A Machine Anomalous Sound Detection Method Using the lMS Spectrogram and ES-MobileNetV3 Network
Abstract
:1. Introduction
- (1)
- A novel acoustic feature combination strategy, the lMS spectrogram, is proposed to express machine sound. The lMS spectrogram is obtained by concatenating the log-Mel spectrogram and the SincNet spectrogram. It provides a more comprehensive data description, better capturing the various attributes of machine sound and enhancing the reliability and robustness of feature expression;
- (2)
- An improved machine anomalous sound detection network, ES-Mobilenetv3, is proposed. It amplifies the feature information processing ability of the network by incorporating the ECA attention module with the SoftPool method. This network is anticipated to deliver exceptional anomaly detection performance in noisy industrial environments.
2. Related Work
2.1. Acoustic Features
2.2. Detection Network
3. Proposed Method
3.1. Feature Extraction
3.1.1. log-Mel Spectrogram Extraction
3.1.2. SincNet Spectrogram Extraction
3.1.3. Spectrogram Fusion
3.2. Anomaly Detection Network
4. Experiment and Analysis
4.1. Dataset
4.2. Evaluation Metrics
4.3. Experimental Setup
4.4. Comparison of Different Input Features
4.5. Comparison of Different Detection Models
4.6. Comparison of Different Detection Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Golda, T.; Guaia, D.; Wagner-Hartl, V. Perception of Risks and Usefulness of Smart Video Surveillance Systems. Appl. Sci. 2022, 12, 10435. [Google Scholar] [CrossRef]
- Marques, G.; Pitarma, R. A Real-Time Noise Monitoring System Based on Internet of Things for Enhanced Acoustic Comfort and Occupational Health. IEEE Access 2020, 8, 139741–139755. [Google Scholar] [CrossRef]
- Liu, Z.; Li, S. A sound monitoring system for prevention of underground pipeline damage caused by construction. Autom. Constr. 2020, 113, 103125. [Google Scholar] [CrossRef]
- Chung, Y.; Oh, S.; Lee, J.; Park, D.; Chang, H.-H.; Kim, S. Automatic Detection and Recognition of Pig Wasting Diseases Using Sound Data in Audio Surveillance Systems. Sensors 2013, 13, 12929–12942. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Lao, F.; Teng, G. A Sound Source Localisation Analytical Method for Monitoring the Abnormal Night Vocalisations of Poultry. Sensors 2018, 18, 2906. [Google Scholar] [CrossRef] [PubMed]
- Nasir, V.; Cool, J.; Sassani, F. Intelligent Machining Monitoring Using Sound Signal Processed with the Wavelet Method and a Self-Organizing Neural Network. IEEE Robot. Autom. Lett. 2019, 4, 3449–3456. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, M.; Dai, W.; Sun, J. In-process complex machining condition monitoring based on deep forest and process information fusion. Int. J. Adv. Manuf. Technol. 2019, 104, 1953–1966. [Google Scholar] [CrossRef]
- Khoruamkid, S.; Visitsattapongse, S. A Low-Cost Digital Stethoscope for Normal and Abnormal Heart Sound Classification. In Proceedings of the 14th Biomedical Engineering International Conference (BMEiCON), Songkhla, Thailand, 10–13 November 2022; pp. 1–6. [Google Scholar]
- Bailoor, S.; Seo, J.H.; Schena, S.; Mittal, R. Detecting Aortic Valve Anomaly from Induced Murmurs: Insights from Computational Hemodynamic Models. Front. Physiol. 2021, 12, 734224. [Google Scholar] [CrossRef] [PubMed]
- Nassif, A.B.; Talib, M.A.; Nasir, Q.; Dakalbab, F.M. Machine learning for anomaly detection: A systematic review. IEEE Access 2021, 9, 78658–78700. [Google Scholar] [CrossRef]
- Smith, W.A.; Randall, R.B. Rolling element bearing diagnostics using the case western reserve university data: A benchmark study. Mech. Syst. Signal Process. 2015, 64–65, 100–131. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Zhang, Y.; Liu, M.; Wang, W. Anomalous Sound Detection Using Deep Audio Representation and a BLSTM Network for Audio Surveillance of Roads. IEEE Access 2018, 6, 58043–58055. [Google Scholar] [CrossRef]
- Koizumi, Y.; Kawaguchi, Y.; Imoto, K.; Nakamura, T.; Nikaido, Y.; Tanabe, R.; Purohit, H.; Suefusa, K.; Endo, T.; Yasuda, M.; et al. Description and discussion on DCASE2020 challenge task2: Unsupervised anomalous sound detection for machine condition monitoring. arXiv 2020, arXiv:2006.05822. [Google Scholar]
- Koizumi, Y.; Saito, S.; Uematsu, H.; Harada, N. Optimizing Acoustic Feature Extractor for Anomalous Sound Detection Based on NeymanPearson Lemma. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos, Greece, 28 August–2 September 2017. [Google Scholar]
- Wilkinghoff, H. Anomalous Sound Detection with Look, Listen, and Learn Embeddings. In Tech. Report in DCASE2020 Challenge Task 2; Detection and Classification of Acoustic Scenes and Events: Munich, Germany, 2020. [Google Scholar]
- Perez-Castanos, S.; Naranjo-Alcazar, J.; Zuccarello, P.; Cobos, M. Anomalous sound detection using unsupervised and semi-supervised autoencoders and gammatone audio representation. arXiv 2020, arXiv:2006.15321. [Google Scholar]
- Van Truong, H.; Hieu, N.C.; Giao, P.N.; Phong, N.X. Unsupervised Detection of Anomalous Sound for Machine Condition Monitoring using Fully Connected U-Net. J. ICT Res. Appl. 2021, 15, 41–45. [Google Scholar] [CrossRef]
- Cui, P.; Luo, X.; Li, X.; Luo, X. Research on the enhancement of machine fault evaluation model based on data-driven. Int. J. Metrol. Qual. Eng. 2022, 13, 13. [Google Scholar] [CrossRef]
- Suefusa, K.; Nishida, T.; Purohit, H.; Tanabe, R.; Endo, T.; Kawaguchi, Y. Anomalous Sound Detection Based on Interpolation Deep Neural Network. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–9 May 2020; pp. 271–275. [Google Scholar]
- Dohi, K.; Endo, T.; Purohit, H.; Tanabe, R.; Kawaguchi, Y. Flow-Based Self-Supervised Density Estimation for Anomalous Sound Detection. In Proceedings of the ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021; pp. 336–340. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar]
- Howard, A.; Sandler, M.; Chu, G. Searching for Mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–3 November 2019; pp. 1314–1324. [Google Scholar]
- Giri, R.; Tenneti, S.V.; Cheng, F.; Helwani, K.; Isik, U.; Krishnaswamy, A. Unsupervised Anomalous Sound Detection Using SelfSupervised Classification and Group Masked Autoencoder for Density Estimation. In Tech. Report in DCASE2020 Challenge Task 2; Detection and Classification of Acoustic Scenes and Events: Palo Alto, CA, USA, 2020. [Google Scholar]
- Liu, P.; Xu, Y.; Wang, Y.; Yu, Y. Gas Leak Fault Detection Based on Improved MobileNetV3. In Proceedings of the 7th International Conference on Transportation Information and Safety (ICTIS), Xi’an, China, 4–6 August 2023; pp. 2181–2189. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Kuo, J.-Y.; Hsu, C.-Y.; Wang, P.-F.; Lin, H.-C.; Nie, Z.-G. Constructing Condition Monitoring Model of Harmonic Drive. Appl. Sci. 2022, 12, 9415. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, J.; Zhu, Q.; Wang, W. Anomalous Sound Detection Using Spectral-Temporal Information Fusion. In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 23–27 May 2022; pp. 816–820. [Google Scholar]
- Ravanelli, M.; Bengio, Y. Speaker Recognition from Raw Waveform with SincNet. In Proceedings of the 2018 IEEE Spoken Language Technology Workshop (SLT), Athens, Greece, 18–21 December 2018; pp. 1021–1028. [Google Scholar]
- Chang, P.C.; Chen, Y.S.; Lee, C.H. MS-SincResNet: Joint Learning of 1D and 2D Kernels Using Multi-scale SincNet and ResNet for Music Genre Classification. In Proceedings of the 2021 International Conference on Multimedia Retrieval, Taipei, Taiwan, 21–24 August 2021; pp. 29–36. [Google Scholar]
- Pham, L.; Phan, H.; Palaniappan, R. CNN-MoE Based Framework for Classification of Respiratory Anomalies and Lung Disease Detection. IEEE J. Biomed. Health Inform. 2021, 25, 2938–2947. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zheng, Y.; Zhang, Y.; Xie, Y.; Xu, S.; Hu, Y.; He, L. Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Using Classification-Based Methods. Appl. Sci. 2021, 11, 11128. [Google Scholar] [CrossRef]
- Mori, H.; Tamura, S.; Hayamizu, S. Anomalous Sound Detection Based on Attention Mechanism. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 581–585. [Google Scholar]
- Koizumi, Y.; Yasuda, M.; Murata, S.; Saito, S.; Uematsu, H.; Harada, N. SPIDERnet: Attention Network for One-Shot Anomaly Detection in Sounds. In Proceedings of the ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 281–285. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 11531–11539. [Google Scholar]
- Stergiou, A.; Poppe, R.; Kalliatakis, G. Refining activation downsampling with SoftPool. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 10337–10346. [Google Scholar]
- Koizumi, Y.; Saito, S.; Uematsu, H.; Harada, N.; Imoto, K. ToyADMOS: A dataset of miniature-machine operating sounds for anomalous sound detection. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, NY, USA, 20–23 October 2019; pp. 308–312. [Google Scholar]
- Purohit, H.; Tanabe, R.; Ichige, T.; Endo, T.; Nikaido, Y.; Suefusa, K.; Kawaguchi, Y. MIMII Dataset: Sound dataset for malfunctioning industrial machine investigation and inspection. In Proceedings of the Detection and Classification of Acoustic Scenes and Events 2019 Workshop (DCASE2019), Tokyo, Japan, 20 September 2019; pp. 209–213. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Deng, J.; Guo, J.; Xue, N.; Zafeiriou, S. Arcface: Additive Angular Margin Loss for Deep Face Recognition. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 4685–4694. [Google Scholar]
Model Name | Parameters (M) | FLOPs (M) | Accuracy |
---|---|---|---|
MobileNetV2 | 3.50 | 530.10 | 88.67 |
MobileNetV3 | 1.80 | 417.36 | 92.14 |
ES-MobileNetV3 | 1.53 | 421.37 | 96.67 |
Slider | Valve | Pump | Fan | ToyCar | ToyConveyor | Average | |
---|---|---|---|---|---|---|---|
AUC (pAUC) | AUC (pAUC) | AUC (pAUC) | AUC (pAUC) | AUC (pAUC) | AUC (pAUC) | AUC (pAUC) | |
Baseline [13] | 84.76 (66.53) | 66.28 (50.98) | 72.89 (59.99) | 65.83 (52.45) | 78.77 (67.58) | 72.53 (60.43) | 73.51 (59.66) |
x-vector [15] | 95.71 (79.45) | 94.87 (83.58) | 93.19 (81.10) | 97.35 (80.68) | 94.06 (86.80) | 84.22 (69.12) | 92.63 (80.12) |
log-Mel [17] | 90.13 (73.97) | 84.87 (61.38) | 85.97 (71.10) | 80.06 (58.61) | 82.52 (66.34) | 76.75 (55.65) | 83.38 (64.51) |
ST-gram [28] | 99.55 (97.61) | 99.64 (98.44) | 91.94 (81.75) | 94.04 (88.97) | 94.44 (87.68) | 74.57 (63.60) | 92.36 (86.34) |
IDNN [19] | 86.45 (67.58) | 84.09 (64.94) | 73.76 (61.07) | 67.71 (52.90) | 78.69 (69.22) | 71.07 (59.70) | 76.96 (62.57) |
MobileNetV2 [24] | 95.27 (85.22) | 88.65 (87.98) | 82.53 (76.50) | 80.19 (74.40) | 87.66 (85.92) | 69.71 (56.43) | 84.34 (77.74) |
Flow [20] | 94.60 (82.80) | 91.40 (75.00) | 83.40 (73.80) | 74.90 (65.30) | 92.20 (84.10) | 71.50 (59.00) | 85.20 (73.90) |
Classification [32] | 99.97 (99.83) | 95.82 (93.58) | 97.35 (91.58) | 99.96 (99.84) | 92.02 (88.50) | 89.80 (80.61) | 95.82 (92.32) |
Our Method | 99.42 (98.67) | 98.13 (96.28) | 97.64 (93.36) | 97.78 (94.31) | 95.54 (89.54) | 91.49 (82.13) | 96.67 (92.38) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Mei, Q.; Song, X.; Liu, X.; Kan, R.; Yao, F.; Xiong, J.; Qiu, H. A Machine Anomalous Sound Detection Method Using the lMS Spectrogram and ES-MobileNetV3 Network. Appl. Sci. 2023, 13, 12912. https://doi.org/10.3390/app132312912
Wang M, Mei Q, Song X, Liu X, Kan R, Yao F, Xiong J, Qiu H. A Machine Anomalous Sound Detection Method Using the lMS Spectrogram and ES-MobileNetV3 Network. Applied Sciences. 2023; 13(23):12912. https://doi.org/10.3390/app132312912
Chicago/Turabian StyleWang, Mei, Qingshan Mei, Xiyu Song, Xin Liu, Ruixiang Kan, Fangzhi Yao, Junhan Xiong, and Hongbing Qiu. 2023. "A Machine Anomalous Sound Detection Method Using the lMS Spectrogram and ES-MobileNetV3 Network" Applied Sciences 13, no. 23: 12912. https://doi.org/10.3390/app132312912
APA StyleWang, M., Mei, Q., Song, X., Liu, X., Kan, R., Yao, F., Xiong, J., & Qiu, H. (2023). A Machine Anomalous Sound Detection Method Using the lMS Spectrogram and ES-MobileNetV3 Network. Applied Sciences, 13(23), 12912. https://doi.org/10.3390/app132312912