An Improved Approach for Atrial Fibrillation Detection in Long-Term ECG Using Decomposition Transforms and Least-Squares Support Vector Machine
Abstract
:1. Introduction
1.1. Review of Existing Literature
1.2. Proposed Work and Contribution
- The decomposition of part of the ECG signal with the dual-Q tunable Q-factor wavelet transform (DQ-TQWT), ensemble empirical mode decomposition (EEMD), and the corresponding analysis of variances from the maximal overlap discrete wavelet transform (MDDWT);
- The proposal of a differentiated set of features describing atrial activity in the ECG signal and heart rhythm;
- The application of a least-squares support vector machine for classification purposes;
- Experimental results showing that the proposed method’s performance in detecting AF episodes was superior to that of state-of-the-art methods.
2. Materials and Methods
2.1. Atrial Activity Assessment Factor Extraction
2.2. Dual-Q Tunable Q-Factor Wavelet Transform
2.3. The Variance of the Maximal Overlap Discrete Wavelet Transform
2.4. Ensemble Empirical Mode Decomposition
- Generate , where are different realizations of white noise and is the atrial activity signal (P wave);
- Decompose each completely by EMD, obtaining its modes , where indicates modes and K is the so-called ensemble number;
- Assign as the ith mode (IMF) of , obtained by averaging the corresponding modes.
2.5. Other Parameters Used for Atrial Activity and Heart Rate Evaluation
2.5.1. Turning Point Number
2.5.2. Sample Entropy
2.5.3. Spectral Entropy and Rényi Entropy
2.5.4. Higuchi’s Fractal Dimension (HFD) of Heart Rate
2.6. Summary of Features
2.7. LS-SVM Classifier
2.8. Dataset Description
2.9. Performance Metrics and Experimental Setup
3. Results
3.1. Feature Selection Results
- H0. The null hypothesis states that the two populations are equal.
- H1. The alternative hypothesis states that the two populations are not equal.
3.2. Performance Evaluation
4. Discussion
4.1. Study of Selected Features
4.2. Quality Assessment of Classification Performance
4.3. Comparison with State-of-the-Art Methods
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Atrial activity |
AF | Atrial fibrillation |
AFDB | Atrial Fibrillation Database |
CNN | Convolutional neural network |
DQ-TQWT | Dual-Q tunable Q-factor wavelet transform |
ECG | Electrocardiogram |
EMD | Empirical mode decomposition |
EEMD | Ensemble empirical mode decomposition |
LS-SVM | Least-squares support vector machine |
LSTM | Long short-term memory |
MODWT | Maximal overlap discrete wavelet transform |
NSR | Normal sinus rate |
SVM | Support vector machine |
TPN | Turning point number |
WT | Wavelet transform |
References
- Vaduganathan, M.; Mensah, G.A.; Turco, J.V.; Fuster, V.; Roth, G.A. The Global Burden of Cardiovascular Diseases and Risk. J. Am. Coll. Cardiol. 2022, 80, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, P.; Wang, S. Automated Detection of Atrial Fibrillation in ECG Signals Based on Wavelet Packet Transform and Correlation Function of Random Process. Biomed. Signal Process. Control 2020, 55, 101662. [Google Scholar] [CrossRef]
- Zhou, X.; Ding, H.; Ung, B.; Pickwell-MacPherson, E.; Zhang, Y. Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy. Biomed. Eng. Online 2014, 13, 18. [Google Scholar] [CrossRef]
- Czabański, R.; Horoba, K.; Wróbel, J.; Matonia, A.; Martinek, R.; Kupka, T.; Jeżewski, M.; Kahankova, R.; Jeżewski, J.; ęski, J.M. Detection of Atrial Fibrillation Episodes in Long-Term Heart Rhythm Signals Using a Support Vector Machine. Sensors 2020, 20, 765. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, S.; Dashtipour, K.; Zahid, A.; Arshad, K.; Ullah, J.S.; Assaleh, K.T.; Ramzan, N. A Review and Comparison of the State-of-the-Art Techniques for Atrial Fibrillation Detection and Skin Hydration. Front. Commun. Netw. 2021, 2, 679502. [Google Scholar] [CrossRef]
- Rizwan, A.; Zoha, A.; Mabrouk, I.B.; Sabbour, H.M.; Al-Sumaiti, A.S.; Alomainy, A.; Imran, M.A.; Abbasi, Q.H. A Review on the State of the Art in Atrial Fibrillation Detection Enabled by Machine Learning. IEEE Rev. Biomed. Eng. 2020, 14, 219–239. [Google Scholar] [CrossRef]
- Giraldo-Guzmán, J.; Kotas, M.; Castells, F.; Contreras-Ortiz, S.H.; Urina-Triana, M. Estimation of PQ Distance Dispersion for Atrial Fibrillation Detection. Comput. Methods Programs Biomed. 2021, 208, 106167. [Google Scholar] [CrossRef]
- Hirsch, G.; Jensen, S.H.; Poulsen, E.S.; Puthusserypady, S. Atrial Fibrillation Detection Using Heart Rate Variability and Atrial Activity: A Hybrid Approach. Expert Syst. Appl. 2021, 169, 114452. [Google Scholar] [CrossRef]
- Weng, B.; Wang, J.J.; Michaud, F.; Blanco-Velasco, M. Atrial Fibrillation Detection Using Stationary Wavelet Transform Analysis. In Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 1128–1131. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, Y.; Liu, J.; Pang, J.; Zhang, C.; Li, P. An Effective Frequency-Domain Feature of Atrial Fibrillation Based on Time–Frequency Analysis. BMC Med. Inform. Decis. Mak. 2020, 20, 308. [Google Scholar] [CrossRef]
- Neri, L.; Oberdier, M.T.; Van Abeelen, K.C.J.; Menghini, L.; Tumarkin, E.; Tripathi, H.; Jaipalli, S.; Orro, A.; Paolocci, N.; Gallelli, I.; et al. Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review. Sensors 2023, 23, 4805. [Google Scholar] [CrossRef]
- Bahrami Rad, A.; Galloway, C.; Treiman, D.; Xue, J.; Li, Q.; Sameni, R.; Albert, D.; Clifford, G.D. Atrial Fibrillation Detection in Outpatient Electrocardiogram Monitoring: An Algorithmic Crowdsourcing Approach. PLoS ONE 2021, 16, e0259916. [Google Scholar] [CrossRef]
- Mäkynen, M.; Ng, G.; Li, X.; Schlindwein, F. Wearable Devices Combined with Artificial Intelligence—A Future Technology for Atrial Fibrillation Detection? Sensors 2022, 22, 8588. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.-R.; Lu, S.; Yan, Y. Automated Atrial Fibrillation Detection with ECG. Bioengineering 2022, 9, 523. [Google Scholar] [CrossRef] [PubMed]
- Verberk, W.J.; Omboni, S.; Kollias, A.; Stergiou, G.S. Screening for Atrial Fibrillation with Automated Blood Pressure Measurement: Research Evidence and Practice Recommendations. Int. J. Cardiol. 2016, 203, 465–473. [Google Scholar] [CrossRef]
- Bonomi, A.; Schipper, F.; Eerikainen, L.; Margarito, J.; Aarts, R.; Babaeizadeh, S.; De Morree, H.; Dekker, L. Atrial Fibrillation Detection Using Photo: Plethysmography and Acceleration Data at the Wrist. In Proceedings of the Computing in Cardiology Conference 2016, Vancouver, BC, Canada, 11–14 September 2016. [Google Scholar] [CrossRef]
- Väliaho, E.-S.; Kuoppa, P.; Lipponen, J.A.; Hartikainen, J.E.; Jäntti, H.; Rissanen, T.T.; Kolk, I.; Pohjantähti-Maaroos, H.; Castren, M.; Halonen, J.; et al. Wrist Band Photoplethysmography Autocorrelation Analysis Enables Detection of Atrial Fibrillation without Pulse Detection. Front. Physiol. 2021, 12, 654555. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhou, Y.; Ling, T.; Zhang, Y.; Zhu, Z. Recent Research for Unobtrusive Atrial Fibrillation Detection Methods Based on Cardiac Dynamics Signals: A Survey. Sensors 2021, 21, 3814. [Google Scholar] [CrossRef]
- Nuryani, N.; Harjito, B.; Yahya, I.; Lestari, A. Atrial fibrillation detection using support vector machine. In Proceedings of the Joint International Conference on Electric Vehicular Technology and Industrial, Mechanical, Electrical and Chemical Engineering 2015, Surakarta, Indonesia, 4–5 November 2015; pp. 215–218. [Google Scholar] [CrossRef]
- Colloca, R.; Johnson, A.E.; Mainardi, L.; Cliford, G.D. A support vector machine approach for reliable detection of atrial fibrillation events. In Proceedings of the Computing in Cardiology 2013, Zaragoza, Spain, 22–25 September 2013; pp. 1047–1050. [Google Scholar]
- Zhou, X.; Ding, H.; Wu, W.; Zhang, Y. A Real-Time Atrial Fibrillation Detection Algorithm Based on the Instantaneous State of Heart Rate. PLoS ONE 2015, 10, e0136544. [Google Scholar] [CrossRef]
- Kalidas, V.; Tamil, L.S. Detection of atrial fibrillation using discrete-state Markov models and Random Forests. Comput. Biol. Med. 2019, 113, 103386. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, S.; Jia, H.; Deng, X.; Li, C.; Wang, A.; Yang, C. A two-step method for paroxysmal atrial fibrillation event detection based on machine learning. Math. Biosci. Eng. 2022, 19, 9877–9894. [Google Scholar] [CrossRef]
- García, M.; Ródenas, J.; Alcaraz, R.; Rieta, J.J. Application of the relative wavelet energy to heart rate independent detection of atrial fibrillation. Comput. Methods Programs Biomed. 2016, 131, 157–168. [Google Scholar] [CrossRef]
- Asgari, S.; Mehrnia, A.; Moussavi, M. Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine. Comput. Biol. Med. 2015, 60, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.S.; Poulsen, E.S.; Puthusserypady, S. A novel approach for automatic detection of Atrial Fibrillation based on Inter Beat Intervals and Support Vector Machine. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 2017, Jeju Island, Republic of Korea, 11–15 July 2017; pp. 2039–2042. [Google Scholar] [CrossRef]
- Andersen, R.S.; Peimankar, A.; Puthusserypady, S. A deep learning approach for real-time detection of atrial fibrillation. Expert Syst. Appl. 2019, 115, 65–473. [Google Scholar] [CrossRef]
- Xia, Y.; Wulan, N.; Wang, K.; Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks. Comput. Biol. Med. 2018, 93, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Warrick, P.A.; Nabhan Homsi, M. Ensembling Convolutional and Long Short-Term Memory Networks for Electrocardiogram Arrhythmia Detection. Physiol. Meas. 2018, 39, 114002. [Google Scholar] [CrossRef] [PubMed]
- Liaqat, S.; Dashtipour, K.; Zahid, A.; Assaleh, K.; Arshad, K.; Ramzan, N. Detection of Atrial Fibrillation Using a Machine Learning Approach. Information 2020, 11, 549. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, Z.; Wang, S.; Lu, G.; Xv, G.; Liu, Q.; Zhu, X. Atrial Fibrillation Detection Based on Multi-Feature Extraction and Convolutional Neural Network for Processing ECG Signals. Comput. Methods Programs Biomed. 2021, 202, 106009. [Google Scholar] [CrossRef]
- Wróbel, J.; Horoba, K.; Matonia, A.; Kupka, T.; Henzel, N.; Sobotnicka, E. Optimizing the Automated Detection of Atrial Fibrillation Episodes in Long-Term Recording Instrumentation. In Proceedings of the 25th International Conference “Mixed Design of Integrated Circuits and System” (MIXDES), Gdynia, Poland, 21–23 June 2018; pp. 460–464. [Google Scholar] [CrossRef]
- Pal, S.; Maji, U.; Mitra, M. Characterizing Atrial Fibrillation in Empirical Mode Decomposition Domain. J. Med. Biol. Eng. 2016, 36, 693–703. [Google Scholar] [CrossRef]
- Hidalgo-Munoz, A.R.; Tome, A.M.; Zarzoso, V. Empirical Mode Decomposition for Noninvasive Atrial Fibrillation Dominant Frequency Estimation. In Proceedings of the 23rd European Signal Processing Conference (EUSIPCO), Nice, France, 31 August–4 September 2015; pp. 2581–2585. [Google Scholar] [CrossRef]
- Rahul, J.; Sharma, L.D. Artificial Intelligence-Based Approach for Atrial Fibrillation Detection Using Normalised and Short-Duration Time-Frequency ECG. Biomed. Signal Process. Control 2022, 71, 103270. [Google Scholar] [CrossRef]
- Katz, M.J. Fractals and the analysis of waveforms. Comput. Biol. Med. 1988, 18, 145–156. [Google Scholar] [CrossRef]
- Bernal-Oñate, C.-P.; Carrera, E.V.; Melgarejo-Meseguer, F.-M.; Gordillo-Orquera, R.; Garcí-A-Alberola, A.; Rojo-álvarez, J.L. Atrial Fibrillation Detection with Spectral Manifolds in Low-Dimensional Latent Spaces. IEEE Access 2023, 11, 103364–103376. [Google Scholar] [CrossRef]
- Padmavathi, K.; Ramakrishna, K.S. Classification of ECG Signal during Atrial Fibrillation Using Autoregressive Modeling. Procedia Comput. Sci. 2015, 46, 53–59. [Google Scholar] [CrossRef]
- Petmezas, G.; Haris, K.; Stefanopoulos, L.; Kilintzis, V.; Tzavelis, A.; Rogers, J.A.; Katsaggelos, A.K.; Maglaveras, N. Automated Atrial Fibrillation Detection Using a Hybrid CNN-LSTM Network on Imbalanced ECG Datasets. Biomed. Signal Process. Control 2021, 63, 102194. [Google Scholar] [CrossRef]
- Staffini, A.; Svensson, T.; Chung, U.; Svensson, A.K. A Disentangled VAE-BiLSTM Model for Heart Rate Anomaly Detection. Bioengineering 2023, 10, 683. [Google Scholar] [CrossRef] [PubMed]
- Nurmaini, S.; Tondas, A.E.; Darmawahyuni, A.; Rachmatullah, M.N.; Umi Partan, R.; Firdaus, F.; Tutuko, B.; Pratiwi, F.; Juliano, A.H.; Khoirani, R. Robust Detection of Atrial Fibrillation from Short-Term Electrocardiogram Using Convolutional Neural Networks. Future Gener. Comput. Syst. 2020, 113, 304–331. [Google Scholar] [CrossRef]
- Phukan, N.; Manikandan, M.S.; Pachori, R.B. AFibri-Net: A Lightweight Convolution Neural Network Based Atrial Fibrillation Detector. IEEE Trans. Circuits Syst. I 2023, 1–13. [Google Scholar] [CrossRef]
- Plesinger, F.; Nejedly, P.; Viscor, I.; Halamek, J.; Jurak, P. Automatic Detection of Atrial Fibrillation and Other Arrhythmias in Holter ECG Recordings Using PQRS Morphology and Rhythm Features. In Proceedings of the Computing in Cardiology Conference 2017, Rennes, France, 24–27 September 2017. [Google Scholar] [CrossRef]
- Kamaleswaran, R.; Mahajan, R.; Akbilgic, O. A Robust Deep Convolutional Neural Network for the Classification of Abnormal Cardiac Rhythm Using Single Lead Electrocardiograms of Variable Length. Physiol. Meas. 2018, 39, 035006. [Google Scholar] [CrossRef]
- Huerta, Á.; Martinez, A.; Carneiro, D.; Bertomeu-González, V.; Rieta, J.J.; Alcaraz, R. Comparison of Supervised Learning Algorithms for Quality Assessment of Wearable Electrocardiograms with Paroxysmal Atrial Fibrillation. IEEE Access 2023, 11, 106126–106140. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, C.; Song, F.; Sun, Y.; Feng, Y.; He, Y.; Zhang, T.; Zhang, G. D2AFNet: A Dual-Domain Attention Cascade Network for Accurate and Interpretable Atrial Fibrillation Detection. Biomed. Signal Process. Control 2023, 82, 104615. [Google Scholar] [CrossRef]
- Jahan, M.S.; Mansourvar, M.; Puthusserypady, S.; Wiil, U.K.; Peimankar, A. Short-Term Atrial Fibrillation Detection Using Electrocardiograms: A Comparison of Machine Learning Approaches. Int. J. Med. Inform. 2022, 163, 104790. [Google Scholar] [CrossRef]
- Pander, T. A New Approach to Adaptive Threshold Based Method for QRS Detection with Fuzzy Clustering. Biocybern. Biomed. Eng. 2022, 42, 404–425. [Google Scholar] [CrossRef]
- Henriques, T.; Ribeiro, M.; Teixeira, A.; Castro, L.; Antunes, L.; Costa-Santos, C. Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review. Entropy 2020, 22, 309. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prakash, A.; Kumar, R. Tunable Q-Factor Wavelet Transform for Extraction of Weak Bursts in the Vibration Signal of an Angular Contact Bearing. Procedia Technol. 2016, 25, 838–845. [Google Scholar] [CrossRef]
- Selesnick, I.W. Wavelet Transform with Tunable Q-Factor. IEEE Trans. Signal Process. 2011, 59, 3560–3575. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, C.; Zhu, Y.; Ristaniemi, T.; Parviainen, T.; Cong, F. Automated Detection and Localization System of Myocardial Infarction in Single-Beat ECG Using Dual-Q TQWT and Wavelet Packet Tensor Decomposition. Comput. Methods Programs Biomed. 2020, 184, 105120. [Google Scholar] [CrossRef]
- Selesnick, I.W. Resonance-Based Signal Decomposition: A New Sparsity-Enabled Signal Analysis Method. Signal Process. 2011, 91, 2793–2809. [Google Scholar] [CrossRef]
- Rodrigues, D.V.Q.; Zuo, D.; Li, C. A MODWT-Based Algorithm for the Identification and Removal of Jumps/Short-Term Distortions in Displacement Measurements Used for Structural Health Monitoring. IoT 2021, 3, 60–72. [Google Scholar] [CrossRef]
- Shrifan, N.H.M.M.; Akbar, M.F.; Mat Isa, N.A. Maximal Overlap Discrete Wavelet-Packet Transform Aided Microwave Nondestructive Testing. NDT & E Int. 2021, 119, 102414. [Google Scholar] [CrossRef]
- Gurumoorthy, S.; Babu Muppalaneni, N.; Sandhya Kumari, G. EEG Signal Denoising Using Haar Transform and Maximal Overlap Discrete Wavelet Transform (MODWT) for the Finding of Epilepsy. In Epilepsy—Update on Classification, Etiologies, Instrumental Diagnosis and Treatment; Misciagna, S., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, F.; Marti-Puig, P.; Caiafa, C.F.; Sun, Z.; Duan, F.; Solé-Casals, J. Serial-EMD: Fast empirical mode decomposition method for multi-dimensional signals based on serialization. Inf. Sci. 2021, 581, 215–232. [Google Scholar] [CrossRef]
- Huang, N.E. Introduction to the Hilbert-Huang Transform and its related mathematical problems. In Interdisciplinary Mathematical Sciences; World Scientific: Singapore, 2005; Volume 5, pp. 1–26. ISBN 978-981-256-376-7. [Google Scholar] [CrossRef]
- Kesić, S.; Spasić, S.Z. Application of Higuchi’s Fractal Dimension from Basic to Clinical Neurophysiology: A Review. Comput. Methods Programs Biomed. 2016, 133, 55–70. [Google Scholar] [CrossRef]
- Remeseiro, B.; Bolon-Canedo, V. A Review of Feature Selection Methods in Medical Applications. Comput. Biol. Med. 2019, 112, 103375. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V. The Support Vector Method of Function Estimation. In Nonlinear Modeling; Suykens, J.A.K., Vandewalle, J., Eds.; Springer: Boston, MA, USA, 1998; pp. 55–85. ISBN 978-1-4613-7611-8. [Google Scholar] [CrossRef]
- Mangasarian, O.L.; Musicant, D.R. Lagrangian Support Vector Machines. J. Mach. Learn. Res. 2001, 1, 161–177. [Google Scholar] [CrossRef]
- Tsujinishi, D.; Abe, S. Fuzzy Least Squares Support Vector Machines for Multiclass Problems. Neural Netw. 2003, 16, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Adankon, M.M.; Cheriet, M.; Biem, A. Semisupervised Learning Using Bayesian Interpretation: Application to LS-SVM. IEEE Trans. Neural Netw. 2011, 22, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Suykens, J.A.K.; Vandewalle, J. Least Squares Support Vector Machine Classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Moody, G.B.; Mark, R.G. A new method for detecting atrial fibrillation using R-R intervals. Comput. Cardiol. 1983, 10, 227–230. [Google Scholar]
- Roffo, G. Ranking to Learn and Learning to Rank: On the Role of Ranking in Pattern Recognition Applications. arXiv 2017, arXiv:1706.05933. [Google Scholar] [CrossRef]
- Urbanowicz, R.J.; Meeker, M.; La Cava, W.; Olson, R.S.; Moore, J.H. Relief-Based Feature Selection: Introduction and Review. J. Biomed. Inform. 2018, 85, 189–203. [Google Scholar] [CrossRef]
- Zhao, Z.; Anand, R.; Wang, M. Maximum Relevance and Minimum Redundancy Feature Selection Methods for a Marketing Machine Learning Platform. In Proceedings of the IEEE International Conference on Data Science and Advanced Analytics (DSAA), Washington, DC, USA, 5–8 October 2019; pp. 442–452. [Google Scholar] [CrossRef]
- Maaten, L.V.; Hinton, G.E. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
No. | Parameter | Description | Assessment of |
---|---|---|---|
1 | HFD | Higuchi fractal dimension | RR intervals |
2 | HFD | Higuchi fractal dimension | Atrial activity part of ECG; value averaged over 30 beats |
3 | TPN | Turning point number | |
4 | SaEN | Sample entropy | |
5 | SpEn | Spectral entropy | |
6 | REN | Rényi entropy | |
7, 8 | , | EEMD, slope of the absolute value of the analytic signals InA, InA | Atrial activity part of ECG, value averaged over 30 beats |
9, …, 17 | Variance of MODWT, | ECG signal containing 30 QRSs | |
18, 19 | DQ-TQWT, the ratio of the peak energy to the average energy | DQ-TQWT, ECG signal containing 30 QRSs | |
20, 21 | Maximum wavelet entropy of |
File | Signal | |||||||||||
4015 | 4043 | 4048 | 4126 | 4746 | 4908 | 4936 | 5091 | 5121 | 5261 | 6426 | 6453 | |
17 | 489 | 27 | 109 | 1028 | 197 | 1323 | 4 | 1129 | 30 | 1770 | 16 | |
1449 | 1574 | 1304 | 1319 | 567 | 1861 | 465 | 1222 | 533 | 1487 | 68 | 1145 | |
(%) | 1.16 | 23.70 | 2.03 | 7.63 | 64.45 | 9.57 | 79.99 | 0.33 | 67.93 | 1.98 | 96.30 | 1.38 |
File | Signal | |||||||||||
6995 | 7162 | 7859 | 7879 | 7910 | 8215 | 8219 | 8378 | 8405 | 8434 | 8455 | All | |
916 | 1309 | 2008 | 1334 | 225 | 1104 | 475 | 383 | 1502 | 77 | 1475 | 16947 | |
923 | 0 | 0 | 552 | 994 | 341 | 1501 | 1134 | 459 | 1251 | 510 | 20659 | |
(%) | 49.81 | 100.00 | 100.00 | 70.73 | 18.46 | 76.40 | 24.04 | 25.25 | 76.6 | 5.79 | 74.30 | 45.06 |
Non-AF | AF | |||||
---|---|---|---|---|---|---|
Feature | Mean | Std | Mean | Std | -Value | h |
26.4109 | 9.8015 | 20.5394 | 8.2889 | 0 | 1 | |
23.3416 | 8.6224 | 18.7514 | 9.8648 | 0 | 1 | |
0.0005 | 0.0005 | 0.0003 | 0 | 1 | ||
0.0004 | 0.0006 | 0.0004 | 0 | 1 | ||
HFD | 1.1206 | 0.1257 | 1.1416 | 0.1638 | 0.2572 | 0 |
TPN | 13.5132 | 4.1173 | 13.1830 | 5.5986 | 0 | 1 |
SpEn | 0.9288 | 0.0044 | 0.9288 | 0.0046 | 0 | 1 |
REN | 1.6723 | 1.4262 | 1.8316 | 1.8735 | 0.3374 | 0 |
SaEN | 0.1471 | 0.0867 | 0.1918 | 0.0984 | 0 | 1 |
HFD | 1.9701 | 0.3028 | 1.9714 | 0.1364 | 0.0007 | 1 |
5.8912 | 2.6763 | 4.6510 | 1.5945 | 0 | 1 | |
3.3973 | 0.8831 | 3.8139 | 1.2100 | 0 | 1 | |
0.0002 | 0.0004 | 0.0002 | 0.0002 | 0 | 1 | |
0.0017 | 0.0016 | 0.0017 | 0.0019 | 0 | 1 | |
0.0108 | 0.0101 | 0.0095 | 0.0101 | 0 | 1 | |
0.0234 | 0.0291 | 0.0198 | 0.0237 | 0 | 1 | |
0.0254 | 0.0446 | 0.0286 | 0.0452 | 0 | 1 | |
0.0273 | 0.0689 | 0.0347 | 0.0686 | 0 | 1 | |
0.0145 | 0.0324 | 0.0196 | 0.0396 | 0 | 1 | |
0.0021 | 0.0059 | 0.0017 | 0.0033 | 0 | 1 | |
0.0003 | 0.0025 | 0.0005 | 0.0009 | 0 | 1 |
No. | This Work | ReliefF [68,69] | MRMR [68,70] |
---|---|---|---|
1 | |||
2 | SpEn | REN | |
3 | |||
4 | REN | ||
5 | SaEn | ||
6 | |||
7 | |||
8 | SpEn | TPN | |
9 | TPN | ||
10 | TPN | HFD | |
11 | SaEN | SaEN | HFD |
12 | |||
13 | REN | ||
14 | |||
15 | HFD | ||
16 | SpEn | ||
17 | |||
18 | |||
19 | HFD | ||
20 | HFD | ||
21 | HFD |
This Work (LS-SVM RBF) | SVM RBF | SVM Quadratic | NN Class | |||||
---|---|---|---|---|---|---|---|---|
All Features | Selected Features | All Features | Selected Features | All Features | Selected Features | All Features | Selected Features | |
Mean ± Std | Mean ± Std | Mean ± Std | Mean ± Std | Mean ± Std | Mean ± Std | Mean ± Std | Mean ± Std | |
PPV % | 98.74 ± 0.13 | 98.83 ± 0.11 | 98.69 ± 0.24 | 98.64 ± 0.19 | 97.25 ± 0.07 | 96.60 ± 0.20 | 98.16 ± 0.21 | 98.15 ± 0.19 |
NPV % | 99.07 ± 0.16 | 99.06 ± 0.20 | 98.82 ± 0.11 | 98.94 ± 0.11 | 97.98 ± 0.15 | 97.67 ± 0.20 | 98.46 ± 0.36 | 98.44 ± 0.17 |
Sen % | 98.87 ± 0.20 | 98.86 ± 0.24 | 98.56 ± 0.13 | 98.71 ± 0.14 | 97.55 ± 0.19 | 97.17 ± 0.25 | 98.25 ± 0.30 | 98.10 ± 0.21 |
Spec % | 98.96 ± 0.11 | 99.04 ± 0.09 | 98.93 ± 0.20 | 98.88 ± 0.16 | 97.74 ± 0.06 | 97.19 ± 0.25 | 98.40 ±0.22 | 98.18 ± 0.18 |
Acc % | 98.92 ± 0.12 | 98.95 ± 0.12 | 98.76 ± 0.10 | 98.80 ± 0.12 | 97.65 ± 0.09 | 97.18 ± 0.08 | 98.33 ± 0.17 | 98.15 ± 0.19 |
F1 % | 98.81 ± 0.13 | 98.84 ± 0.14 | 98.63 ± 0.11 | 98.67 ± 0.14 | 97.40 ± 0.11 | 96.88 ± 0.09 | 98.20 ± 0.13 | 97.95 ± 0.21 |
File | Signal | |||||||||||
4015 | 4043 | 4048 | 4126 | 4746 | 4908 | 4936 | 5091 | 5121 | 5261 | 6426 | 6453 | |
PPV % | 76.19 | 98.16 | 100.00 | 94.69 | 100.00 | 100.00 | 99.55 | 57.14 | 98.77 | 100.00 | 99.72 | 100.00 |
NPV % | 99.93 | 99.43 | 99.92 | 99.85 | 100.00 | 99.95 | 99.35 | 100.00 | 99.05 | 100.00 | 100.00 | 99.91 |
Sen % | 94.12 | 98.16 | 96.30 | 98.17 | 100.00 | 99.49 | 99.77 | 100.00 | 99.56 | 100.00 | 100.00 | 93.75 |
Spec % | 99.65 | 99.43 | 100.00 | 99.55 | 100.00 | 100.00 | 98.71 | 99.75 | 97.37 | 100.00 | 92.65 | 100.00 |
Acc % | 99.59 | 99.13 | 99.92 | 99.44 | 100.00 | 99.95 | 99.50 | 99.76 | 98.86 | 100.00 | 99.73 | 99.91 |
F1 % | 84.21 | 98.16 | 98.11 | 96.40 | 100.00 | 99.75 | 99.66 | 72.73 | 99.16 | 100.00 | 99.86 | 96.77 |
File | Signal | |||||||||||
6995 | 7162 | 7859 | 7879 | 7910 | 8215 | 8219 | 8378 | 8405 | 8434 | 8455 | ||
PPV % | 100.00 | 100.00 | 100.00 | 99.93 | 100.00 | 99.91 | 98.09 | 99.22 | 99.93 | 98.70 | 100.00 | |
NPV % | 99.35 | n/a | 0.00 | 100.00 | 99.80 | 99.71 | 99.07 | 99.91 | 100.00 | 99.92 | 99.80 | |
Sen % | 99.34 | 100.00 | 99.95 | 100.00 | 99.11 | 99.91 | 97.05 | 99.74 | 100.00 | 98.70 | 99.93 | |
Spec % | 100.00 | n/a | n/a | 99.82 | 100.00 | 99.71 | 99.40 | 99.74 | 99.78 | 99.92 | 100.00 | |
Acc % | 99.67 | 100.00 | 99.95 | 99.95 | 99.84 | 99.86 | 98.84 | 99.74 | 99.95 | 99.85 | 99.95 | |
F1 % | 99.67 | 100.00 | 99.98 | 99.96 | 99.55 | 99.91 | 97.57 | 99.48 | 99.97 | 98.70 | 99.97 |
Method | Features | Window | Classifiers | Results (%) | ||||
---|---|---|---|---|---|---|---|---|
Sen | Spec | PPV | Acc | F1 | ||||
Andersen et al., 2017 [26] | RR interval ECG features | 300 beats 30 s | SVM | 96.81 94.27 | 96.20 98.84 | n/a | 96.45 96.98 | n/a |
Wróbel et al., 2018 [32] | HR irregularity features | 21 | Linear classifier | 95.42 | 96.12 | 94.97 | 95.62 | n/a |
Kalidas et al., 2019 [22] | RR intervals, Markov matrix | 60 s | RF | 97.7 | 98.5 | n/a | n/a | 97.7 |
Andersen et al., 2019 [27] | RR interval | 10 s | CNN-LSTM | 98.98 | 96.95 | 95.76 | 97.8 | n/a |
Czabański et al., 2019 [4] | HR irregularity features | 21 beats | LSVM | 98.94 | 98.80 | 98.39 | 98.86 | 98.66 |
Hu et al., 2020 [10] | Frequency features | 5 s | decision tree | 97.9 | 99.6 | n/a | n/a | n/a |
Liaqat et al., 2020 [30] | 83 RR and ECG features | 10 s | LSTM | 85.0 | n/a | 86.0 | 86.5 | 86.0 |
Wang et al., 2020 [2] | Signal | 10 s | ANN | 98.7 | 98.9 | n/a | 98.8 | n/a |
Hirsh et al., 2021 [8] | RR intervals AA features | 30 beats | RF | 98.00 | 97.4 | n/a | 97.6 | 97.1 |
Petmezas et al., 2021 [39] | Signal | 187 samples around R-peak | CNN-LSTM | 97.87 | 99.29 | n/a | n/a | n/a |
Zhang et al., 2023 [46] | Signal | 10 s | D2AFNet | 98.39 | 98.57 | 99.19 | 98.45 | 98.78 |
Phukan et al., 2023 [42] | Signal | 5 s 10 s 30 s | 1D-CNN | 99.26 99.72 98.57 | 95.30 93.23 93.99 | n/a | 97.68 97.50 96.70 | n/a |
Proposed method, 2023 | RR interval AA features | 30 beats | LS-SVM | 98.86 | 98.96 | 99.04 | 98.95 | 98.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pander, T. An Improved Approach for Atrial Fibrillation Detection in Long-Term ECG Using Decomposition Transforms and Least-Squares Support Vector Machine. Appl. Sci. 2023, 13, 12187. https://doi.org/10.3390/app132212187
Pander T. An Improved Approach for Atrial Fibrillation Detection in Long-Term ECG Using Decomposition Transforms and Least-Squares Support Vector Machine. Applied Sciences. 2023; 13(22):12187. https://doi.org/10.3390/app132212187
Chicago/Turabian StylePander, Tomasz. 2023. "An Improved Approach for Atrial Fibrillation Detection in Long-Term ECG Using Decomposition Transforms and Least-Squares Support Vector Machine" Applied Sciences 13, no. 22: 12187. https://doi.org/10.3390/app132212187
APA StylePander, T. (2023). An Improved Approach for Atrial Fibrillation Detection in Long-Term ECG Using Decomposition Transforms and Least-Squares Support Vector Machine. Applied Sciences, 13(22), 12187. https://doi.org/10.3390/app132212187