A Survey on Extraterrestrial Habitation Structures with a Focus on Energy-Saving 3D Printing Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Physics-Based Challenges
2.2. Aggregate Ability of the Regolith
2.3. Outpost Construction Techniques
2.4. Three-Dimensional Printing Technology Applications in Outpost Construction
- The laser sintering method needs an extremely high amount of energy for heating a small volume of regolith. Furthermore, the long time and high-temperature gradient during the printing operation can make the process problematic.
- Regarding solar sintering, although the energy source is easily available and unlimited, the dependence of the energy supplement relative to the project’s performance and location can be a significant challenge. For example, solar energy is not considerably available on the Moon’s poles.
- Microwave sintering requires an amount of energy that is nearly 33–44 times less than the laser sintering method [96].
- The heat penetration depth is also another challenge that should be considered. The heat penetration depth in the regolith is greater when using the microwave sintering method compared to the solar sintering method [97].
- Regolith properties can also affect the performance of sintering methods. For instance, the efficiency of the solar sintering method is dependent on the regolith’s optical properties [99]. On the contrary, it is believed that the complexity of the regolith’s morphology may enhance microwave sintering efficiency [100]. The reason for this is regolith densification due to the presence of high portions of glass and ilmenite (FeTiO3) within the regolith’s composition [101].
- Some activities, such as collecting raw regolith and feeding it into the 3D printing machine, are integral parts of the construction process. Therefore, a proactive approach is needed to mitigate the dust, which can create formidable obstacles during the printing process [22].
- The duration of the outpost’s construction will be remarkably long if only one printing machine is used for the entire project [103]. As a consequence, the temperature variations, dust, and other harsh environmental factors may negatively impact the 3D printing process. Thus, considering the importance of the number of the 3D printing machines during the outpost construction process is recommended.
- For the evaluation of the performance of the 3D printing system, the diversity of the chemical and mineralogical properties of regolith should also be examined [104,105]. Since the original samples of the in situ regolith are limited, regolith simulants are used in terrestrial experiments; however, the size, shape, and composition of those simulants are not completely matched with the in situ regolith [106]. The lack of np-Fe0 in the simulant is another difference [107]. Furthermore, the original sample of the regolith is taken from just one specific point, and even if the simulant is made completely similar to the real sample, it still cannot represent the entire surface of the construction site [105,108].
- To reduce the sintering time, the problem of low gravity should be addressed since it influences regolith densification. If the material is well compacted, not only will sintering times be minimized but the density and strength of the fabricated component also increase [109].
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- A Future of Lunar Habitats: Designing for Life on the Moon. 2020. Available online: https://lifestyle.livemint.com/smart-living/innovation/future-of-lunar-habitats-designing-for-life-on-the-moon-111634486770359.html (accessed on 20 February 2022).
- Building a Lunar Base with 3D Printing. Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Building_a_lunar_base_with_3D_printing (accessed on 31 January 2013).
- Pieters, C.M.; Goswami, J.N.; Clark, R.N.; Annadurai, M.; Boardman, J.; Buratti, B.; Combe, J.P.; Dyar, M.D.; Green, R.; Head, J.W.; et al. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 2009, 326, 568–572. [Google Scholar] [CrossRef] [PubMed]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.C.; et al. Detection of water in the LCROSS ejecta plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef]
- Martín-Torres, F.J.; Zorzano, M.P.; Valentín-Serrano, P.; Harri, A.M.; Genzer, M.; Kemppinen, O.; Rivera-Valentin, E.G.; Jun, I.; Wray, J.; Bo Madsen, M.; et al. Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci. 2015, 8, 357–361. [Google Scholar] [CrossRef]
- Mars Perseverance. 2020. Available online: https://www.eoportal.org/other-space-activities/mars-perseverance-2020#more-about-the-campaign (accessed on 21 June 2019).
- Artemis Program Mars Perseverance. Available online: https://www.eoportal.org/other-space-activities/artemis-program (accessed on 15 July 2019).
- Seweryn, K.; Skocki, K.; Banaszkiewicz, M.; Grygorczuk, J.; Kolano, M.; Kuciński, T.; Mazurek, J.; Morawski, M.; Białek, A.; Rickman, H.; et al. Determining the geotechnical properties of planetary regolith using low velocity penetrometers. Planet. Space Sci. 2014, 99, 70–83. [Google Scholar] [CrossRef]
- Kalapodis, N.; Kampas, G.; Ktenidou, O. A review towards the design of extraterrestrial structures: From regolith to human outposts. Acta Astronaut. 2020, 175, 540–569. [Google Scholar] [CrossRef]
- Knez, D.; Zamani, M.A.M. A Review of the Geomechanics Aspects in Space Exploration. Energies 2021, 14, 7522. [Google Scholar] [CrossRef]
- Rajaoalison, H.; Knez, D.; Zlotkowski, A. Changes of Dynamic Mechanical Properties of Brine-Saturated Istebna Sandstone under Action of Temperature and Stress. Przemysł Chem. 2019, 98, 801–804. [Google Scholar]
- Knez, D.; Rajaoalison, H. Discrepancy between Measured Dynamic Poroelastic Parameters and Predicted Values from Wyllie’s Equation for Water-Saturated Istebna Sandstone. Acta Geophys. 2021, 69, 673–680. [Google Scholar] [CrossRef]
- Nowak, P.S.; Sadeh, W.Z.; Morroni, L.A. Geometric Modeling of Inflatable Structures for Lunar Base. J. Aerosp. Eng. 1992, 5, 311–322. [Google Scholar] [CrossRef]
- Benaroya, H.; Ettouney, M. Framework for Evaluation of Lunar Base Structural Concepts. J. Aerosp. Eng. 1992, 5, 187–198. [Google Scholar] [CrossRef]
- Benaroya, H. Tensile-integrity structures for the Moon. Appl. Mech. Rev. 1993, 46, 326–335. [Google Scholar] [CrossRef]
- Tensegrity. Available online: https://en.wikipedia.org/wiki/Tensegrity (accessed on 6 November 2023).
- Ng, T.T. Numerical Simulations of a Deployable Structure. In Proceedings of the Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment, League City, TX, USA, 5–8 March 2006. [Google Scholar] [CrossRef]
- Ruess, F.; Schaenzlin, J.; Benaroya, H. Structural design of a lunar habitat. J. Aerosp. Eng. 2006, 19, 133–157. [Google Scholar] [CrossRef]
- Benaroya, H. Structures for manned habitation. In Proceedings of the Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment, League City, TX, USA, 5–8 March 2006. [Google Scholar] [CrossRef]
- Cesaretti, G.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology. Acta Astronaut. 2014, 93, 430–450. [Google Scholar] [CrossRef]
- Khoshnevis, B.; Zhang, J. Extraterrestrial construction using contour crafting. In Proceedings of the International Solid Freeform Fabrication Symposium. University of Texas at Austin, Austin, TX, USA, 14–16 August 2012. [Google Scholar] [CrossRef]
- Lim, S.; Prabhu, V.L.; Anand, M.; Taylor, L.A. Extra-terrestrial construction processes—Advancements, opportunities and challenges. Adv. Space Res. 2017, 60, 1413–1429. [Google Scholar] [CrossRef]
- Malla, R.B.; Chaudhuri, D. Analysis of a 3D frame—Membrane structure for lunar base. In Proceedings of the Engineering, Construction, and Operations in Challenging Environment, League City, TX, USA, 5–8 March 2006. [Google Scholar] [CrossRef]
- Malla, R.B.; Chaudhuri, D. Dynamic analysis of a 3-D frame-membrane lunar structure subjected to impact. In Proceedings of the Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments, Long Beach, CA, USA, 26 April 2008. [Google Scholar] [CrossRef]
- Malla, R.B.; Gionet, T.G. Dynamic response of a pressurized frame-membrane lunar structure with regolith cover subjected to impact load. J. Aerosp. Eng. 2013, 26, 855–873. [Google Scholar] [CrossRef]
- De Kestelier, X.; Dini, E.; Cesaretti, G.; Colla, V.; Pambaguian, L. Lunar Outpost Design for ESA. Available online: https://spacearchitect.org/portfolio-item/lunar-outpost-design-for-esa/ (accessed on 20 February 2012).
- Mostafaei, K.; Zamani, M.A.M.; Knez, D. Risk Management Prediction of Mining and Industrial Projects by Support Vector Machine. Resour. Policy 2022, 78, 102819. [Google Scholar] [CrossRef]
- Williams, D.R. Planetary Fact Sheet-Metric. Available online: https://nssdc.gsfc.nasa.gov/planetary/factsheet/ (accessed on 11 February 2023).
- Schock, B.A.; Caleb Hing, C.L. A Civil Engineering Approach to Development of the Built Martian Environment. In Earth and Space; ASCE Publishing: Reston, VA, USA, 2014; pp. 313–327. [Google Scholar] [CrossRef]
- Khalilidermani, M.; Knez, D. A Survey of Application of Mechanical Specific Energy in Petroleum and Space Drilling. Energies 2022, 15, 3162. [Google Scholar] [CrossRef]
- Knez, D.; Khalilidermani, M. A Review of Different Aspects of Off-Earth Drilling. Energies 2021, 14, 7351. [Google Scholar] [CrossRef]
- Koscher, E. Here’s what Future Mars and Lunar Space Colonies Could Look Like. Available online: https://www.nbcnews.com/mach/science/here-s-what-future-mars-lunar-space-colonies-could-look-ncna889341 (accessed on 7 July 2018).
- Williams, M.S. The Science of Becoming “Interplanetary”: How Can Humans Live on Mars? Available online: https://interestingengineering.com/science/becoming-interplanetary-how-can-humans-live-on-mars (accessed on 11 January 2022).
- Hollingham, R. The Epic Quest to Build a Permanent Moon Base. Available online: https://www.bbc.com/future/article/20230317-the-epic-quest-to-build-a-permanent-moon-base (accessed on 20 March 2023).
- Knez, D.; Mazur, S. Simulation of Fracture Conductivity Changes due to Proppant Composition and Stress Cycles. Inżynieria Miner. 2019, 21, 231–234. [Google Scholar]
- Jakosky, B.M.; Phillips, R.J. Mars’ volatile and climate history. Nature 2001, 412, 237–244. [Google Scholar] [CrossRef]
- Benaroya, H. Lunar Habitats: A Brief Overview of Issues and Concepts. Reach 2017, 7, 14–33. [Google Scholar] [CrossRef]
- Sheshpari, M.; Fujii, Y.; Tani, Y. Underground structures in Mars excavated by tunneling methods for sheltering humans. Tunn. Undergr. Space Technol. 2017, 64, 61–73. [Google Scholar] [CrossRef]
- Theinat, A.K.; Modiriasari, A.; Bobet, A.; Melosh, H.J.; Dyke, S.; Ramirez, J.; Maghareh, A.; Gomez, D. Geometry and Structural Stability of Lunar Lava Tubes. In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 15 September 2018; p. 5185. [Google Scholar] [CrossRef]
- Theinat, A.K.; Modiriasari, A.; Bobet, A.; Melosh, H.J.; Dyke, S.J.; Ramirez, J.; Maghareh, A.; Gomez, D. Lunar lava tubes: Morphology to structural stability. Icarus 2020, 338, 113442. [Google Scholar] [CrossRef]
- Lammer, H.; Bredehöft, J.H.; Coustenis, A.; Khodachenko, M.L.; Kaltenegger, L.; Grasset, O.; Prieur, D.; Raulin, F.; Ehrenfreund, P.; Yamauchi, M.; et al. What makes a planet habitable? Astron. Astrophys. Rev. 2009, 17, 181–249. [Google Scholar] [CrossRef]
- Magnetospheres. Available online: https://science.nasa.gov/heliophysics/focus-areas/magnetosphere-ionosphere/ (accessed on 11 August 2023).
- A Guide to the Magnetosphere. Available online: https://earthhow.com/magnetosphere/#:~:text=The%20main%20role%20of%20the,aurora%20borealis%2C%20and%20space%20weather (accessed on 28 September 2023).
- Lundin, R.; Lammer, H.; Ribas, I. Planetary magnetic fields and solar forcing: Implications for atmospheric evolution. Space Sci. Rev. 2007, 129, 245–278. [Google Scholar] [CrossRef]
- Reitz, G.; Berger, T.; Matthiae, D. Radiation Exposure in the Moon Environment. Planet. Space Sci. 2012, 74, 78–83. [Google Scholar] [CrossRef]
- Parnell, T.A.; Watts, J.W., Jr.; Armstrong, T.W. Radiation Effects and Protection for Moon and Mars Missions. In Proceedings of the Space 98, Albuquerque, NM, USA, 26–30 April 1998. [Google Scholar] [CrossRef]
- Celebrating International Moon Day While Paving the Way for Lunar Habitation. Available online: https://www.airbus.com/en/newsroom/stories/2023-07-celebrating-international-moon-day-while-paving-the-way-for-lunar (accessed on 20 July 2023).
- Moore, H.J.; McGee, J. Optimization of thin film solar concentrators using non-linear deflection modeling. In Proceedings of the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 11–14 June 2001. [Google Scholar] [CrossRef]
- Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.; Latham, G. High-frequency lunar teleseismic events. In Proceedings of the 5th Lunar Science Conference, Houston, TX, USA, 18–22 March 1974; Pergamon Press, Inc.: New York, NY, USA, 1974; Volume 3, pp. 2883–2890. [Google Scholar]
- Duennebier, F.; Sutton, G.H. Meteoroid impacts recorded by the short-period component of Apollo 14 Lunar passive seismic station. J. Geophys. Res. 1974, 79, 4365–4374. [Google Scholar] [CrossRef]
- Lognonné, P.; Banerdt, W.B.; Giardini, D.; Pike, W.T.; Christensen, U.; Laudet, P.; De Raucourt, S.; Zweifel, P.; Calcutt, S.; Bierwirth, M.; et al. SEIS: Insight’s seismic experiment for internal structure of Mars. Space Sci. Rev. 2019, 215, 12. [Google Scholar] [CrossRef]
- Duennebier, F.; Dorman, J.; Lammlein, D.; Latham, G.; Nakamura, Y. Meteoroid Flux from Passive Seismic Experiment Data. In Lunar Science Conference, 6th, Houston, TX, USA, 17–21 March 1975, Proceedings. (A78-46668 21-91); Pergamon Press, Inc.: New York, NY, USA, 1975; Volume 2, pp. 2417–2426. [Google Scholar]
- Duennebier, F.K.; Nakamura, Y.; Latham, G.V.; Dorman, H.J. Meteoroid Storms Detected on the Moon. Science 1976, 192, 1000–1002. [Google Scholar] [CrossRef]
- Wilhelms, D.E.; John, F.; Trask, N.J. The Geologic History of the Moon; USGS: Reston, VA, USA, 1987. [Google Scholar] [CrossRef]
- Head, J.W., III; Wilson, L. Lunar mare volcanism: Stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim. Cosmochim. Acta 1992, 56, 2155–2175. [Google Scholar] [CrossRef]
- Mottaghi, S.; Benaroya, H. Design of a lunar surface structure. II: Seismic structural analysis. J. Aerosp. Eng. 2015, 28, 04014053. [Google Scholar] [CrossRef]
- Lucey, P.; Korotev, R.L.; Gillis, J.J.; Taylor, L.A.; Lawrence, D.; Campbell, B.A.; Elphic, R.; Feldman, B.; Hood, L.L.; Hunten, D.; et al. Understanding the lunar surface and space-Moon interactions. Rev. Mineral. Geochem. 2006, 60, 83–219. [Google Scholar] [CrossRef]
- Sadeh, W.; Criswell, M. Inflatable structures for a Lunar base. In Proceedings of the Space Programs and Technologies Conference and Exhibit, Huntsville, AL, USA, 21 September 1993. [Google Scholar] [CrossRef]
- Jolly, S.D.; Happel, J.; Sture, S. Design and construction of a shielded Lunar outpost. J. Aerosp. Eng. 1994, 7, 417–434. [Google Scholar] [CrossRef]
- Abarbanel, J.E.; Bateman, T.A.; Criswell, M.E.; Sadeh, W.Z. A Framing System for a Lunar/Martian Inflatable Structure. In Proceedings of the Engineering, Construction, and Operations in Space V, Albuquerque, NM, UAS, 26 April 1996. [Google Scholar] [CrossRef]
- Knez, D. Stress State Analysis in Aspect of Wellbore Drilling Direction. Arch. Min. Sci. 2014, 59, 71–76. [Google Scholar] [CrossRef]
- Kim, M.Y.; Thibault, S.A.; Simonsen, L.C.; Wilson, J.W. Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays; NASA Langley Research Center: Hampton, VA, USA, 1998. [Google Scholar]
- Khoshnevis, B.; Carlson, A.; Thangavelu, M. ISRU-Based Robotic Construction Technologies for Lunar and Martian Infrastructures; NIAC Phase II Final Report; University of Southern California: Los Angeles, CA, USA, 2017. [Google Scholar]
- Mueller, R.P.; Howe, S.; Kochmann, D.; Ali, H.; Andersen, C.; Burgoyne, H.; Chambers, W.; Clinton, R.; De Kestellier, X.; Ebelt, K.; et al. Automated Additive Construction (AAC) for Earth and Space Using in Situ Resources. In Proceedings of the 15th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Orlando, FL, USA, 11–15 April 2016. [Google Scholar]
- Balla, V.K.; Roberson, L.B.; O’Connor, G.W.; Trigwell, S.; Bose, S.; Bandyopadhyay, A. First demonstration on direct laser fabrication of lunar regolith parts. Rapid Prototyp. J. 2012, 18, 451–457. [Google Scholar] [CrossRef]
- Meurisse, A.; Makaya, A.; Willsch, C.; Sperl, M. Solar 3D printing of lunar regolith. Solar 3D Printing of Lunar Regolith. Acta Astronaut. 2018, 152, 800–810. [Google Scholar] [CrossRef]
- Goulas, A.; Binner, J.G.; Engstrøm, D.S.; Harris, R.A.; Friel, R.J. Mechanical behaviour of additively manufactured lunar regolith simulant components. J. Mater. Des. Appl. 2018, 233, 1629–1644. [Google Scholar] [CrossRef]
- Meyers, C.; Toutanji, H. Analysis of Lunar-Habitat Structure Using Waterless Concrete and Tension Glass Fibers. J. Aerosp. Eng. 2007, 20, 220–226. [Google Scholar] [CrossRef]
- Malla, R.B.; Adib-Jahromi, H.R.; Accorsi, M.L. Simplified design method for braced double-skinned structure in lunar application. J. Aerosp. Eng. 1995, 8, 189–195. [Google Scholar] [CrossRef]
- Kennedy, K.J. ISS TransHab: Architecture Description. In Proceedings of the International Conference on Environmental Systems, Denver, CO, USA, 12 July 1999. [Google Scholar] [CrossRef]
- Harris, P.; Kennedy, K. Wound Construction of Inflatable Space Structures. In Proceedings of the Seventh International Conference and Exposition on Engineering, Construction, Operations, and Business in Space, Albuquerque, NM, USA, 27 February–2 March 2000. [Google Scholar] [CrossRef]
- Borin, A.; Fiscelli, M. An inflatable living concept. In Proceedings of the Ninth Biennial Conference on Engineering, Construction, and Operations in Challenging Environments, League City, TX, USA, 7–10 March 2004. [Google Scholar] [CrossRef]
- Criswell, M.E.; Carlson, J.S. Concepts for the design and construction of a modular inflatable habitat. In Proceedings of the Ninth Biennial Conference on Engineering, Construction, and Operations in Challenging Environments, League City, TX, USA, 7–10 March 2004. [Google Scholar] [CrossRef]
- Adams, C.M.; Petrov, G. The Surface Endoskeletal Inflatable Module (SEIM). In Proceedings of the Earth & Space 2006: Engineering, Construction, and Operations in Challenging Environment, League City, TX, USA, 5–8 March 2006. [Google Scholar] [CrossRef]
- Tinker, M.; Hull, P.V.; SanSoucie, M.P.; Roldan, A. Inflatable and Deployable Structures for Surface Habitat Concepts Utilizing In-Situ Resources. In Proceedings of the Engineering, Construction, and Operations in Challenging Environment, League City, TX, USA, 5–8 March 2006. [Google Scholar] [CrossRef]
- Faierson, E.J.; Logan, K.V.; Stewart, B.K.; Hunt, M.P. Demonstration of concept for fabrication of lunar physical assets utilizing lunar regolith simulant and a geothermite reaction. Acta Astronaut. 2010, 67, 38–45. [Google Scholar] [CrossRef]
- Huang, W.; Zang, Y.; Wang, W.; Zhang, C.; Binienda, W. Advanced Materials and Designs for Hydraulic, Earth, and Aerospace Structures. In Proceedings of the Earth and Space 2018, Cleveland, OH, USA, 9–12 April 2018. [Google Scholar] [CrossRef]
- Brandt-Olsen, C.; Coward, A.; Horswill, D. Mars Science City–Designing a future habitat in space. In Proceedings of the IASS Annual Symposia, IASS 2018 Boston Symposium: Extraplanetary Architecture; International Association for Shell and Spatial Structures (IASS): Madrid, Spain, 2018; pp. 1–8. [Google Scholar]
- Staedter, T. AI Space Factory Wins NASA’s 3D-Printed Extra-Terrestrial Habitats Challenge. Available online: https://spectrum.ieee.org/3d-printers-could-build-future-homes-on-mars (accessed on 7 May 2019).
- Available online: https://www.esa.int/TEC/Structures/SEMMHH8J50F_2.html (accessed on 4 January 2013).
- Available online: https://en.wikipedia.org/wiki/TransHab (accessed on 23 May 2023).
- Knez, D.; Calicki, A. Looking For a New Source of Natural Proppants in Poland. Bull. Pol. Acad. Sci. Tech. Sci. 2018, 66, 3–8. [Google Scholar] [CrossRef]
- Knez, D.; Wiśniowski, R.; Owusu, W.A. Turning Filling Material into Proppant for Coalbed Methane in Poland-Crush test results. Energies 2019, 12, 1820. [Google Scholar] [CrossRef]
- Jablonski, A.; Showalter, D.J. Exploration and Utilization of Extraterrestrial Bodies. In Proceedings of the 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments, Orlando, FL, USA, 11–15 April 2016. [Google Scholar] [CrossRef]
- Pham, D.; Dimov, S.S. Rapid Manufacturing: The Technologies and Applications of Rapid Prototyping and Rapid Tooling; Springer: New York, NY, USA, 2011. [Google Scholar]
- Hopkinson, N.; Dickens, P. Emerging rapid manufacturing processes. In Rapid Manufacturing: An Industrial Revolution for the Digital Age; John Wiley & Sons Ltd.: Chichester, UK, 2006; pp. 55–80. [Google Scholar]
- Buswell, R.A.; Soar, R.C.; Gibb, A.G.; Thorpe, A. Freeform construction: Mega-scale rapid manufacturing for construction. Autom. Constr. 2007, 16, 224–231. [Google Scholar] [CrossRef]
- What Is the Standard Strength of Concrete? Available online: https://www.bigdreadymix.com/what-is-the-standard-strength-of-concrete/#:~:text=Usually%2C%20the%20compressive%20strength%20of,10%2C000%20psi%20(70%20MPa) (accessed on 20 March 2023).
- Bannova, O.; Bell, L. Radiation shielding design strategies for lunar minimal functionality habitability element. Acta Astronaut. 2010, 67, 1103–1109. [Google Scholar] [CrossRef]
- Gladstone, G.R.; Hurley, D.M.; Retherford, K.D.; Feldman, P.D.; Pryor, W.R.; Chaufray, J.Y.; Versteeg, M.; Greathouse, T.K.; Steffl, A.J.; Throop, H.; et al. LRO-LAMP observations of the LCROSS impact plume. Science 2010, 330, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Khalilidermani, M.; Knez, D.; Zamani, M.A.M. Empirical Correlations between the Hydraulic Properties Obtained from the Geoelectrical Methods and Water Well Data of Arak Aquifer. Energies 2021, 14, 5415. [Google Scholar] [CrossRef]
- Hafner, T.A. Microwave Sinter System for Lunar Regolith Studies. Master’s Thesis, Luleå University of Technology, Kiruna, Sweden, 2015. [Google Scholar]
- Lim, S.; Anand, M. In-Situ Resource Utilisation (ISRU) derived extra-terrestrial construction processes using sintering-based additive manufacturing techniques—Focusing on a lunar surface environment. In Proceedings of the European Lunar Symposium, Frascati, Italy, 13–14 May 2015. [Google Scholar]
- Lim, S.; Anand, M.; Rousek, T. Estimation of energy and material use of sintering-based construction for a lunar outpost—with the example of SinterHab module design. In Proceedings of the 46th Lunar and Planetary Science Conference (LPSC), Session 817, Woodlands, TX, USA, 16–20 March 2015. [Google Scholar]
- Srivastava, V.; Lim, S.; Anand, M. Microwave processing of lunar soil for supporting longer-term surface exploration on the Moon. Space Policy 2016, 37, 92–96. [Google Scholar] [CrossRef]
- Taylor, L.A.; Meek, T.T. Microwave sintering of lunar soil: Properties, theory, and practice. J. Aerosp. Eng. 2005, 18, 188–196. [Google Scholar] [CrossRef]
- Allen, C.C.; Graf, J.C.; McKay, D.S. Sintering bricks on the Moon. In Proceeding of the Engineering, Construction, and Operations in Space IV; American Society of Civil Engineers: Reston, VA, USA, 1994. [Google Scholar]
- Allan, S.; Merritt, B.; Griffin, B.; Hintze, P.; Shulman, H. High temperature microwave dielectric properties and processing of JSC-1AC Lunar simulant. J. Aerosp. Eng. 2013, 26, 874–881. [Google Scholar] [CrossRef]
- Hintze, P.E.; Quintana, S. Building a Lunar or Martian launch pad with in situ materials: Recent laboratory and field studies. J. Aerosp. Eng. 2013, 26, 134–142. [Google Scholar] [CrossRef]
- Kingery, W.D.; Bowen, H.K.; Uhlmann, D.R. Introduction to Ceramics; John Wiley & Sons: New York, NY, USA, 1976. [Google Scholar]
- Zhou, P.; Zhao, Z.; Wei, G.; Huo, H. Mineral Content Estimation of Lunar Soil of Lunar Highland and Lunar Mare Based on Diagnostic Spectral Characteristic and Partial Least Squares Method. Appl. Sci. 2022, 12, 1197. [Google Scholar] [CrossRef]
- Kenkre, V.M.; Skala, L.; Weiser, M.W.; Katz, J.D. Theory of microwave interactions in ceramic materials: The phenomenon of thermal runaway. J. Mater. Sci 1991, 26, 2483–2489. [Google Scholar] [CrossRef]
- Doule, O.; Detsis, E.; Ebrahimi, A. A Lunar base with astronomical observatory. In Proceedings of the 41st International Conference on Environmental Systems (ICES), AIAA, Portland, OR, USA, 17–21 July 2011. [Google Scholar] [CrossRef]
- Anand, M.; Crawford, I.A.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Pe’raudeau, G.; Jaumann, R.; Seboldt, W. A brief review of chemical and mineralogical resources on the Moon and likely initial in situ resource utilization (ISRU) applications. Planet. Space Sci. 2012, 74, 42–48. [Google Scholar] [CrossRef]
- Taylor, L.A.; Pieters, C.M.; Britt, D. Evaluations of lunar regolith simulants. Planet. Space Sci 2016, 126, 1–7. [Google Scholar] [CrossRef]
- McKay, D.S.; Heiken, G.; Basu, A.; Blanford, G.; Simon, S.; Reedy, R.; French, B.M.; Papike, J. Lunar Sourcebook: A User’s Guild to the Moon; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Taylor, L.A. Generation of Native Fe in Lunar Soil. In Proceedings of the Space’ 88 Conference, Albuquerque, NM, USA, 29–31 August 1988. [Google Scholar]
- Taylor, L.A.; Liu, Y. Important considerations for lunar soil simulants. In Proceedings of the Earth and Space 2010: Engineering, Science, Construction, and Operations in Challenging Environments, Honolulu, Hawaii; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Pletka, B.J. Processing of lunar basalt materials. In Resources of Near Earth Space; University of Arizona Press Tucson: London, UK, 1993. [Google Scholar]
- Akisheva, Y.; Gourinat, Y. Utilisation of Moon Regolith for Radiation Protection and Thermal Insulation in Permanent Lunar Habitats. Appl. Sci. 2021, 11, 3853. [Google Scholar] [CrossRef]
- Zamani, M.A.M.; Knez, D. A new mechanical-hydrodynamic safety factor index for sand production prediction. Energies 2021, 14, 3130. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, G.; Gao, M.; Wen, Y.; Wang, Y. Design of Man-Machine Synergic Lunar Coring Device and Its Coring Dynamic Analysis. Appl. Sci. 2023, 13, 7961. [Google Scholar] [CrossRef]
- Carrier III, W.D.; Olhoeft, G.R.; Mendell, W. Physical Properties of the Lunar Surface. In Lunar Sourcebook; Cambridge University Press: Cambridge, UK, 1991; pp. 475–594. ISBN 0521334446. [Google Scholar]
- Vrettos, C.; Becker, A.; Merz, K.; Witte, L. Penetration tests in a mold on regolith quasi-analogues at different relative densities. In Proceedings of the Earth and Space 2014, St. Louis, MO, USA, 27–29 October 2014; pp. 10–15. [Google Scholar] [CrossRef]
- Knez, D.; Zamani, M.A.M. Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland. Energies 2021, 14, 5514. [Google Scholar] [CrossRef]
- Zamani, M.A.M.; Knez, D. Experimental Investigation on the Relationship between Biot’s Coefficient and Hydrostatic Stress for Enhanced Oil Recovery Projects. Energies 2023, 16, 4999. [Google Scholar] [CrossRef]
- Knez, D.; Rajaoalison, H. Land Subsidence Assessment for Wind Turbine Location in the South-Western Part of Madagascar. Energies 2022, 15, 4878. [Google Scholar] [CrossRef]
- Knez, D.; Khalilidermani, M.; Zamani, M.A.M. Water Influence on the Determination of the Rock Matrix Bulk Modulus in Reservoir Engineering and Rock-Fluid Coupling Projects. Energies 2023, 16, 1769. [Google Scholar] [CrossRef]
- Vaniman, D.T.; Martínez, G.M.; Rampe, E.B.; Bristow, T.F.; Blake, D.F.; Yen, A.S.; Ming, D.W.; Rapin, W.; Meslin, P.Y.; Morookian, J.M.; et al. Gypsum, bassanite, and anhydrite at Gale crater, Mars. Am. Mineral. 2018, 103, 1011–1020. [Google Scholar] [CrossRef]
- Fornaro, T.; Steele, A.; Brucato, J.R. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life 2018, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Karl, D.; Cannon, K.M.; Gurlo, A. Review of space resources processing for Mars missions: Martian simulants, regolith bonding concepts and additive manufacturing. Open Ceram. 2022, 9, 100216. [Google Scholar] [CrossRef]
- Khalilidermani, M.; Knez, D. A Survey on the Shortcomings of the Current Rate of Penetration Predictive Models in Petroleum Engineering. Energies 2023, 16, 4289. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, G.; Xie, H.; Gao, M.; Zhang, X.; Wang, Y.; Li, C. Design and Dynamic Analysis of the Wire-Line Coring Robot for Deep Lunar Rocks. Appl. Sci. 2023, 13, 1722. [Google Scholar] [CrossRef]
- Vondrak, R.; Keller, J.; Chin, G.; Garvin, J. Lunar Reconnaissance Orbiter (LRO): Observations for Lunar Exploration and Science. Space Sci. Rev. 2010, 150, 7–22. [Google Scholar] [CrossRef]
- Rajaoalison, H.; Knez, D.; Zamani, M.A.M. A Multidisciplinary Approach to Evaluate the Environmental Impacts of Hydrocarbon Production in Khuzestan Province, Iran. Energies 2022, 15, 8656. [Google Scholar] [CrossRef]
- Verdino, A.; Arena, O.; Bottiglieri, O.; Cafaro, F.; Dini, E. Performance of Lunar Regolith Shield under Meteoroid Impact: Uncertainties of a Numerical Prediction. Appl. Sci. 2022, 12, 10885. [Google Scholar] [CrossRef]
- A Resilient ExtraTerrestrial Habitats. Available online: https://www.nasa.gov/directorates/stmd/space-tech-research-grants/resilient-extraterrestrial-habitats-institute-rethi/ (accessed on 22 May 2019).
- Ashok, A. Will Marsquakes Have an Effect on Future Human Colonies on Red Planet? Available online: https://www.ibtimes.co.in/will-marsquakes-have-effect-future-human-colonies-red-planet-841030 (accessed on 25 September 2021).
Reference | Year | S, U, H * | Construction Technique | Material Type | Analysis Method |
---|---|---|---|---|---|
[14] | 1992 | H | Flat truss | Lightweight Truss and regolith cover | Static |
[13] | 1992 | S | Inflatable | Kevlar 49 and regolith cover | Static and numerical |
[15] | 1993 | S | Tensegrity | Unmentioned | Unmentioned |
[58] | 1993 | S | Inflatable | Kevlar 49 and regolith cover | Static and numerical |
[59] | 1994 | H | Flat truss | Composite Truss and regolith cover | Static |
[69] | 1995 | H | Flat truss | Aluminum Truss and regolith cover | Static, Dynamic, and numerical A |
[60] | 1996 | S | Inflatable | Kevlar and regolith cover | Static and numerical |
[70] | 1999 | S | Inflatable | Kevlar | Static |
[71] | 2000 | S | Inflatable | Kevlar | Static and numerical |
[72] | 2004 | S | Inflatable | Kevlar | Static |
[73] | 2004 | S | Inflatable | Kevlar | Static |
[74] | 2006 | S | Inflatable | Kevlar | Static |
[17] | 2006 | S | Deployable | laminates of AS4 Carbon PEEK | Dynamic and numerical |
[75] | 2006 | variable | Deployable and inflatable | Variable (review paper) | Not applicable |
[18] | 2006 | H | Arch | Aluminum | Numerical A |
[19] | 2006 | H | Arch | Aluminum | Numerical A |
[23] | 2006 | S | Truss and inflatable | Truss made of aluminum; inflatable structure made of Kevlar | Numerical A |
[24] | 2008 | S | Truss and inflatable | Truss made of aluminum; inflatable structure made of Kevlar | Dynamic |
[68] | 2007 | S | Arch | Regolith-based sulfur concrete | Static and thermal |
[76] | 2010 | S | Arch | Regolith-derived voussoir dome | Static |
[21] | 2012 | S | 3D printing | Sintered regolith and sulfur concrete | Not applicable |
[25] | 2013 | S | Truss and inflatable | Truss made of aluminum; inflatable structure made of Kevlar | Numerical |
[20] | 2014 | S | 3D Printing and inflatable | Regolith | Numerical |
[38] | 2017 | U | Tunnel | Precast lining | Numerical |
[77] | 2018 | S | Deployable | Mylar | Numerical, empirical approaches |
[39] | 2018 | U | Lunar/Martian lava tubes | - | Static and numerical |
[78] | 2018 | S | Inflatable | ETFE membrane/Kevlar network | Numerical |
[79] | 2019 | S | 3D Printing | Sintered regolith | Destructive mechanical tests |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalilidermani, M.; Knez, D. A Survey on Extraterrestrial Habitation Structures with a Focus on Energy-Saving 3D Printing Techniques. Appl. Sci. 2023, 13, 12913. https://doi.org/10.3390/app132312913
Khalilidermani M, Knez D. A Survey on Extraterrestrial Habitation Structures with a Focus on Energy-Saving 3D Printing Techniques. Applied Sciences. 2023; 13(23):12913. https://doi.org/10.3390/app132312913
Chicago/Turabian StyleKhalilidermani, Mitra, and Dariusz Knez. 2023. "A Survey on Extraterrestrial Habitation Structures with a Focus on Energy-Saving 3D Printing Techniques" Applied Sciences 13, no. 23: 12913. https://doi.org/10.3390/app132312913
APA StyleKhalilidermani, M., & Knez, D. (2023). A Survey on Extraterrestrial Habitation Structures with a Focus on Energy-Saving 3D Printing Techniques. Applied Sciences, 13(23), 12913. https://doi.org/10.3390/app132312913