects with and without subclinical neck pain. Phys. Med. Rehabil. Kurortmed. 2019, 58, 310–316. [Google Scholar] [CrossRef]
- Neelapala, Y.R.; Reddy, Y.R.S.; Danait, R. Effect of mulligan’s posterolateral glide on shoulder rotator strength, scapular upward rotation in shoulder pain subjects–a randomized controlled trial. J. Musculoskelet. Res. 2016, 19, 1650014. [Google Scholar] [CrossRef]
- Kandakurti, P.K.; Reddy, R.S.; Kakarparthy, V.N.; Rengaramanujam, K.; Tedla, J.S.; Dixit, S.; Gautam, A.P.; Silvian, P.; Gular, K.; Eapen, C. Comparison and association of neck extensor muscles’ endurance and postural function in subjects with and without chronic neck pain–a cross-sectional study. Phys. Med. Rehabil. Kurortmed. 2021, 31, 295–301. [Google Scholar] [CrossRef]
- Ludewig, P.M.; Braman, J.P. Shoulder impingement: Biomechanical considerations in rehabilitation. Man. Ther. 2011, 16, 33–39. [Google Scholar] [CrossRef]
- Struyf, F.; Nijs, J.; Mottram, S.; Roussel, N.A.; Cools, A.M.; Meeusen, R. Clinical assessment of the scapula: A review of the literature. Br. J. Sports Med. 2014, 48, 883–890. [Google Scholar] [CrossRef]
- Maenhout, A.; Dhooge, F.; Van Herzeele, M.; Palmans, T.; Cools, A. Acromiohumeral distance and 3-dimensional scapular position change after overhead muscle fatigue. J. Athl. Train. 2015, 50, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Cools, A.; Witvrouw, E.; Declercq, G.; Vanderstraeten, G.; Cambier, D. Evaluation of isokinetic force production and associated muscle activity in the scapular rotators during a protraction-retraction movement in overhead athletes with impingement symptoms. Br. J. Sports Med. 2004, 38, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Thind, A.; Mohamed, N.S. Subacromial Impingement Syndrome: A Systematic Review of Existing Treatment Modalities to Newer Proprioceptive-Based Strategies. Cureus 2022, 14, e28405. [Google Scholar] [CrossRef]
- Ravichandran, H.; Janakiraman, B.; Gelaw, A.Y.; Fisseha, B.; Sundaram, S.; Sharma, H.R. Effect of scapular stabilization exercise program in patients with subacromial impingement syndrome: A systematic review. J. Exerc. Rehabil. 2020, 16, 216. [Google Scholar] [CrossRef] [PubMed]
- Çalık, M.; Utlu, D.K.; Demirtaş, A.; Canbora, M.K.; Erdil, M.E.; Düzgün, İ. Is shoulder joint position sense affected in partial and full-thickness supraspinatus tears? Int. Orthop. 2023, 47, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi Ghrehghoyonloo, M.; Sahebozamani, M.; Beyranvand, R.; Karimi Afshar, F. The effect of corrective exercises on shoulder pain and joint position sense in females with functional impingement syndrome. Daneshvar Med. 2020, 25, 17–24. [Google Scholar]
- de Lima Boarati, E.; Hotta, G.H.; McQuade, K.J.; de Oliveira, A.S. Acute effect of flexible bar exercise on scapulothoracic muscles activation, on isometric shoulder abduction force and proprioception of the shoulder of individuals with and without subacromial pain syndrome. Clin. Biomech. 2020, 72, 77–83. [Google Scholar] [CrossRef]
- Saadatian, A.; Babaei Khorzoghi, M.; Sahebozamani, M.; Taghi Karimi, M. The Impact of OKC Exercises and TRX Exercises on Shoulder Joint Proprioception in Overhead Athletes With Shoulder Impingement Syndrome: A Randomized Controlled Trial. Phys. Darmani 2022, 12, 77–84. [Google Scholar] [CrossRef]
- Struyf, F.; Lluch, E.; Falla, D.; Meeus, M.; Noten, S.; Nijs, J. Influence of shoulder pain on muscle function: Implications for the assessment and therapy of shoulder disorders. Eur. J. Appl. Physiol. 2015, 115, 225–234. [Google Scholar] [CrossRef]
- Wilk, K.E.; Williams, R.A., Jr.; Dugas, J.R.; Cain, E.L., Jr.; Andrews, J.R. Current concepts in the assessment and rehabilitation of the thrower’s shoulder. Oper. Tech. Sports Med. 2016, 24, 170–180. [Google Scholar] [CrossRef]
- Jahandideh Pashaki, Z.; Zandi, S.; Minoonejad, H. The Effects of rhythmic stabilization exercise on position sense, range of motion, strength and functional stability of shoulder in adolescent girl swimmers with shoulder impingement syndrome. Stud. Sport Med. 2022, 14, 135–158. [Google Scholar]
- Jacob, J.R. Effectiveness of Rhythmic Stabilization Technique (Pnf) with Conventional Physiotherapy in Osteoarthritis (Oa) Knee. Int. Neurourol. J. 2023, 27, 120–125. [Google Scholar]
- Hwang, Y.; Oh, J. The relationship between shoulder pain and shoulder disability in women: The mediating role of sleep quality and psychological disorders. Medicine 2022, 101, e31118. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.B.; Valencia, C.; Coronado, R.A.; Wu, S.S.; Li, Z.; Dai, Y.; Farmer, K.W.; Moser, M.M.; Wright, T.W.; Fillingim, R.B. Biopsychosocial influences on shoulder pain: Analyzing the temporal ordering of postoperative recovery. J. Pain 2020, 21, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Raizah, A.; Reddy, R.S.; Alshahrani, M.S.; Gautam, A.P.; Alkhamis, B.A.; Kakaraparthi, V.N.; Ahmad, I.; Kandakurti, P.K.; ALMohiza, M.A. A Cross-Sectional Study on Mediating Effect of Chronic Pain on the Relationship between Cervical Proprioception and Functional Balance in Elderly Individuals with Chronic Neck Pain: Mediation Analysis Study. J. Clin. Med. 2023, 12, 3140. [Google Scholar] [CrossRef]
- ALMohiza, M.A.; Reddy, R.S.; Asiri, F.; Alshahrani, A.; Tedla, J.S.; Dixit, S.; Gular, K.; Kakaraparthi, V.N. The mediation effect of pain on the relationship between Kinesiophobia and lumbar joint position sense in chronic low Back pain individuals: A cross-sectional study. Int. J. Environ. Res. Public Health 2023, 20, 5193. [Google Scholar] [CrossRef]
- Asiri, F.; Reddy, R.S.; Alshahrani, M.S.; Tedla, J.S.; Dixit, S.; Alshahrani, A.; Gular, K.; Raizah, A. Mediation Effect of Pain on the Relationship between Kinesiophobia and Postural Control: Comparison and Correlations in Individuals with Fibromyalgia Syndrome and Asymptomatic Individuals—A Cross-Sectional Study. Life 2023, 13, 175. [Google Scholar] [CrossRef]
- Lee, J.-D.; Shin, W.-S. Immediate effects of neuromuscular control exercise on neck pain, range of motion, and proprioception in persons with neck pain. Phys. Ther. Rehabil. Sci. 2020, 9, 1–9. [Google Scholar] [CrossRef]
- Prochazka, A. Proprioception: Clinical relevance and neurophysiology. Curr. Opin. Physiol. 2021, 23, 100440. [Google Scholar] [CrossRef]
- Shenton, J.T.; Schwoebel, J.; Coslett, H.B. Mental motor imagery and the body schema: Evidence for proprioceptive dominance. Neurosci. Lett. 2004, 370, 19–24. [Google Scholar] [CrossRef]
- Alahmari, K.A.; Kakaraparthi, V.N.; Reddy, R.S.; Silvian, P.; Tedla, J.S.; Rengaramanujam, K.; Ahmad, I. Combined effects of strengthening and proprioceptive training on stability, balance, and proprioception among subjects with chronic ankle instability in different age groups: Evaluation of clinical outcome measures. Indian J. Orthop. 2021, 55, 199–208. [Google Scholar] [CrossRef] [PubMed]
Variable | SIS Group (n = 50) (Mean ± SD) | Healthy Group (n = 50) (Mean ± SD) | p-Value |
---|---|---|---|
Age (years) | 45.2 ± 7.1 | 43.8 ± 6.5 | 0.214 |
Gender | |||
| 26 (52%) | 28 (56%) | 0.678 |
| 24 (48%) | 22 (44%) | 0.438 |
Dominant | |||
| 44 (88%) | 45 (90%) | 0.754 |
| 6 (12%) | 5 (10%) | 0.467 |
BMI (kg/m2) | 27.4 ± 3.6 | 25.8 ± 2.9 | 0.039 |
Symptom Duration (months) | 12.3 ± 6.8 | - | - |
Education Level | |||
| 15 (30%) | 10 (20%) | 0.211 |
| 35 (70%) | 40 (80%) | 0.341 |
Employment Status | |||
| 18 (36%) | 37 (74%) | 0.325 |
| 13 (26%) | 32 (64%) | 0.453 |
Marital Status | |||
| 28 (56%) | 33 (66%) | 0.429 |
| 22 (44%) | 17 (34%) | 0.386 |
Variable | SIS Group (n = 50) (Mean ± SD) | Healthy Group (n = 50) (Mean ± SD) | Mean Difference | Effect Size (Cohen’s d) | p-Value | |
---|---|---|---|---|---|---|
Shoulder Muscle Strength | Flexors (Kg) | 11.6 ± 7.2 | 22.3 ± 8.1 | −6.7 | 0.84 | <0.001 |
Abductors (Kg) | 10.8 ± 9.2 | 18.4 ± 8.7 | −4.6 | 0.51 | <0.001 | |
Medial Rotators (Kg) | 07.3 ± 6.1 | 13.7 ± 5.5 | −3.4 | 0.58 | <0.001 | |
Lateral Rotators (Kg) | 08.9 ± 5.7 | 15.1 ± 6.2 | −3.2 | 0.52 | <0.001 | |
Shoulder JPS | Flexion (Degrees of Error) | 3.5 ± 1.2 | 1.2 ± 0.9 | 2.3 | 1.91 | <0.001 |
Abduction (Degrees of Error) | 4.0 ± 1.5 | 1.5 ± 1.1 | 2.5 | 1.45 | <0.001 | |
Medial Rotation (Degrees of Error) | 10.2 ± 3.1 | 4.5 ± 2.2 | 5.7 | 2.61 | <0.001 | |
Lateral Rotation (Degrees of Error) | 9.8 ± 2.9 | 4.2 ± 2.0 | 5.6 | 2.69 | <0.001 |
Variable | Correlation (r) | p-Value |
---|---|---|
Flexors vs. Flexion | 0.62 | <0.001 |
Flexors vs. Abduction | 0.35 | 0.027 |
Flexors vs. Medial Rotation | 0.58 | <0.001 |
Flexors vs. Lateral Rotation | 0.52 | <0.001 |
Abductors vs. Flexion | 0.45 | 0.005 |
Abductors vs. Abduction | 0.32 | 0.045 |
Abductors vs. Medial Rotation | 0.59 | <0.001 |
Abductors vs. Lateral Rotation | 0.55 | <0.001 |
Medial Rotators vs. Flexion | 0.55 | <0.001 |
Medial Rotators vs. Abduction | 0.43 | 0.007 |
Medial Rotators vs. Medial Rotation | 0.62 | <0.001 |
Medial Rotators vs. Lateral Rotation | 0.48 | 0.003 |
Lateral Rotators vs. Flexion | 0.51 | <0.001 |
Lateral Rotators vs. Abduction | 0.39 | 0.015 |
Lateral Rotators vs. Medial Rotation | 0.54 | <0.001 |
Lateral Rotators vs. Lateral Rotation | 0.63 | <0.001 |
Test Variables | Total Effect (c + a × b) | Direct Effect (c-Path) | Indirect Effect (b-Path) | ||||||
---|---|---|---|---|---|---|---|---|---|
B | SE | p-Value | B | SE | p-Value | B | SE | p-Value | |
Pain × Shoulder Flexion × JPS Flexion | 0.60 | 0.15 | 0.001 | 0.23 | 0.03 | <0.001 | 0.07 | 0.02 | 0.005 |
Pain × Shoulder Abduction × JPS Abduction | 0.58 | 0.12 | 0.001 | 0.21 | 0.02 | <0.001 | 0.08 | 0.01 | 0.004 |
Pain × Medial Rotation × JPS Medial Rotation | 0.42 | 0.11 | 0.002 | 0.15 | 0.02 | <0.001 | 0.04 | 0.01 | 0.001 |
Pain × Lateral Rotation × JPS Lateral Rotation | 0.38 | 0.10 | 0.003 | 0.14 | 0.02 | <0.001 | 0.03 | 0.01 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alfaya, F.F.; Reddy, R.S.; Alshahrani, M.S.; Alkhamis, B.A.; Gautam, A.P.; Mukherjee, D.; Alqhtani, R.S.; Ghulam, H.S.H.; Adal, S.A.; Jarrar, M.A.M.; et al. Mediating the Connection: The Role of Pain in the Relationship between Shoulder Muscle Strength, Joint Position Sense, and Sub-Acromial Impingement Syndrome. Appl. Sci. 2023, 13, 11944. https://doi.org/10.3390/app132111944
Alfaya FF, Reddy RS, Alshahrani MS, Alkhamis BA, Gautam AP, Mukherjee D, Alqhtani RS, Ghulam HSH, Adal SA, Jarrar MAM, et al. Mediating the Connection: The Role of Pain in the Relationship between Shoulder Muscle Strength, Joint Position Sense, and Sub-Acromial Impingement Syndrome. Applied Sciences. 2023; 13(21):11944. https://doi.org/10.3390/app132111944
Chicago/Turabian StyleAlfaya, Fareed F., Ravi Shankar Reddy, Mastour Saeed Alshahrani, Batool Abdulelah Alkhamis, Ajay Prashad Gautam, Debjani Mukherjee, Raee S. Alqhtani, Hussain Saleh H. Ghulam, Saeed Al Adal, Mohammed A. M. Jarrar, and et al. 2023. "Mediating the Connection: The Role of Pain in the Relationship between Shoulder Muscle Strength, Joint Position Sense, and Sub-Acromial Impingement Syndrome" Applied Sciences 13, no. 21: 11944. https://doi.org/10.3390/app132111944