Fracture Network Analysis of Karstified Subis Limestone Build-Up in Niah, Sarawak
Abstract
:Featured Application
Abstract
1. Introduction
2. Study Area and Geological Settings
2.1. Study Area
2.2. Tectonic Evolution
2.3. Depositional Setting and Stratigraphy
3. Materials and Methods
3.1. Structural Studies
3.1.1. Lineament Analysis
3.1.2. Surface Drainage System Mapping
3.1.3. Outcrop Analysis
3.2. Karst Features Delineation
3.3. Discrete Fracture Network (DFN) Modelling
4. Results
4.1. General Morphology of the Study Area
4.2. Structural Framework
4.2.1. Lineament Analysis
4.2.2. Fracture Patterns and Characteristics
4.3. Karst Features Delineation
4.3.1. Karst Depression
4.3.2. Karst Features in Outcrops
- Isolated limestone hill: Formed due to paleo-weathering and dissolution (Figure 9a).
- Cavern with stalagmites, stalactites, and pillars: Formed due to calcite precipitation (Figure 9c,e,f).
- Vertical grooves: Formed due to dissolution (Figure 9d).
- Water table: Formed due to the dissolution and erosion by the drainage leaving the hard bedrock (Figure 9g).
4.4. Karst Network Modelling and Topology Analysis
4.4.1. Discrete Fracture Network Modelling (DFN)
4.4.2. Fracture Network Topology
Fracture Length Distribution
Fracture Density (P20), Intensity (P21), and Connectivity (I–X–Y)
5. Results
5.1. Fracture Network Characteristics
5.2. Relationship between the Fracture Network and Karstification
5.3. Implication for Geological Carbon Storage and Naturally Fractured Reservoirs
6. Conclusions
- Integrating the outcrop and regional lineament analysis allows for a more detailed description and characterisation of the sub-seismic scale complex fracture network and can reduce the observational gap between well and seismic data;
- Karst features such as dolines, caves, passages, and speleothems are highly influenced by the intersection of fractures, major orientations, and the surface and underground drainage systems. The paleo-karst fracture networks are also strongly impacted by karst dissolution;
- Fracture parameters, including length distribution, density, intensity, and connectivity, are mainly scale-independent and vary spatially;
- Both regional lineament and outcrop fracture analyses in this study demonstrate that the fractures are isolated, with little connectivity between them. This should be reconsidered as limitations on outcrop accessibility can influence the results of the I–X–Y model;
- The small contribution of total fractures to the fracture network connectivity and the discrete behaviour of paleo-karst fractures has emphasised the importance of incorporating the matrix porosity across multiple scales of fracture network modelling in future studies. This should be performed for a better solution in upscaling the fracture–vug network model and to reduce the underestimation of models;
- Lastly, the fracture network models can predict the fluid flow and the potential karst feature alignment by incorporating the reservoirs’ permeability and porosity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jamaludin, S.N.F.; Sautter, B.; Pubellier, M.; Beg, M.A. The Succession of Upper Eocene-Upper Miocene Limestone Growth and Corresponding Tectonic Events in Luconia Shelf, Sarawak, Malaysia. Front. Earth Sci. 2021, 9, 588629. [Google Scholar] [CrossRef]
- Hasbollah, D.Z.A.; Junin, R. Assessment of geological CO2 storage potential in central Luconia province. Int. J. Adv. Appl. Sci. 2017, 4, 44–48. [Google Scholar] [CrossRef]
- Junin, R.; Hasbollah, D. A Preliminary Basin Scale Evaluation Framework of Potential Sedimentary Basins in Malaysia for Carbon Dioxide Sequestration. In Proceedings of the Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES), Kuching, Malaysia, 23–27 August 2015; pp. 1537–1542. [Google Scholar]
- Gholami, R.; Raza, A.; Iglauer, S. Leakage risk assessment of a CO2 storage site: A review. Earth-Sci. Rev. 2021, 223, 103849. [Google Scholar] [CrossRef]
- Rasool, M.H.; Ahmad, M.; Ayoub, M. Selecting Geological Formations for CO2 Storage: A Comparative Rating System. Sustainability 2023, 15, 6599. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef]
- Raza, A.; Rezaee, R.; Gholami, R.; Rasouli, V.; Bing, C.H.; Nagarajan, R.; Hamid, M.A. Injectivity and quantification of capillary trapping for CO2 storage: A review of influencing parameters. J. Nat. Gas Sci. Eng. 2015, 26, 510–517. [Google Scholar] [CrossRef]
- Yu, J.; Li, Z.; Yang, L. Fault system impact on paleokarst distribution in the Ordovician Yingshan Formation in the central Tarim basin, northwest China. Mar. Pet. Geol. 2016, 71, 105–118. [Google Scholar] [CrossRef]
- Lopes, J.A.; Medeiros, W.E.; La Bruna, V.; de Lima, A.; Bezerra, F.H.; Schiozer, D.J. Advancements towards DFKN modelling: Incorporating fracture enlargement resulting from karstic dissolution in discrete fracture networks. J. Pet. Sci. Eng. 2022, 209, 109944. [Google Scholar] [CrossRef]
- Uematsu, H.; Auxiette, G.; Bellah, S.; Virlan, V.; Stojic, T. New approach using dual porosity dual permeability and dissolved pore network to simulation modeling for fractured carbonate reservoir in Abu Dhabi. In Proceedings of the Abu Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, United Arab Emirates, 13–16 November 2017. [Google Scholar]
- Akram, A.H.; Gherryo, Y.S.; Ali, S.; Thabt, M.S.; Serban, A. Dynamic behavior of a fissured dual-carbonate reservoir modeled with DFN. In Proceedings of the North Africa Technical Conference and Exhibition, Cairo, Egypt, 14–17 February 2010. [Google Scholar]
- Loucks, R.G. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bull. 1999, 83, 1795–1834. [Google Scholar] [CrossRef]
- Volatili, T.; Agosta, F.; Cardozo, N.; Zambrano, M.; Lecomte, I.; Tondi, E. Outcrop-scale fracture analysis and seismic modelling of a basin-bounding normal fault in platform carbonates, central Italy. J. Struct. Geol. 2022, 155, 104515. [Google Scholar] [CrossRef]
- Espejel, R.L.; Alves, T.M.; Blenkinsop, T.G. Multi-scale fracture network characterisation on carbonate platforms. J. Struct. Geol. 2020, 140, 104160. [Google Scholar] [CrossRef]
- Gutmanis, J.; I Oró, L.A.; DíEz-Canseco, D.; Chebbihi, L.; Awdal, A.; Cook, A. Fracture analysis of outcrop analogues to support modelling of the subseismic domain in carbonate reservoirs, south-central Pyrenees. In Geological Society, London, Special Publications; The Geological Society: London, UK, 2018; Volume 459, pp. 139–156. [Google Scholar]
- Agosta, F. Some open issues in the analysis of the storage and migration properties of fractured carbonate reservoirs. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 23–28 April 2017; p. 6741. [Google Scholar]
- Lohr, T. Seismic and Sub-Seismic Deformation on Different Scales in the NW German Basin. Ph.D. Thesis, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, 2007; pp. 35–48. [Google Scholar] [CrossRef]
- Narr, W.; Schechter, D.S.; Thompson, L.B. Naturally Fractured Reservoir Characterization; Society of Petroleum Engineers: Richardson, TX, USA, 2006; Volume 112. [Google Scholar]
- Lonergan, L.; Jolly, R.; Rawnsley, K.; Sanderson, D. Fractured Reservoirs; Geological Society: London, UK, 2007. [Google Scholar] [CrossRef]
- Odling, N.E. Scaling and connectivity of joint systems in sandstones from western Norway. J. Struct. Geol. 1997, 19, 1257–1271. [Google Scholar] [CrossRef]
- Maerten, L.; Gillespie, P.; Daniel, J.-M. Three-dimensional geomechanical modeling for constraint of subseismic fault simulation. AAPG Bull. 2006, 90, 1337–1358. [Google Scholar] [CrossRef]
- Giuffrida, A.; La Bruna, V.; Castelluccio, P.; Panza, E.; Rustichelli, A.; Tondi, E.; Giorgioni, M.; Agosta, F. Fracture simulation parameters of fractured reservoirs: Analogy with outcropping carbonates of the Inner Apulian Platform, southern Italy. J. Struct. Geol. 2019, 123, 18–41. [Google Scholar] [CrossRef]
- Kokkalas, S.; Vakalas, I.; Jones, R. Fracture density variation at different observation scales in carbonate reservoir outcrop analogues. In Proceedings of the EAGE Middle East Geomechanics Workshop: Lessons Learned & New Frontiers, Online, 1–3 March 2022; Volume 2022, pp. 1–5. [Google Scholar] [CrossRef]
- Dodge-Wan, D.; Viswanathan, P.M.; Ramasamy, N.; Arumugam, A. Epiphreatic caves in Niah karst tower (NW Borneo): Occurrence, morphology and hydrogeochemistry. Acta Carsologica 2017, 46, 149–163. [Google Scholar] [CrossRef]
- Ramkumar, M.; Nagarajan, R.; Mathew, M.J.; Sautter, B.; Siddiqui, N.A.; Saw, B.B.; Santosh, M.; Menier, D.; Poppelreiter, M.C. Relict hydrocarbon seeps in the Oligocene-Miocene Subis carbonate platform, Malaysia: Implications on hydrocarbon generation and migration pathways and potential sealing by shale gouging. Geol. J. 2021, 56, 2571–2582. [Google Scholar] [CrossRef]
- Fournillon, A.; Fournier, F.; Vidal, O. Seismic expression of carbonate build-up karstification: Karst modelling strategies and insights from synthetic seismic. Geol. Soc. Lond. Spec. Publ. 2021, 509, 227–248. [Google Scholar] [CrossRef]
- Saw, B.B.; Schlaich, M.; Poppelreiter, M.C.; Ramkumar, M.; Lunt, P.; Vintaned, J.A.G.; Ali, S.H. Facies, depositional environments, and anatomy of the Subis build-up in Sarawak, Malaysia: Implications on other Miocene isolated carbonate build-ups. Facies 2019, 65, 28. [Google Scholar] [CrossRef]
- Rankey, E.C.; Schlaich, M.; Mokhtar, S.; Ghon, G.; Ali, S.H.; Poppelreiter, M. Seismic architecture of a Miocene isolated carbonate platform and associated off-platform strata (Central Luconia Province, offshore Malaysia). Mar. Pet. Geol. 2019, 102, 477–495. [Google Scholar] [CrossRef]
- Dedeche, A.S.; Pierson, B.J.; Hunter, A.W. Growth History and Facies Evolution of the Subis Limestone—A Carbonate Platform Exposed Onshore Borneo Island, Malaysia. In Proceedings of the 75th EAGE Conference & Exhibition Incorporating SPE EUROPEC 2013, London, UK, 10–13 June 2013. [Google Scholar] [CrossRef]
- Dodge-Wan, D.; Deng, A.H.M.; Abbas, M.F. Occurrence and morphology of crayback-like stalagmites in the Painted Cave of Niah (Sarawak, Malaysia). Carbonates Evaporites 2012, 27, 343–356. [Google Scholar] [CrossRef]
- McFarlane, D.A. A Note on the Occurrence of a Crayback Stalagmite at Niah Caves, Borneo. Int. J. Speleol. 2011, 40, 39–43. [Google Scholar] [CrossRef]
- Dodge-Wan, D. The Traders’ Cave of Niah (NW Borneo): Morphology and features as indicators of speleogenesis and karstification. Carbonates Evaporites 2018, 33, 315–329. [Google Scholar] [CrossRef]
- Hutchison, C.S. Geology of North-West Borneo: Sarawak, Brunei and Sabah; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Tongkul, F. Regional geological correlation of Paleogene sedimentary rocks between Sabah and Sarawak. Bull. Geol. Soc. Malays. 1999, 43, 31–39. [Google Scholar] [CrossRef]
- Ali, M.Y. An integrated analysis of the depositional control, sedimentology and diagenesis of Cenozoic carbonates from the Sarawak basin, east Malaysia. Ph.D. Thesis, Imperial College London, London, UK, 2014. [Google Scholar]
- Madon, M.; Kim, C.L.; Wong, R. The structure and stratigraphy of deepwater Sarawak, Malaysia: Implications for tectonic evolution. J. Asian Earth Sci. 2013, 76, 312–333. [Google Scholar] [CrossRef]
- Hall, R. Cenozoic plate tectonic reconstructions of SE Asia. Geol. Soc. Lond. Spec. Publ. 1997, 126, 11–23. [Google Scholar] [CrossRef]
- Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 2002, 20, 353–431. [Google Scholar] [CrossRef]
- Hutchison, C.S. Marginal basin evolution: The southern South China Sea. Mar. Pet. Geol. 2004, 21, 1129–1148. [Google Scholar] [CrossRef]
- Ali, S.H.; Poppelreiter, M.C.; Saw, B.B.; Shah, M.M.; Bashir, Y. Facies, diagenesis and secondary porosity of a Miocene reefal platform of Central Luconia, Malaysia. Carbonates and Evaporites 2021, 36, 1–25. [Google Scholar] [CrossRef]
- Yusliandi, A.; Sautter, B.; Poppelreiter, M.C. The various controls on the platform architecture of carbonate buildups in the Central Luconia Province, Offshore Sarawak. Pet. Coal 2019, 61, 1425–1437. [Google Scholar]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Koša, E.; Warrlich, G.M.; Loftus, G. Wings, mushrooms, and Christmas trees: The carbonate seismic geomorphology of Central Luconia, Miocene–present, offshore Sarawak, northwest Borneo. AAPG Bull. 2015, 99, 2043–2075. [Google Scholar] [CrossRef]
- Sahari, S.; Ahmad Shah, A.; Aaisyah, D.; Batmanathan, N.; Shahbuddin, A. Active detachment faulting controls folding and faulting in western Borneo, SE Asia. J. Asian Earth Sci. X 2023, 9, 100133. [Google Scholar] [CrossRef]
- Lin, Y.A.; Colli, L.; Wu, J.; Schuberth, B.S. Where are the proto-South China Sea slabs? SE Asian plate tectonics and mantle flow history from global mantle convection modeling. J. Geophys. Res. Solid Earth 2020, 125, e2020JB019758. [Google Scholar] [CrossRef]
- Wang, P.C.; Li, S.Z.; Guo, L.L.; Jiang, S.H.; Somerville, I.D.; Zhao, S.J.; Zhu, B.D.; Chen, J.; Dai, L.M.; Suo, Y.H.; et al. Mesozoic and Cenozoic accretionary orogenic processes in Borneo and their mechanisms. Geol. J. 2016, 51, 464–489. [Google Scholar] [CrossRef]
- Kessler, F.L.; Jong, J. Paleogeography and carbonate facies evolution in NW Sarawak from the Late Eocene to the Middle Miocene. War. Geol. 2016, 42, 1–9. [Google Scholar]
- Moss, S. Embaluh Group turbidites in Kalimantan: Evolution of a remnant oceanic basin in Borneo during the Late Cretaceous to Palaeogene. J. Geol. Soc. 1998, 155, 509–524. [Google Scholar] [CrossRef]
- Cullen, A.B. Transverse segmentation of the Baram-Balabac Basin, NW Borneo: Refining the model of Borneo’s tectonic evolution. Pet. Geosci. 2010, 16, 3–29. [Google Scholar] [CrossRef]
- Cullen, A. Nature and significance of the West Baram and Tinjar Lines, NW Borneo. Mar. Pet. Geol. 2014, 51, 197–209. [Google Scholar] [CrossRef]
- Zheng, Q.L.; Li, S.Z.; Suo, Y.H.; Li, X.Y.; Guo, L.L.; Wang, P.C.; Zhang, Y.; Zang, Y.B.; Jiang, S.H.; Somerville, I.D. Structures around the Tinjar-West Baram Line in northern Kalimantan and seafloor spreading in the proto-South China Sea. Geol. J. 2016, 51, 513–523. [Google Scholar] [CrossRef]
- Sleumer, B. The Subis Limestone Complex—Sarawak, Malaysia. In Proceedings of the Carbonate Seminar, Special, Indonesia Petroleum Association, Jakarta, Indonesia, 12–19 September 1976. Volume 120. [Google Scholar]
- Agostinelli, E.; bin Ahmad Tajuddin, M.R.; Antonielli, E.; bin Mohd Aris, M. Miocene-Pliocene paleogeographic evolution of a tract of Sarawak offshore between Bintulu and Miri. Geol. Soc. Malays. Bull. 1990, 27, 117–135. [Google Scholar] [CrossRef]
- Welch, M.J.; Lüthje, M.; Oldfield, S.J. Modelling the Evolution of Natural Fracture Networks; Springer: Berlin/Heidelberg, Germany, 2020; Volume 965. [Google Scholar]
- Mendes, L.d.C.; Correia, U.M.; Cunha, O.R.; Oliveira, F.M.; Vidal, A.C. Topological analysis of fault network in naturally fractured reservoirs: A case study from the pre-salt section of the Santos Basin, Brazil. J. Struct. Geol. 2022, 159, 104597. [Google Scholar] [CrossRef]
- Sanderson, D.J.; Nixon, C.W. The use of topology in fracture network characterization. J. Struct. Geol. 2015, 72, 55–66. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 3 February 2023).
- Japan Aerospace Exploration Agency. Available online: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm (accessed on 3 March 2023).
- Official Website of Department of Irrigation and Drainage Sarawak. Available online: https://did.sarawak.gov.my/web/subpage/webpage_view/315 (accessed on 15 March 2023).
- Dowd, P.-I.; Pardo-Iguzquiza, E.; Dowd, P.; Durán Valsero, J.; Robledo, P. A review of fractals in karst. Int. J. Speleol. 2019, 48, 11–20. [Google Scholar] [CrossRef]
- De Carvalho Júnior, O.A.; Guimarães, R.F.; Montgomery, D.R.; Gillespie, A.R.; Gomes, R.A.T.; de Souza Martins, É.; Silva, N.C. Karst depression detection using ASTER, ALOS/PRISM and SRTM-derived digital elevation models in the Bambuí Group, Brazil. Remote Sens. 2013, 6, 330–351. [Google Scholar] [CrossRef]
- Healy, D.; Rizzo, R.E.; Cornwell, D.G.; Farrell, N.J.; Watkins, H.; Timms, N.E.; Gomez-Rivas, E.; Smith, M. FracPaQ: A MATLAB™ toolbox for the quantification of fracture patterns. J. Struct. Geol. 2017, 95, 1–16. [Google Scholar] [CrossRef]
- Manzocchi, T. The connectivity of two-dimensional networks of spatially correlated fractures. Water Resour. Res. 2002, 38, 1-1-1-20. [Google Scholar] [CrossRef]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of fluctuating sea levels since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef]
- Haile, N.S.; Adams, C.G.; Haak, R. The Geology and Mineral Resources of Suai-Baram Area, North Sarawak; Brit. Borneo Geol. Mem.; U.S. Government Printing Office: Washington, DC, USA, 1962. [Google Scholar]
Properties | Subis Limestone |
---|---|
Age of host limestone | Late of Oligocene to Early Miocene |
Age of karst development | Pleistocene to recent |
Influence by sea-level fluctuations | Yes (third order sequence) |
Influence by tectonic (uplifting) | Yes |
Host lithology | Coralline limestone |
Morphology and geometry | Flat-top and layer cake architecture |
Dominant foraminifera | Massive/branching corals, benthic foraminifera, and algae |
Depositional environment | Quiet, clean-water, shallow inner-sea setting under normal salinity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ong, P.Y.; Jamaludin, S.N.F. Fracture Network Analysis of Karstified Subis Limestone Build-Up in Niah, Sarawak. Appl. Sci. 2023, 13, 12110. https://doi.org/10.3390/app132212110
Ong PY, Jamaludin SNF. Fracture Network Analysis of Karstified Subis Limestone Build-Up in Niah, Sarawak. Applied Sciences. 2023; 13(22):12110. https://doi.org/10.3390/app132212110
Chicago/Turabian StyleOng, Poh Yee, and Siti Nur Fathiyah Jamaludin. 2023. "Fracture Network Analysis of Karstified Subis Limestone Build-Up in Niah, Sarawak" Applied Sciences 13, no. 22: 12110. https://doi.org/10.3390/app132212110
APA StyleOng, P. Y., & Jamaludin, S. N. F. (2023). Fracture Network Analysis of Karstified Subis Limestone Build-Up in Niah, Sarawak. Applied Sciences, 13(22), 12110. https://doi.org/10.3390/app132212110