Experimental and Statistical Study on the Formation Characteristics and Discrimination Criteria of River Blockages Caused by Landslides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Materials
2.3. Experimental Scheme
3. Experimental Results
3.1. Landslide Dam Formation Process
3.2. River Blockage Induced by Landslide Dams
3.3. Effect of Different Factors on Blockage Type
3.3.1. Effect of Material Conditions
3.3.2. Effect of Slide Angle
3.3.3. Effect of the Landslide Velocity Entering the River
3.4. Analysis of the Degree of River Blockage
4. River Blockage Criteria
4.1. An Improved Probability Model
4.2. Discrimination of Statistical Landslide Cases
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Number | Locality | Material | H (m) | α (°) | LT (m) | LL (m) | Wmax (m) | T (m) | V (106 m3) | WV (m) | θ (°) | Blockage |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Comineto | debris | 177 | 12 | 820 | 540 | 450 | 22.5 | 2.86 | 75 | 3.4 | Complete blockage |
2 | Groppallo | debris | 618 | 11 | 3680 | 1700 | 725 | 25 | 22.24 | 330 | 8.5 | Partial blockage |
3 | Ciano | debris | 245 | 10 | 1640 | 1050 | 750 | 37.5 | 18.55 | 660 | 0.2 | Partial blockage |
4 | Cervarezza | debris | 760 | 13 | 3300 | 1500 | 1200 | 78 | 50.54 | 440 | 1.3 | Partial blockage |
5 | Caselle | debris | 200 | 25 | 500 | 380 | 500 | 15 | 1.49 | 100 | 0.6 | Complete blockage |
6 | S.Piero in Bagno | debris | 420 | 5 | 4500 | 2900 | 1800 | 50 | 136.59 | 300 | 1.2 | Complete blockage |
7 | Tozzi | rock | 335 | 16.6 | 1370 | 900 | 400 | 20 | 3.14 | 225 | 0.5 | Partial blockage |
8 | S.Agata Feltria | earth | 593 | 8.2 | 4530 | 3000 | 1375 | 30 | 64.76 | 75 | 4.4 | Complete blockage |
9 | Sorbano | rock | 231 | 9.3 | 1640 | 950 | 350 | 35 | 5.82 | 225 | 1.1 | Complete blockage |
10 | Pian de’ Romiti | debris | 25 | 5 | 300 | 160 | 120 | 20 | 0.72 | 20 | 0.5 | Complete blockage |
11 | Fosso Falterona | debris | 350 | 30 | 700 | 530 | 200 | 10 | 1.40 | 25 | 10 | Complete blockage |
12 | Roncovetro | debris | 335 | 7.8 | 2500 | 1500 | 280 | 15 | 3.30 | 40 | 3.4 | Complete blockage |
13 | Gallare | rock | 90 | 11.5 | 590 | 400 | 110 | 25 | 0.58 | 175 | 0.6 | Partial blockage |
14 | Scanno | bedrock | 495 | 11.7 | 3200 | 2400 | 2000 | 50 | 82.00 | 200 | 0.6 | Complete blockage |
15 | Schiazzano | debris and earth | 75 | 51.3 | 225 | 60 | 70 | 15 | 0.04 | 40 | 1.9 | Complete blockage |
16 | Corniolo | rock | 325 | 18 | 1000 | 530 | 420 | 15 | 3.00 | 140 | 0.9 | Complete blockage |
17 | Valderchia | debris | 110 | 14.3 | 430 | 400 | 170 | 15 | 0.50 | 90 | 3.1 | Partial blockage |
18 | Castello di Serravalle | debris | 390 | 24.9 | 1030 | 840 | 280 | 10 | 1.00 | 130 | 2.6 | Partial blockage |
19 | Boschi di Valoria | earth | 810 | 13 | 3500 | 2000 | 620 | 10 | 13.00 | 250 | 1.7 | Partial blockage |
20 | Rosola | debris | 90 | 4.3 | 1200 | 620 | 350 | 12 | 1.00 | 180 | 3.5 | Partial blockage |
21 | Roccalbegna | earth | 234 | 10.2 | 1300 | 1300 | 400 | 20 | 8.00 | 80 | 10.2 | Partial blockage |
22 | Piaggiagrande-Renaio | rock and debris | 83 | 18.7 | 245 | 215 | 130 | 30 | 0.70 | 60 | 9.5 | Partial blockage |
23 | Camporella | debris | 260 | 13.3 | 1100 | 1000 | 300 | 50 | 5.00 | 320 | 1.9 | Partial blockage |
24 | Ossola | debris | 170 | 7.7 | 1250 | 950 | 270 | 15 | 3.00 | 110 | 1.1 | Partial blockage |
25 | Settefrati | rock and debris | 63 | 18.8 | 185 | 135 | 180 | 27 | 0.34 | 45 | 17.2 | Partial blockage |
26 | Benedello | rock and debris | 246 | 10 | 1400 | 830 | 480 | 20 | 3.50 | 90 | 1.7 | Partial blockage |
27 | Draga | earth | 240 | 9.7 | 1400 | 1200 | 500 | 20 | 6.50 | 135 | 3.8 | Partial blockage |
28 | Bardea | debris | 49 | 12 | 230 | 130 | 140 | 10 | 0.20 | 80 | 2.4 | Partial blockage |
29 | Zillona | rock and debris | 145 | 12.6 | 650 | 375 | 160 | 10 | 0.35 | 110 | 1.1 | Partial blockage |
30 | Voltre | debris and earth | 115 | 9.1 | 719 | 690 | 150 | 10 | 1.00 | 260 | 0.9 | Partial blockage |
31 | Cà di Rico | earth | 65 | 9 | 410 | 380 | 170 | 10 | 0.50 | 65 | 2.7 | Partial blockage |
32 | Lago Costantino | debris and earth | 320 | 28.1 | 600 | 360 | 750 | 130 | 16.00 | 200 | 3.4 | Partial blockage |
33 | Ronchi | debris | 115 | 14 | 460 | 410 | 365 | 20 | 2.00 | 110 | 1.9 | Partial blockage |
34 | Covatta | earth | 280 | 11.1 | 1430 | 700 | 500 | 10 | 2.00 | 250 | 0.3 | Partial blockage |
35 | S. Cristina | debris | 101 | 7.2 | 800 | 750 | 1200 | 70 | 25.00 | 250 | 3 | Complete blockage |
36 | Marro | debris | 58 | 4.4 | 750 | 650 | 700 | 50 | 15.00 | 150 | 1.9 | Complete blockage |
37 | Cumi | debris and earth | 61 | 4.4 | 800 | 710 | 900 | 60 | 20.00 | 210 | 2 | Complete blockage |
38 | Cucco | debris and earth | 19 | 2.2 | 500 | 360 | 270 | 20 | 1.00 | 115 | 7.8 | Complete blockage |
39 | Antrona | debris and rock | 1500 | 45 | 2900 | 1200 | 1700 | 80 | 28.00 | 620 | 6.4 | Complete blockage |
40 | Val Pola | rock | 1340 | 32 | 2035 | 900 | 1700 | 90 | 40.00 | 400 | 1.2 | Complete blockage |
41 | Alleghe | debris and rock | 900 | 30 | 2000 | 750 | 1400 | 70 | 20.00 | 400 | 0.8 | Complete blockage |
42 | Val Vanoi | debris | 820 | 25 | 2428 | 600 | 1200 | 100 | 15.00 | 300 | 1.6 | Complete blockage |
43 | Borta | debris and rock | 925 | 30 | 2200 | 950 | 1150 | 100 | 30.00 | 250 | 0.5 | Complete blockage |
44 | Villar | rock | 780 | 18.7 | 2800 | 2300 | 1500 | 120 | 150.00 | 330 | 1.3 | Complete blockage |
45 | Fenestrelle | rock and debris | 300 | 14 | 1600 | 1200 | 1100 | 100 | 100.00 | 500 | 1.1 | Complete blockage |
46 | Serre la Voute | rock and debris | 590 | 18.1 | 1900 | 1800 | 1350 | 140 | 150.00 | 500 | 0.9 | Complete blockage |
47 | Piuro | debris and rock | 1250 | 55 | 3000 | 1000 | 900 | 10 | 6.00 | 450 | 3.6 | Complete blockage |
48 | Contr. Cugno Giovanni | rock | 145 | 19.9 | 400 | 230 | 275 | 40 | 1.32 | 130 | 3.2 | Partial blockage |
49 | Randazzo-Nord | debris and rock | 25 | 0.7 | 2200 | 2200 | 800 | 20 | 18.42 | 190 | 2.1 | Partial blockage |
50 | Contr. Vettrana | rock and earth | 415 | 7.9 | 3000 | 2350 | 720 | 12 | 6.21 | 180 | 1.6 | Partial blockage |
51 | Roccella Valdemone- Ovest | rock and earth | 130 | 17.2 | 420 | 410 | 260 | 9 | 0.48 | 115 | 3.6 | Partial blockage |
52 | Portella Colla II | debris, earth, and rock | 1290 | 11.7 | 6250 | 4500 | 3000 | 40 | 282.60 | 850 | 3.5 | Complete blockage |
53 | Contr. Ufra | rock | 130 | 10.5 | 700 | 640 | 1000 | 87 | 40.00 | 295 | 1.1 | Complete blockage |
54 | Fondo Barone | earth | 40 | 3.1 | 750 | 600 | 300 | 18 | 1.70 | 290 | 2.4 | Partial blockage |
55 | Contr. Salmicella | rock | 240 | 28.1 | 450 | 185 | 280 | 20 | 0.54 | 180 | 2 | Partial blockage |
56 | Contr. La Sarculla | rock | 200 | 27.8 | 380 | 220 | 800 | 15 | 1.00 | 230 | 8.9 | Partial blockage |
57 | Contr. Scala Vecchia | rock | 150 | 31 | 250 | 230 | 400 | 30 | 0.80 | 210 | 0.4 | Partial blockage |
58 | Cavallerizzo | rock and debris | 143 | 9 | 1100 | 900 | 200 | 40 | 5.00 | 65 | 8.4 | Complete blockage |
59 | Testi | debris | 48 | 9.4 | 340 | 290 | 400 | 20 | 1.21 | 60 | 9.8 | Complete blockage |
60 | Barattano | earth | 27 | 6.4 | 240 | 200 | 50 | 14 | 0.07 | 95 | 3.6 | Complete blockage |
References
- Xu, C.; Dai, F.; Yao, X.; Chen, J.; Tu, X.; Sum, Y.; Wang, Z. GIS-based landslide susceptibility assessment using analytical hierarchy process in Wenchuan earthquake region. Chin. J. Rock Mech. Eng. 2009, 28, 3978–3985. [Google Scholar]
- Chen, C.-Y.; Chang, J.-M. Landslide dam formation susceptibility analysis based on geomorphic features. Landslides 2016, 13, 1019–1033. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; Scaringi, G.; Dai, L.; Li, W.; Dong, X.; Zhu, X.; Pei, X.; Dai, K.; Havenith, H.-B. Failure mechanism and kinematics of the deadly 24 June 2017 Xinmo landslide, Maoxian, Sichuan, China. Landslides 2017, 14, 2129–2146. [Google Scholar] [CrossRef]
- Yin, Y.; Cheng, Y.; Liang, J.; Wang, W. Heavy-rainfall-induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms 8.0 earthquake. Landslides 2016, 13, 9–23. [Google Scholar] [CrossRef]
- Zhou, J.-W.; Xu, F.-G.; Yang, X.-G.; Yang, Y.-C.; Lu, P.-Y. Comprehensive analyses of the initiation and landslide-generated wave processes of the 24 June 2015 Hongyanzi landslide at the Three Gorges Reservoir, China. Landslides 2016, 13, 589–601. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Yin, Y.-P.; Hu, X.-W.; Wang, W.-P.; Zhu, S.-N.; Zhang, N.; Cao, S.-H. Initiation mechanism of the Baige landslide on the upper reaches of the Jinsha River, China. Landslides 2020, 17, 2865–2877. [Google Scholar] [CrossRef]
- Dong, J.-J.; Lai, P.-J.; Chang, C.-P.; Yang, S.-H.; Yeh, K.-C.; Liao, J.-J.; Pan, Y.-W. Deriving landslide dam geometry from remote sensing images for the rapid assessment of critical parameters related to dam-breach hazards. Landslides 2014, 11, 93–105. [Google Scholar] [CrossRef]
- Han, L.; Zhang, J.; Zhang, Y.; Ma, Q.; Alu, S.; Lang, Q. Hazard assessment of earthquake disaster chains based on a Bayesian network model and ArcGIS. IJGI 2019, 8, 210. [Google Scholar] [CrossRef]
- Ouimet, W.B.; Whipple, K.X.; Royden, L.H.; Sun, Z.; Chen, Z. The influence of large landslides on river incision in a transient landscape: Eastern margin of the Tibetan Plateau (Sichuan, China). Earth Surf. Process. Landf. 2007, 119, 1462–1476. [Google Scholar] [CrossRef]
- Ermini, L.; Casagli, N. Prediction of the behaviour of landslide dams using a geomorphological dimensionless index. Surf. Process. Landf. 2003, 28, 31–47. [Google Scholar] [CrossRef]
- Pei, R.; Ni, Z.; Meng, Z.; Zhang, B.; Liao, R. Characteristics of secondary mountain disaster chain in Wenchuan earthquake. Am. J. Civ. Eng. 2017, 5, 408–413. [Google Scholar] [CrossRef]
- Guo, X.; Cui, P.; Li, Y.; Zou, Q.; Kong, Y. The formation and development of debris flows in large watersheds after the 2008 Wenchuan Earthquake. Landslides 2016, 13, 25–37. [Google Scholar] [CrossRef]
- Xu, W.-J.; Xu, Q.; Wang, Y.-J. The mechanism of high-speed motion and damming of the Tangjiashan landslide. Eng. Geol. 2013, 157, 8–20. [Google Scholar] [CrossRef]
- Zhou, G.G.D.; Roque, P.J.C.; Xie, Y.; Song, D.; Zou, Q.; Chen, H. Numerical study on the evolution process of a geohazards chain resulting from the Yigong landslide. Landslides 2020, 17, 2563–2576. [Google Scholar] [CrossRef]
- Gan, B.-R.; Yang, X.-G.; Liao, H.-M.; Zhou, J.-W. Flood routing process and high dam interception of natural discharge from the 2018 Baige landslide-dammed lake. Water 2020, 12, 605. [Google Scholar] [CrossRef]
- Gu, X.B.; Ma, Y.; Wu, Q.H.; Ji, X.J.; Bai, H. The risk assessment of landslide hazards in Shiwangmiao based on intuitionistic fuzzy sets-Topsis model. Nat. Hazards 2022, 111, 283–303. [Google Scholar] [CrossRef]
- Song, H.; Cui, W. A large-scale colluvial landslide caused by multiple factors: Mechanism analysis and phased stabilization. Landslides 2016, 13, 321–335. [Google Scholar] [CrossRef]
- Montrasio, L.; Schilirò, L.; Terrone, A. Physical and numerical modelling of shallow landslides. Landslides 2016, 13, 873–883. [Google Scholar] [CrossRef]
- Zhao, T.; Dai, F.; Xu, N.-W. Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers. Landslides 2017, 14, 189–201. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, S.; Zhuang, Y.; Dai, X.; Lv, G.; Xing, A. Characteristics and runout behaviour of the disastrous 28 August 2017 rock avalanche in Nayong, Guizhou, China. Eng. Geol. 2019, 259, 105154. [Google Scholar] [CrossRef]
- Wang, W.; Chen, G.; Zhang, Y.; Zheng, L.; Zhang, H. Dynamic simulation of landslide dam behavior considering kinematic characteristics using a coupled DDA-SPH method. Eng. Anal. Bound. Elem. 2017, 80, 172–183. [Google Scholar] [CrossRef]
- Liao, H.-M.; Yang, X.-G.; Lu, G.-D.; Tao, J.; Zhou, J.-W. Experimental study on the river blockage and landslide dam formation induced by rock slides. Eng. Geol. 2019, 261, 105269. [Google Scholar] [CrossRef]
- Wu, H.; Nian, T.-K.; Chen, G.-Q.; Zhao, W.; Li, D.-Y. Laboratory-scale investigation of the 3-D geometry of landslide dams in a U-shaped valley. Eng. Geol. 2020, 265, 105428. [Google Scholar] [CrossRef]
- Ge, Y.; Zhou, T.; Tang, H.; Lin, Z. Influence of the impact angle on the motion and deposition of granular flows. Eng. Geol. 2020, 275, 105746. [Google Scholar] [CrossRef]
- Chen, K.-T.; Chen, T.-C.; Chen, X.-Q.; Chen, H.-Y.; Zhao, W.-Y. An experimental determination of the relationship between the minimum height of landslide dams and the run-out distance of landslides. Landslides 2021, 18, 2111–2124. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, Z.; Zhang, Q.; Liu, W.; Peng, M.; Wu, C. 3D DEM investigation on the morphology and structure of landslide dams formed by dry granular flows. Eng. Geol. 2019, 258, 105151. [Google Scholar] [CrossRef]
- Zhou, Y.; Shi, Z.; Zhang, Q.; Jang, B.; Wu, C. Damming process and characteristics of landslide-debris avalanches. Soil Dyn. Earthq. Eng. 2019, 121, 252–261. [Google Scholar] [CrossRef]
- Fan, X.; Rossiter, D.G.; van Westen, C.J.; Xu, Q.; Görüm, T. Empirical prediction of coseismic landslide dam formation. Earth Surf. Process. Landf. 2014, 39, 1913–1926. [Google Scholar] [CrossRef]
- Nian, T.; Wu, H.; Chen, G.; Zheng, D.; Zhang, Y.; Li, D. Research progress on stability evaluation method and disaster chain effect of landslide dam. Chin. J. Rock Mech. Eng. 2018, 37, 1796–1812. [Google Scholar]
- Guo, D.; Hamada, M.; He, C.; Wang, Y.; Zou, Y. An empirical model for landslide travel distance prediction in Wenchuan earthquake area. Landslides 2014, 11, 281–291. [Google Scholar] [CrossRef]
- Nian, T.-K.; Wu, H.; Li, D.-Y.; Zhao, W.; Takara, K.; Zheng, D.-F. Experimental investigation on the formation process of landslide dams and a criterion of river blockage. Landslides 2020, 17, 2547–2562. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, S.; Shan, Y. Prediction of the overtopping-induced breach process of the landslide dam. Eng. Geol. 2020, 274, 105709. [Google Scholar] [CrossRef]
- Jiang, X.; Cui, P.; Chen, H.; Guo, Y. Formation conditions of outburst debris flow triggered by overtopped natural dam failure. Landslides 2017, 14, 821–831. [Google Scholar]
- Hu, Y.-X.; Li, H.-B.; Lu, G.-D.; Fan, G.; Zhou, J.-W. Influence of size gradation on particle separation and the motion behaviors of debris avalanches. Landslides 2021, 18, 1845–1858. [Google Scholar] [CrossRef]
- Hao, M.; Xu, Q.; Yang, X.; Peng, T.; Zhou, J. Physical modeling tests on inverse grading of particles in high speed landslide debris. Chin. J. Rock Mech. Eng. 2015, 34, 472–479. [Google Scholar]
- Liu, W.; He, S. Dynamic simulation of a mountain disaster chain: Landslides, barrier lakes, and outburst floods. Nat. Hazards 2018, 90, 757–775. [Google Scholar] [CrossRef]
- Tacconi Stefanelli, C.; Segoni, S.; Casagli, N.; Catani, F. Geomorphic indexing of landslide dams evolution. Eng. Geol. 2016, 208, 1–10. [Google Scholar] [CrossRef]
Experimental ID | Slide Angle (°) | Particle Size (cm) | Volume (m3) | Flow Velocity (m/s) | Flow Rate (m3/s) |
---|---|---|---|---|---|
A1-1 | 30 | 0.1–0.2 | 0.02 | 0.6321 | 0.0199 |
A1-2 | 0.04 | ||||
A1-3 | 0.06 | ||||
A1-4 | 0.08 | ||||
A1-5 | 0.1 | ||||
A2-1 | 0.2–0.5 | 0.02 | 0.6378 | 0.0201 | |
A2-2 | 0.04 | ||||
A2-3 | 0.06 | ||||
A2-4 | 0.08 | ||||
A2-5 | 0.1 | ||||
A3-1 | 0.5–1.0 | 0.02 | 0.6412 | 0.0202 | |
A3-2 | 0.04 | ||||
A3-3 | 0.06 | ||||
A3-4 | 0.08 | ||||
A3-5 | 0.1 | ||||
B1-1 | 35 | 0.1–0.2 | 0.02 | 0.6263 | 0.0197 |
B1-2 | 0.04 | ||||
B1-3 | 0.06 | ||||
B1-4 | 0.08 | ||||
B1-5 | 0.1 | ||||
B2-1 | 0.2–0.5 | 0.02 | 0.6145 | 0.0194 | |
B2-2 | 0.04 | ||||
B2-3 | 0.06 | ||||
B2-4 | 0.08 | ||||
B2-5 | 0.1 | ||||
B3-1 | 0.5–1.0 | 0.02 | 0.6378 | 0.0201 | |
B3-2 | 0.04 | ||||
B3-3 | 0.06 | ||||
B3-4 | 0.08 | ||||
B3-5 | 0.1 | ||||
C1-1 | 40 | 0.1–0.2 | 0.02 | 0.6377 | 0.0201 |
C1-2 | 0.04 | ||||
C1-3 | 0.06 | ||||
C1-4 | 0.08 | ||||
C1-5 | 0.1 | ||||
C2-1 | 0.2–0.5 | 0.02 | 0.6276 | 0.0198 | |
C2-2 | 0.04 | ||||
C2-3 | 0.06 | ||||
C2-4 | 0.08 | ||||
C2-5 | 0.1 | ||||
C3-1 | 0.5–1.0 | 0.02 | 0.6296 | 0.0198 | |
C3-2 | 0.04 | ||||
C3-3 | 0.06 | ||||
C3-4 | 0.08 | ||||
C3-5 | 0.1 |
River Blockage Type | Degree of Blockage | Relationships of Characteristic Heights | Representative Experimental Test |
---|---|---|---|
Type 1-1 | Partially blocked | Hmin < hw Hmax appears in the middle of the river. | A1-1, A3-1 |
Type 1-2 | Hmax > hw > Hmin Hmax appears on the opposite side. | B3-1, C3-1 | |
Type 1-3 | Hmax > hw > Hmin Hmax appears on the landslide side. | A2-2, B1-2 | |
Type 2-1 | Fully blocked | Hmax > Hmin > hw Hmax appears in the middle of the river. | B3-3, C3-2 |
Type 2-2 | Hmax > Hmin > hw Hmax appears on the landslide side. | \ | |
Type 2-3 | Hmax > Hmin > hw Hmax appears on the opposite side. | A2-5, B1-4 |
Experiment Results | Prediction Results | |||
---|---|---|---|---|
Experiment Blockage State | Total Number of Groups | Number of Partial Blockage | Number of Complete Blockage | Accuracy |
Partial blockage | 27 | 25 | 2 | 92.6% |
Complete blockage | 18 | 2 | 16 | 88.9% |
Overall accuracy | 91.1% |
Real Landslide Cases | Prediction Results | |||
---|---|---|---|---|
Blockage State of Landslide Case | Total Number of Cases | Number of Partial Blockage | Number of Complete Blockage | Accuracy |
Partial blockage | 16 | 9 | 7 | 56.3% |
Complete blockage | 44 | 3 | 41 | 93.2% |
Overall accuracy | 83.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuo, L.; Hu, Y.-F.; Xiao, M.-L.; Luo, Y.; Liu, H.-Z.; Xie, H.-Q.; Pei, J.-L. Experimental and Statistical Study on the Formation Characteristics and Discrimination Criteria of River Blockages Caused by Landslides. Appl. Sci. 2023, 13, 12003. https://doi.org/10.3390/app132112003
Zhuo L, Hu Y-F, Xiao M-L, Luo Y, Liu H-Z, Xie H-Q, Pei J-L. Experimental and Statistical Study on the Formation Characteristics and Discrimination Criteria of River Blockages Caused by Landslides. Applied Sciences. 2023; 13(21):12003. https://doi.org/10.3390/app132112003
Chicago/Turabian StyleZhuo, Li, Yun-Feng Hu, Ming-Li Xiao, Yu Luo, Huai-Zhong Liu, Hong-Qiang Xie, and Jian-Liang Pei. 2023. "Experimental and Statistical Study on the Formation Characteristics and Discrimination Criteria of River Blockages Caused by Landslides" Applied Sciences 13, no. 21: 12003. https://doi.org/10.3390/app132112003
APA StyleZhuo, L., Hu, Y.-F., Xiao, M.-L., Luo, Y., Liu, H.-Z., Xie, H.-Q., & Pei, J.-L. (2023). Experimental and Statistical Study on the Formation Characteristics and Discrimination Criteria of River Blockages Caused by Landslides. Applied Sciences, 13(21), 12003. https://doi.org/10.3390/app132112003