Plant-Derived Bioactive Compounds for Rhabdomyosarcoma Therapy In Vitro: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Eligibility and Data Sources
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Study Selection and Data Extraction
3. Results
3.1. Plant Extracts and Isolated Bioactive Compounds That Induce Cell Death In Vitro through Apoptosis
3.2. Plant Extracts and Isolated Bioactive Compounds with Antioxidant and Cytotoxic Action
3.3. Plant Extracts and Isolated Bioactive Compounds That Induce Cell Death by Cell Cycle Arrest
3.4. Plant Extracts and Isolated Bioactive Compounds That Inhibit the Formation of Tumor Colonies
3.5. Plant Extracts and Isolated Bioactive Compounds That Induce Cell Death by Blocking Proteins
3.6. Plant Extracts and Isolated Bioactive Compounds That Induce Cell Death by Restricting Motility
3.7. Plant Extracts and Isolated Bioactive Compounds with Unknown Mechanism of Action
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sbaraglia, M.; Bellan, E.; Dei Tos, A.P. The 2020 WHO Classification of Soft Tissue Tumours: News and Perspectives. Pathologica 2020, 113, 70–84. [Google Scholar] [CrossRef]
- Skapek, S.X.; Ferrari, A.; Gupta, A.A.; Lupo, P.J.; Butler, E.; Shipley, J.; Barr, F.G.; Hawkins, D.S. Rhabdomyosarcoma. Nat. Rev. Dis. Primers 2019, 5, 1. [Google Scholar] [CrossRef]
- Agaram, N.P. Evolving Classification of Rhabdomyosarcoma. Histopathology 2022, 80, 98–108. [Google Scholar] [CrossRef]
- Dasgupta, R.; Fuchs, J.; Rodeberg, D. Rhabdomyosarcoma. Semin. Pediatr. Surg. 2016, 25, 276–283. [Google Scholar] [CrossRef]
- Martin-Giacalone, B.A.; Weinstein, P.A.; Plon, S.E.; Lupo, P.J. Pediatric Rhabdomyosarcoma: Epidemiology and Genetic Susceptibility. J. Clin. Med. 2021, 10, 2028. [Google Scholar] [CrossRef]
- Millán, J.; Cicero, A.F.G.; Torres, F.; Anguera, A. Effects of a Nutraceutical Combination Containing Berberine (BRB), Policosanol, and Red Yeast Rice (RYR), on Lipid Profile in Hypercholesterolemic Patients: A Meta-Analysis of Randomised Controlled Trials. Clin. Investig. Arterioscler. 2016, 28, 178–187. [Google Scholar] [CrossRef]
- Khalid, M.; Amayreh, M.; Sanduka, S.; Salah, Z.; Al-Rimawi, F.; Al-Mazaideh, G.M.; Alanezi, A.A.; Wedian, F.; Alasmari, F.; Faris Shalayel, M.H. Assessment of Antioxidant, Antimicrobial, and Anticancer Activities of Sisymbrium Officinale Plant Extract. Heliyon 2022, 8, e10477. [Google Scholar] [CrossRef]
- Ismail, N.Z.; Adebayo, I.A.; Mohamed, W.A.S.; Mohamad Zain, N.N.; Arsad, H. Christia Vespertilionis Extract Induced Antiproliferation and Apoptosis in Breast Cancer (MCF7) Cells. Mol. Biol. Rep. 2021, 48, 7361–7370. [Google Scholar] [CrossRef]
- Zhu, H.; Zhao, H.; Zhang, L.; Xu, J.; Zhu, C.; Zhao, H.; Lv, G. Dandelion Root Extract Suppressed Gastric Cancer Cells Proliferation and Migration through Targeting lncRNA-CCAT1. Biomed. Pharmacother. 2017, 93, 1010–1017. [Google Scholar] [CrossRef]
- Muscella, A.; Stefàno, E.; De Bellis, L.; Nutricati, E.; Negro, C.; Marsigliante, S. Antitumor and Antimigration Effects of Salvia clandestina L. Extract on Osteosarcoma Cells. Ann. N. Y. Acad. Sci. 2021, 1500, 34–47. [Google Scholar] [CrossRef]
- Gligor, O.; Clichici, S.; Moldovan, R.; Decea, N.; Vlase, A.-M.; Fizeșan, I.; Pop, A.; Virag, P.; Filip, G.A.; Vlase, L.; et al. An In Vitro and In Vivo Assessment of Antitumor Activity of Extracts Derived from Three Well-Known Plant Species. Plants 2023, 12, 1840. [Google Scholar] [CrossRef]
- Wen, X.; Wang, Q.; Dai, T.; Shao, J.; Wu, X.; Jiang, Z.; Jacob, J.A.; Jiang, C. Identification of Possible Reductants in the Aqueous Leaf Extract of Mangrove Plant Rhizophora Apiculata for the Fabrication and Cytotoxicity of Silver Nanoparticles against Human Osteosarcoma MG-63 Cells. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 116, 111252. [Google Scholar] [CrossRef]
- Liu, B.; Liu, J.; Chen, J.; Zhu, D.; Zhou, H.; Wang, X. A Study on Anticancer Activity of Caulis Spatholobi Extract on Human Osteosarcoma Saos-2 Cells. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 256–260. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, Y.; Huang, S.; Jin, Y.; Liu, J.; Luo, J.; Zheng, J.; Shi, D. Influence of Artemisia Annua Extract Derivatives on Proliferation, Apoptosis and Metastasis of Osteosarcoma Cells. Pak. J. Pharm. Sci. 2015, 28, 773–779. [Google Scholar]
- Ogbole, O.O.; Segun, P.A.; Adeniji, A.J. In Vitro Cytotoxic Activity of Medicinal Plants from Nigeria Ethnomedicine on Rhabdomyosarcoma Cancer Cell Line and HPLC Analysis of Active Extracts. BMC Complement. Altern. Med. 2017, 17, 494. [Google Scholar] [CrossRef]
- Kakouri, E.; Nikola, O.; Kanakis, C.; Hatziagapiou, K.; Lambrou, G.I.; Trigas, P.; Kanaka-Gantenbein, C.; Tarantilis, P.A. Cytotoxic Effect of Rosmarinus Officinalis Extract on Glioblastoma and Rhabdomyosarcoma Cell Lines. Molecules 2022, 27, 6348. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Bandara, U.Y.; Witharana, C.; Soysa, P. The Effectiveness of the Nimali Variety of Sri Lankan Punica Granatum L. Fruit Extracts on Rhabdomyosarcoma (RD) Cells Concerning the Apoptotic Signaling Pathway. Asian Pac. J. Cancer Prev. 2022, 23, 501–510. [Google Scholar] [CrossRef]
- Aziz, B.; Khurshid, A.; Mahmood, R.; Khan, J.A.; Javaid, S.; Alam, M.; Mujtaba Ul Hassan, S.; Ikram, M. Study of Synergistic Effects of Ficus Carica Leaves Extract Mediated Chemo-Photodynamic Therapy on Rhabdomyosarcoma Cells. Photodiagn. Photodyn. Ther. 2021, 36, 102565. [Google Scholar] [CrossRef]
- Okon, E.; Kukula-Koch, W.; Halasa, M.; Jarzab, A.; Baran, M.; Dmoszynska-Graniczka, M.; Angelis, A.; Kalpoutzakis, E.; Guz, M.; Stepulak, A.; et al. Magnoflorine—Isolation and the Anticancer Potential against NCI-H1299 Lung, MDA-MB-468 Breast, T98G Glioma, and TE671 Rhabdomyosarcoma Cancer Cells. Biomolecules 2020, 10, 1532. [Google Scholar] [CrossRef]
- Adamus, A.; Ali, I.; Vasileiadis, V.; Al-Hileh, L.; Lisec, J.; Frank, M.; Seitz, G.; Engel, N. Vincetoxicum Arnottianum Modulates Motility Features and Metastatic Marker Expression in Pediatric Rhabdomyosarcoma by Stabilizing the Actin Cytoskeleton. BMC Complement. Med. Ther. 2021, 21, 136. [Google Scholar] [CrossRef]
- Al-Shammari, A.M.; Jalill, R.D.A.; Hussein, M.F. Combined Therapy of Oncolytic Newcastle Disease Virus and Rhizomes Extract of Rheum Ribes Enhances Cancer Virotherapy In Vitro and In Vivo. Mol. Biol. Rep. 2020, 47, 1691–1702. [Google Scholar] [CrossRef]
- Adamus, A.; Peer, K.; Ali, I.; Lisec, J.; Falodun, A.; Frank, M.; Seitz, G.; Engel, N. Berberis Orthobotrys—A Promising Herbal Anti-Tumorigenic Candidate for the Treatment of Pediatric Alveolar Rhabdomyosarcoma. J. Ethnopharmacol. 2019, 229, 262–271. [Google Scholar] [CrossRef]
- Stammer, R.M.; Kleinsimon, S.; Rolff, J.; Jäger, S.; Eggert, A.; Seifert, G.; Delebinski, C.I. Synergistic Antitumour Properties of viscumTT in Alveolar Rhabdomyosarcoma. J. Immunol. Res. 2017, 2017, 4874280. [Google Scholar] [CrossRef]
- Fernando, D.; Adhikari, A.; Nanayakkara, C.; de Silva, E.D.; Wijesundera, R.; Soysa, P. Cytotoxic Effects of Ergone, a Compound Isolated from Fulviformes Fastuosus. BMC Complement. Altern. Med. 2016, 16, 484. [Google Scholar] [CrossRef]
- Ramachandran, C.; Quirin, K.-W.; Escalon, E.A.; Lollett, I.V.; Melnick, S.J. Therapeutic Effect of Supercritical CO2 Extracts of Curcuma Species with Cancer Drugs in Rhabdomyosarcoma Cell Lines. Phytother. Res. 2015, 29, 1152–1160. [Google Scholar] [CrossRef]
- Harput, U.S.; Genc, Y.; Saracoglu, I. Cytotoxic and Antioxidative Activities of Plantago lagopus L. and Characterization of Its Bioactive Compounds. Food Chem. Toxicol. 2012, 50, 1554–1559. [Google Scholar] [CrossRef]
- Saracoglu, I.; Harput, U.S. In Vitro Cytotoxic Activity and Structure Activity Relationships of Iridoid Glucosides Derived from Veronica Species. Phytother. Res. 2012, 26, 148–152. [Google Scholar] [CrossRef]
- Gunathilaka, T.L.; Dilrangi, K.H.; Ranasinghe, P.; Samarakoon, K.W.; Peiris, L.D.C. Mechanistic Insight into Apoptotic Induction in Human Rhabdomyosarcoma and Breast Adenocarcinoma Cells by Chnoospora Minima: A Sri Lankan Brown Seaweed. Pharmaceuticals 2021, 14, 1154. [Google Scholar] [CrossRef]
- Ahmad, K.S.; Rafi, M.; Kiani, B.H.; Ishtiaq, M.; Mehmood, A.; Iqbal, M.S.; Zubair, T.; Qureshi, R. Evaluation of Anticancer Activities of Selected Medicinal Plants from Ganga Choti, Lesser Himalaya, Bagh, Azad Kashmir. Pak. J. Bot. 2021, 53, 1433–1440. [Google Scholar] [CrossRef]
- Siamayuwa, C.E.; Nyanga, L.K.; Chidewe, C. Chemopreventive Effects and Antioxidant Capacity of Combined Leaf Extracts of Sesamum Angustifolium (Oliv.) Engl. and Hibiscus Articulatus on Rhabdomyosarcoma. Evid. Based Complement. Altern. Med. 2020, 2020, 8567182. [Google Scholar] [CrossRef]
- Ad’hiah, A.H.; Al-Bederi, O.N.H.; Al-Sammarrae, K.W. Cytotoxic Effects of Agrimonia eupatoria L. against Cancer Cell Lines In Vitro. J. Assoc. Arab Univ. Basic Appl. Sci. 2013, 14, 87–92. [Google Scholar] [CrossRef]
- Hatziagapiou, K.; Nikola, O.; Marka, S.; Koniari, E.; Kakouri, E.; Zografaki, M.-E.; Mavrikou, S.S.; Kanakis, C.; Flemetakis, E.; Chrousos, G.P.; et al. An In Vitro Study of Saffron Carotenoids: The Effect of Crocin Extracts and Dimethylcrocetin on Cancer Cell Lines. Antioxidants 2022, 11, 1074. [Google Scholar] [CrossRef]
- Musso, F.; Pronsato, L.; Milanesi, L.; Vasconsuelo, A.; Faraoni, M.B. Non-Polar Extracts of Nicotiana Glauca (Solanaceae) Induce Apoptosis in Human Rhabdomyosarcoma Cells. Rodriguésia 2020, 71, 1012019. [Google Scholar] [CrossRef]
- Guaouguaou, F.-E.; Bebaha, M.A.A.; Taghzouti, K.; Bouyahya, A.; Bakri, Y.; Dakka, N.; Es-Safi, N.E. Cytotoxicological Investigation of the Essential Oil and the Extracts of Cotula Cinerea and Salvia Verbenaca from Morocco. Biomed Res. Int. 2018, 2018, 7163961. [Google Scholar] [CrossRef] [PubMed]
- Seiter, M.A.; Salcher, S.; Rupp, M.; Hagenbuchner, J.; Kiechl-Kohlendorfer, U.; Mortier, J.; Wolber, G.; Rollinger, J.M.; Obexer, P.; Ausserlechner, M.J. Discovery of Sanggenon G as a Natural Cell-Permeable Small-Molecular Weight Inhibitor of X-Linked Inhibitor of Apoptosis Protein (XIAP). FEBS Open Bio 2014, 4, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Shahzadi, I.; Aziz Shah, S.M.; Shah, M.M.; Ismail, T.; Fatima, N.; Siddique, M.; Waheed, U.; Baig, A.; Ayaz, A. Antioxidant, Cytotoxic, and Antimicrobial Potential of Silver Nanoparticles Synthesized Using Tradescantia Pallida Extract. Front. Bioeng. Biotechnol. 2022, 10, 907551. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.; Soysa, P.; Wijeratne, S. Polyphenols Contribute to the Antioxidant and Antiproliferative Activity of Phyllanthus Debilis Plant In-Vitro. BMC Complement. Altern. Med. 2016, 16, 339. [Google Scholar] [CrossRef]
- Tariq, H.; Rafi, M.; Amirzada, M.I.; Muhammad, S.A.; Yameen, M.A.; Mannan, A.; Ismail, T.; Shahzadi, I.; Murtaza, G.; Fatima, N. Photodynamic Cytotoxic and Antibacterial Evaluation of Tecoma Stans and Narcissus Tazetta Mediated Silver Nanoparticles. Arab. J. Chem. 2022, 15, 103652. [Google Scholar] [CrossRef]
- Cvetanović, A.; Švarc-Gajić, J.; Zeković, Z.; Savić, S.; Vulić, J.; Mašković, P.; Ćetković, G. Comparative Analysis of Antioxidant, Antimicrobiological and Cytotoxic Activities of Native and Fermented Chamomile Ligulate Flower Extracts. Planta 2015, 242, 721–732. [Google Scholar] [CrossRef]
- Boskovic, I.; Djukic, D.; Mandic, L.; Maskovic, P.; Govedarica-Lucic, A. Antioxidant and cytotoxic potential of selected plant species of the boraginaceae family. AgricultForest 2021, 67, 53–61. [Google Scholar] [CrossRef]
- Almahdawy, S.S.; Said, A.M.; Abbas, I.S.; Dawood, A.H. The evaluation of antimicrobial and cytotoxic activity of the essential oil extracted from the aerial parts of southernwood herb (Artemisia abrotanum l.) that recently grown in iraq. Asian J. Pharm. Clin. Res. 2017, 10, 384–387. [Google Scholar] [CrossRef]
- Doğan, Z.; Genç, Y.; Harput, Ü.; Karadeniz Pekgöz, A.; Saraçoğlu, İ. Chemical Profiling and Cytotoxic Activity of Aqueous Extract of Veronica Peduncularis M.Bieb.: A Chemotaxonomical Approach. Istanb. J. Pharm. 2021, 51, 372–377. [Google Scholar] [CrossRef]
- Mašković, P.Z.; Diamanto, L.D.; Vujic, J.M.; Cvetanović, A.D.; Radojković, M.M.; Gadžurić, S.B.; Zengin, G. Onosma Aucheriana: A Source of Biologically Active Molecules for Novel Food Ingredients and Pharmaceuticals. J. Funct. Foods 2015, 19, 479–486. [Google Scholar] [CrossRef]
- Aboushanab, S.A.; Shevyrin, V.A.; Slesarev, G.P.; Melekhin, V.V.; Shcheglova, A.V.; Makeev, O.G.; Kovaleva, E.G.; Kim, K.H. Antioxidant and Cytotoxic Activities of Kudzu Roots and Soy Molasses against Pediatric Tumors and Phytochemical Analysis of Isoflavones Using HPLC-DAD-ESI-HRMS. Plants 2022, 11, 741. [Google Scholar] [CrossRef]
- Shinji, S.; Nakamura, S.; Nihashi, Y.; Umezawa, K.; Takaya, T. Berberine and Palmatine Inhibit the Growth of Human Rhabdomyosarcoma Cells. Biosci. Biotechnol. Biochem. 2020, 84, 63–75. [Google Scholar] [CrossRef]
- Vijayan, P.; Vinod Kumar, S.; Dhanaraj, S.A.; Mukherjee, P.K.; Suresh, B. In Vitro Cytotoxicity and Antitumour Properties of Hypericum Mysorense and Hypericum Patulum. Phytother. Res. 2003, 17, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Zalkow, L.H.; Asibal, C.F.; Glinski, J.A.; Bonetti, S.J.; Gelbaum, L.T.; VanDerveer, D.; Powis, G. Macrocyclic Pyrrolizidine Alkaloids from Senecio Anonymus. Separation of a Complex Alkaloid Extract Using Droplet Counter-Current Chromatography. J. Nat. Prod. 1988, 51, 690–702. [Google Scholar] [CrossRef]
- Kil, Y.-S.; Risinger, A.L.; Petersen, C.L.; Liang, H.; Grkovic, T.; O’Keefe, B.R.; Mooberry, S.L.; Cichewicz, R.H. Using the Cancer Dependency Map to Identify the Mechanism of Action of a Cytotoxic Alkenyl Derivative from the Fruit of Choerospondias Axillaris. J. Nat. Prod. 2020, 83, 584–592. [Google Scholar] [CrossRef]
- Phan, N.H.T.; Thuan, N.T.D.; Hien, N.T.T.; Huyen, P.V.; Hanh, T.T.H.; Vien, L.T.; Hong Quang, T.; Cuong, N.X.; Nam, N.H.; Van Kiem, P.; et al. Limonoids from Choerospondias Axillaris. Nat. Prod. Commun. 2020, 15, 1934578X20948368. [Google Scholar] [CrossRef]
- Ashraf, A.; Fatima, N.; Shahzadi, I.; Tariq, H.; Shahzadi, A.; Yameen, M.A.; Iqbal, J.; Rafi, M. Datura Suaveolens and Verbena Tenuisecta Mediated Silver Nanoparticles, Their Photodynamic Cytotoxic and Antimicrobial Evaluation. World J. Microbiol. Biotechnol. 2020, 36, 31. [Google Scholar] [CrossRef]
- Cai, S.; Risinger, A.L.; Petersen, C.L.; Grkovic, T.; O’Keefe, B.R.; Mooberry, S.L.; Cichewicz, R.H. Anacolosins A-F and Corymbulosins X and Y, Clerodane Diterpenes from Anacolosa Clarkii Exhibiting Cytotoxicity toward Pediatric Cancer Cell Lines. J. Nat. Prod. 2019, 82, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Abiodun, O.O.; Nnoruka, M.E.; Tijani, R.O. Phytochemical Constituents, Antioxidant Activity, and Toxicity Assessment of the Seed of Spondias mombin L. (Anacardiaceae). Turk. J. Pharm. Sci. 2020, 17, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Essien, S.O.; Young, B.; Baroutian, S. The Antibacterial and Antiproliferative Ability of Kānuka, Kunzea Ericoides, Leaf Extracts Obtained by Subcritical Water Extraction. J. Chem. Technol. Biotechnol. 2021, 96, 1308–1315. [Google Scholar] [CrossRef]
- Renehan, A.G.; Booth, C.; Potten, C.S. What Is Apoptosis, and Why Is It Important? BMJ 2001, 322, 1536–1538. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Qi, L.; Li, L.; Li, Y. The Caspase-3/GSDME Signal Pathway as a Switch between Apoptosis and Pyroptosis in Cancer. Cell Death Discov. 2020, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Mesas, C.; Fuel, M.; Martínez, R.; Prados, J.; Melguizo, C.; Porres, J.M. In Vitro Evidence of the Antitumor Capacity of Solanaceae and Cucurbitaceae in Colon Cancer: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2022, 62, 6293–6314. [Google Scholar] [CrossRef]
- Balach, T.; Stacy, G.S.; Haydon, R.C. The Clinical Evaluation of Soft Tissue Tumors. Radiol. Clin. N. Am. 2011, 49, 1185–1196. [Google Scholar] [CrossRef]
- Ilaslan, H.; Schils, J.; Nageotte, W.; Lietman, S.A.; Sundaram, M. Clinical Presentation and Imaging of Bone and Soft-Tissue Sarcomas. Cleve Clin. J. Med. 2010, 77, S2-7. [Google Scholar] [CrossRef]
- Mesas, C.; Quiñonero, F.; Doello, K.; Revueltas, J.L.; Perazzoli, G.; Cabeza, L.; Prados, J.; Melguizo, C. Active Biomolecules from Vegetable Extracts with Antitumoral Activity against Pancreas Cancer: A Systematic Review (2011–2021). Life 2022, 12, 1765. [Google Scholar] [CrossRef]
- Salih, A.M.; Al-Qurainy, F.; Nadeem, M.; Tarroum, M.; Khan, S.; Shaikhaldein, H.O.; Al-Hashimi, A.; Alfagham, A.; Alkahtani, J. Optimization Method for Phenolic Compounds Extraction from Medicinal Plant (Juniperus Procera) and Phytochemicals Screening. Molecules 2021, 26, 7454. [Google Scholar] [CrossRef]
- Cabeza, L.; Peña, M.; Martínez, R.; Mesas, C.; Galisteo, M.; Perazzoli, G.; Prados, J.; Porres, J.M.; Melguizo, C. Anemonia Sulcata and Its Symbiont Symbiodinium as a Source of Anti-Tumor and Anti-Oxoxidant Compounds for Colon Cancer Therapy: A Preliminary In Vitro Study. Biology 2021, 10, 134. [Google Scholar] [CrossRef]
- Ogidi, O.C.; Oyetayo, V.O.; Akinyele, B.J.; Ogbole, O.O.; Adeniji, J.A.; Oluremi, B.B. Molecular Identity and Cytotoxicity of Lenzites quercina Macrofungus Extracts toward Cancer Cell Lines. BioTechnologia 2017, 98, 25–32. [Google Scholar] [CrossRef]
- Mikhailova, E.O. Silver Nanoparticles: Mechanism of Action and Probable Bio-Application. J. Funct. Biomater. 2020, 11, 84. [Google Scholar] [CrossRef] [PubMed]
- Altammar, K.A. A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Front. Microbiol. 2023, 14, 1155622. [Google Scholar] [CrossRef] [PubMed]
- Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C. Green Synthesis of Nanoparticles and Its Potential Application. Biotechnol. Lett. 2016, 38, 545–560. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-González, R.; Martínez-Gómez, M.A.; González-Chávez, M.D.C.A.; Mendoza Hernández, J.C. Inhibition of Microorganisms Involved in Deterioration of an Archaeological Site by Silver Nanoparticles Produced by a Green Synthesis Method. Sci Total Environ. 2016, 565, 872–881. [Google Scholar] [CrossRef]
- Krobthong, S.; Yingchutrakul, Y.; Sittisaree, W.; Tulyananda, T.; Samutrtai, P.; Choowongkomon, K.; Lao-On, U. Evaluation of Potential Anti-Metastatic and Antioxidative Abilities of Natural Peptides Derived from Tecoma stans (L.) Juss. Ex Kunth in A549 Cells. PeerJ 2022, 10, e13693. [Google Scholar] [CrossRef]
- Lavudi, K.; Harika, G.V.S.; Thirunavukarasou, A. Green Synthesis of Tecoma Stans Flower and Leaf Extracts: Characterization and Anti-Proliferative Activity in Colorectal Cancer Cell Lines. Lett. Appl. NanoBioSci. 2022, 12, 61. [Google Scholar] [CrossRef]
- Naaz, R.; Siddiqui, V.U.; Ahmad, A.; Qadir, S.U.; Siddiqi, W.A. Study of Antibacterial and Antioxidant Activities of Silver Nanoparticles Synthesized from Tradescantia Pallida (Purpurea) Leaves Extract. J. Dispers. Sci. Technol. 2023, 1–11. [Google Scholar] [CrossRef]
- Kadhim, Z.A.; Sulaiman, G.M.; Al-Shammari, A.M.; Khan, R.A.; Al Rugaie, O.; Mohammed, H.A. Oncolytic Newcastle Disease Virus Co-Delivered with Modified PLGA Nanoparticles Encapsulating Temozolomide against Glioblastoma Cells: Developing an Effective Treatment Strategy. Molecules 2022, 27, 5757. [Google Scholar] [CrossRef] [PubMed]
- El-Huneidi, W.; Bajbouj, K.; Muhammad, J.S.; Vinod, A.; Shafarin, J.; Khoder, G.; Saleh, M.A.; Taneera, J.; Abu-Gharbieh, E. Carnosic Acid Induces Apoptosis and Inhibits Akt/mTOR Signaling in Human Gastric Cancer Cell Lines. Pharmaceuticals 2021, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, L.; Qu, C.; Chen, L.; Geng, Y.; Cheng, C.; Yu, S.; Wang, D.; Yang, L.; Meng, Z.; et al. Kaempferol Induces ROS-Dependent Apoptosis in Pancreatic Cancer Cells via TGM2-Mediated Akt/mTOR Signaling. BMC Cancer 2021, 21, 396. [Google Scholar] [CrossRef]
- Zhu, L.; Xue, L. Kaempferol Suppresses Proliferation and Induces Cell Cycle Arrest, Apoptosis, and DNA Damage in Breast Cancer Cells. Oncol. Res. 2019, 27, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, Z.; Zhu, Z.; Wang, J.; Yang, X.; Xu, M.; Wang, X.; Tang, Q.; Zhou, Q.; Wan, X.; et al. Kaempferol Promotes Non-Small Cell Lung Cancer Cell Autophagy via Restricting Met Pathway. Phytomedicine 2023, 121, 155090. [Google Scholar] [CrossRef]
- Lagariya, L.; Soni, K.; Shah, J.S. Antitumor Effects of Polyphenol-Rich Extract of Euphoria Longana Seed by Vascular Endothelial Growth Factor and Transforming Growth Factor-Beta Signaling Inhibition in Experimentally Induced Oral Cancer in Rats. Indian J. Pharmacol. 2022, 54, 329–337. [Google Scholar] [CrossRef]
- Narayanan, N.K.; Kunimasa, K.; Yamori, Y.; Mori, M.; Mori, H.; Nakamura, K.; Miller, G.; Manne, U.; Tiwari, A.K.; Narayanan, B. Antitumor Activity of Melinjo (Gnetum gnemon L.) Seed Extract in Human and Murine Tumor Models in Vitro and in a Colon-26 Tumor-Bearing Mouse Model In Vivo. Cancer Med. 2015, 4, 1767–1780. [Google Scholar] [CrossRef]
- Gupta, M.; Mazumder, U.K.; Rath, N.; Mukhopadhyay, D.K. Antitumor Activity of Methanolic Extract of Cassia fistula L. Seed against Ehrlich Ascites Carcinoma. J. Ethnopharmacol. 2000, 72, 151–156. [Google Scholar] [CrossRef]
Raw Material | Extraction Method | Isolated Compound(s) | Cell Line | IC50 Value of the Functional Extract or Isolated Compounds | Mechanism of Action |
---|---|---|---|---|---|
Fruit of Punica granatum [18] | Sonication and microwaving | PL PC | RD VERO | RD: PL: 14.8 ± 2.2 µg/mL PC: 30 ± 0.9 µg/mL VERO: Both >1000 µg/mL | Inducing apoptosis by caspases 3 and 8 activation. |
Leaves of Ficus carica [19] | Ethanol 70% | Flavonoids | RD | FC: 6.25 µg/mL FC + Dox-HCl (0.125 µM) + PDT (10 J/cm2): 0.15 µg/mL | Changes in cell morphology suggest apoptosis. Strong synergism with chemotherapy. |
Roots of Berberis cretica [20] | Methanol | Magnoflorin | TE671 | 22.83 ± 8.65 µg/mL | Inducing apoptosis by caspases 3 activation. |
Roots of Vincetoxicum arnottianum [21] | Methanol | β- Sitosterol β Sitosterol-D-glucoside Lupeol | RH-30 HA-OH1 hMSC | RH-30: 188.75 μg/mL HA-OH1: 220.54 μg/mL hMSC: 1433.14 μg/mL | Inducing apoptosis by the PAX3-FOXO1 pathway. Proliferation reduction by PCNA protein. Motility restriction is achieved by stabilizing the cytoskeleton through S1P. |
Rhizomes of Rheum ribes [22] | Methanol 95% | Flavonoids Alkaloids | RD | NDVE: 0.00978 mg/mL Extract: 0.3125 mg/mL | Inducing apoptosis by caspases 3 and 9 activation. Expresses the virus surface antigen on the tumor cell. |
Berberis orthobotrys root [23] | Methanol | RH-30 | 55. 2 μg/mL | Motility inhibition occurs through stabilization of the cytoskeleton. Oncosome degradation. Cell cycle arrest in G2-apoptosis by downregulation of Bcl-2, Bax, and PCNA. | |
Viscum album and Viscum TT [24] | Ethanol | Viscotoxins Lectins Triterpenes (in Viscum TT). | RH-30 RMS-13 | Apoptosis occurs by depolarizing the mitochondrial membrane and activating caspases. | |
Ripe fruits of Fulvifomes fastuosus [25] | Methanol | Ergone | RD CC-1 HepG-2 | RD: 1.49 ± 2.74 µg/mL CC-1: 22.99 ± 2.42 µg/mL HepG-2: 68.32 ± 2.49 µg/mL | Apoptotic changes, such as fragmentation of the cell nucleus. |
Curcuma amada [26] | Supercritical CO2 extraction | (E)-Labda-8(17), 12-diene-15, 16-dial. β-myrcene. β pinene. Β-caryophyllene. Ocimene. | RH-30 RD (ERMS) | CA in RD: 7.501 ± 0.5 µg/mL CA in SJRH30: 7.133 ± 1.2 µg/mL CA + VBL + CP in RD: 0.004 ± 0.0 µg/mL CA + VBL + CP in SJRH30: 0.045 ± 0.0 µg/mL | Apoptosis by regulating the expression of intrinsic pathway genes (Bcl-2, Bax, Bak, and p53). Inhibition of the expression of inflammation-associated genes such as COX-2 and NF-κB. Synergic effect with chemotherapy. |
Aerial parts of Plantago lagopus [27] | Methanol | Verbascoside Calceorioside A | HEP-2 RD MCF-7 | Verbascoside in RD: 36.24 µg/mL Calceorioside A in RD: 40.28 µg/mL | Apoptotic changes in cell morphology. Antioxidant activity. |
Different species of Veronica [28] | Methanol | 11 types of iridoids: highlighting verminoside | HEP-2 RD L20B VERO | Verminoside in RD: 70 μM; L20B: 103 μM; HEP-2: 128 μM | Apoptotic body formation. |
Chnoospora mínima [29] | Methanol 70% | Phenols Flavonoids Alkaloids | RD MCF-7 VERO | RD: 197.23 ± 68 μg/mL | Apoptosis with activation of p53 and caspases 3 and 7, morphological changes in cells, and DNA fragmentation. |
Terminalia chebula Berberis lycium Justicia adhatoda Geranium wallichianum [30] | Distilled water | Phenols Flavonoids | RD | - | Probable apoptosis. |
Leaves of Sesamum angustifolium and Hibiscus articulatus [31] | Dichloromethane, acetone, and methanol extract | - | RD | Dichloromethane extract: 106 μg/mL Methanol extract: 122 μg/mL Aqueous extract: 129 μg/mL Acetone extract: 158 μg/mL | Morphological changes in cells such as loss of cell adhesion. Apoptosis by activation of caspases 3 (increased with methanol extract) and 9 (increased with dichloromethane). |
Flowers, leaves, and stem of Agrimonia eupatoria [32] | Distilled water Methanol | Flavonoids and tannins | RD HeLa MEF | Polyphenols induce apoptosis with cell cycle arrest at G0/G1 and antioxidant action. Flavonoids induce apoptosis with cell cycle arrest in S and inactivation of the BCL-2 gene. | |
Crocus sativus [33] | Methanol | Cronins DMCRT | A-172 TE-671 | A-172: Crocins: 1.72 mg/mL DMCRT: 1.95 mg/mL TE-671: Crocins: 1.02 mg/mL DMCRT: 1.27 mg/mL | Apoptosis occurs through the regulation of BAX, BID, BCL-2, and MYCN. |
Leaves of Nicotiana glauca [34] | Ethanol 96% | Palmitic acid Scopoletin | RD | Palmitic acid and scopoletin (apoptosis inducers). Reduced cell migration capacity. | |
Essential oil from the aerial parts of Cotula cinerea [35] | Distilled water | - | RD VERO | RD: 173.05 ± 4.46 µg/mL VERO: 72.72 ± 2.18 µg/mL | Multiple mechanisms: apoptosis with activation of caspases, DNA methylation, histone acetylation, and cell cycle arrest. |
Aerial parts of Cotula cinérea [35] | Ethanol 70% Hexane Ethyl acetate n-butanol | - | RD VERO | RD: Hexane extract: 57.21 ± 3.43 µg/mL Ethyl acetate extract: 187.52 ± 6.27 µg/mL -n-butanol extract: >500 µg/mL | Multiple mechanisms: apoptosis with activation of caspases, DNA methylation, histone acetylation, and cell cycle arrest. |
Roots of Morus alba [36] | Methanol | SG1 SG3 | T-ALL OVCAR-4 SH-EP, IMR-32 NxS2 | SG1 in OVCAR-4: 34.26 μM | SG1 inhibits the XIAP protein, which leads to the initiation of apoptosis by activating caspase 9. |
Raw Material | Extraction Method | Isolated Compound(s) | Cell Line | IC50 Value of the Functional Extract or Isolated Compounds | Mechanism of Action |
---|---|---|---|---|---|
Aerial parts of Tradescantia pallida [37] | Methanol 80% | Phenols Proanthocyanidin |
RDATCC
CCL-136 | T. pallida: 90.59 ± 1.6 μg/mL TpAgNP6: 81.5 ± 1.9 μg/mL | Antioxidant action. Proliferation inhibition of malignant cells. |
Roots and aerial parts of Phyllanthus debilis [38] | Distilled water | Phenols Proanthocyanidin |
RD
CC-1 | AP: RD: 287.16 ± 8.39 µg/mL CC-1: 555.03 ± 4.21 µg/mL Root: RD: 216.52 ± 11.90 µg/mL CC-1: 842.01 ± 7.53 µg/mL | Antioxidant action is due to the ability of polyphenols to neutralize reactive species by donating electrons or hydrogen atoms. |
Tecoma stans and Narcissus tazetta [39] | Methanol | RD | N. tazetta extract: 16.9 ± 0.6 µg/mL N. tazetta NPs: 4.79 ± 1.1 µg/mL T. stans Branch NPs: 2.26 ± 0.9 µg/mL | The methanolic extracts presented antitumor and antioxidant effects, highlighting that their loading in nanoparticles increased their effectiveness in terms of antitumor activity. | |
Chamaemelum nobile [40] | Ethanol Distilled water | Apigenin-7-O-β-glucoside | RD Hep2c L2OB | Non-fermented extract in RD: 12.51 ± 1.77 µg/mL Non-fermented extract in Hep2c: 9.12 ± 0.99 µg/mL Fermented extract in RD: 35.78 ± 0.32 µg/mL | Non-fermented and fermented extracts presented antitumor and antioxidant activity. |
Anchusa officinalis, Echium vulgare, and Echium italicum [41] | Methanol Ethanol Chloroform Acetone | - | HEP2 RD L2OB | RD: Anchusa officinalis: 141.91 μg/mL Echium vulgare: 121.1 μg/mL Echium italicum: 129.76 μg/mL | The functional extract presented antitumor and antioxidant activity, probably due to its ability to neutralize free radicals. |
Aerial parts of Artemisia abrotanum [42] | Distilled water Oil extract | - | RD | Cytotoxic activity is due to oil components. Unknown mechanism of action. | |
Veronica peduncularis [43] | Methanol Aqueous extract | RD HEP-2 | RD: 230 µg/mL HEP-2: 390 µg/mL | Cytotoxicity. Antioxidative activity, highlighting its ability to neutralize DPPH. | |
Onosma aucheriana aerial parts [44] | Distilled water | Flavonoids, phenols, tannins, and gallotannins. | RD Hep2c L20B | RD: 50.57 ± 0.20 µg/mL Hep2c: 40.34 ± 0.59 µg/mL L20B: 25.54 ± 0.20 µg/mL | Cytotoxic action (without specifying the exact mechanism of action). Antioxidant action, highlighting the ability of phenols to neutralize the reactive agents. |
Roots of soy molasses and kudzu [45] | Methanol | Isoflavones | A-172 HOS RD | S.M extract in RD: 244.4 µg/mL KR extract in RD: 337.4 µg/mL | Antioxidative effect due to neutralization of reactive species. Antiproliferative effect. |
Raw Material | Extraction Method | Isolated Compound(s) | Cell Line | IC50 Value of the Functional Extract or Isolated Compounds | Mechanism of Action |
---|---|---|---|---|---|
Phellodendron amurense [46] | Distilled water | Berberine Palmatine |
ERMS 1
KYM 1 RD | - | Berberine arrests the cell cycle in the G1 phase. Palmatine acts through a possible interaction with the formation of the extracellular matrix of the tumor cell. |
Roots of Berberis orthobotrys [23] | Methanol | - | RH-30 | 55.2 µg/mL | Motility inhibition occurs through stabilization of the cytoskeleton. Oncosome degradation. Reduction of proliferation with cell cycle arrest in the G2 phase. Initiation of apoptosis through reduction of Bcl-2, Bax, and PCNA. |
Flowers, leaves, and stem of Agrimonia eupatoria [32] | Distilled water Methanol | Polyphenols Flavonoids | RD HeLa MEF | Polyphenols induce apoptosis with cell cycle arrest at the G0/G1 phase and antioxidant action. Flavonoids induce apoptosis with cell cycle arrest in the S phase and inactivation of the BCL-2 gene. | |
Aerial parts of Cotula cinerea [35] | Ethanol 70% Ethyl acetate Hexane n-butanol | - | RD VERO | RD: HE: 57.21 ± 3.43 µg/mL EAE: 187.52 ± 6.27 µg/mL NBE: more than 500 µg/mL VERO: HE: 142.27 ± 11.33 µg/mL EAE: 212.83 ± 9.02 µg/mL NBE: 447.38 ± 6.52 µg/mL | Apoptosis involves the activation of caspases, DNA methylation, histone acetylation, and cell cycle arrest. |
Essential oils from the aerial parts of Cotula cinerea [35] | Distilled water | - | RD VERO | RD: 173.05 ± 4.46 µg/mL VERO: 72.72 ± 2.18 µg/mL | Multiple mechanisms: apoptosis with activation of caspases, DNA methylation, histone acetylation, and cell cycle arrest. |
Raw Material | Extraction Method | Isolated Compound(s) | Cell Line | IC50 Value of the Functional Extract or Isolated Compounds | Mechanism of Action |
---|---|---|---|---|---|
Leaves and stem of Hypericum patulum [47] | Methanol | -RD VERO HEP-2 | -H.p leaves in RD: 117.76 ± 6.02 μg/mL -H.p leaves in VERO: 447.69 ± 25.19 μg/mL -H.p stem in RD: 0.72 ± 0.04 μg/mL -H.p stem in VERO: 1.82 ± 0.12 μg/mL | Inhibition of tumor colony formation. | |
Senecio Anonymous [48] | Ethanol 95% | 12 pyrrolizidine alkaloids | A-204 | Compounds 2 and 3: 120 ± 5 µg/mL | Tumor growth inhibition (not for use in vivo due to hepatotoxicity.) |
Raw Material | Extraction Method | Isolated Compound(s) | Cell Line | IC50 Value of the Functional Extract or Isolated Compounds | Mechanism of Action |
---|---|---|---|---|---|
Fruits of Choerospondias axillaris [49] | Methanol | Choerosponols A–E | A-673 RH30 D283 Hep293TT | RH30: Compound 2: 0.12 ± 0.02 μM Compound 1: >10 μM | Compound 1 induced inhibition of the MCT1 transporter (SLC16A1 gene). |
Branches and leaves of Choerospondias axillaris [50] | Methanol | Limonoids 1–8 | HEP-G2 RD | HEP-G2: 8.02 µg/mL RD: 10.08 µg/mL | Limonoids induced the formation of a gamma-lactone ring at carbons C4–C7. |
Root of Morus alba [36] | Methanol | Sanggenon G1 Sanggenon G3 | T-ALL OVCAR-4 SH-EP IMR-32 NxS2 | SG1 in OVCAR-4: 210 μM | SG1 inhibits the XIAP protein, leading to the initiation of apoptosis. |
Raw Material | Extraction Method | Isolated Compound(s) | Cell Line | IC50 Value of the Functional Extract or Isolated Compounds | Mechanism of Action |
---|---|---|---|---|---|
Roots of Vincetoxicum arnottianum [21] | Methanol | ß-sitosterol Lupeol |
RH-30
HA-OH 1 hMSC |
RH-30: 188.75 μg/mL
HA-OH1: 220.54 μg/mL hMSC: 1433.14 μg/mL | Apoptosis induction by PAX3-FOXO1. Motility restriction by stabilization of the cytoskeleton through SP1. |
Root of Berberis orthobotrys [23] | Methanol | - | RH30 | 55.2 µg/mL | Motility inhibition occurs through stabilization of the cytoskeleton. Oncosome degradation. Proliferation reduction with cell cycle arrest in G2. Initiation of apoptosis through reduction of Bcl-2, Bax, and PCNA. |
Leaves of Nicotiana glauca [34] | Ethanol 96% Hexane Chloroform Ethyl acetate | Hexane: palmitic acid extract Chloroform: scopoletin extract | RD | Palmitic acid and scopoletin are inducers of apoptosis. Reduction of cell migration capacity. |
Raw Material | Extraction Method | Isolated Compound(s) | Cell Line | IC50 Value of the Functional Extract or Isolated Compounds |
---|---|---|---|---|
Dried leaves of Rosmarinus officinalis [16] | Hydroethanolic solution: 70% | Carnosic acid Carnosol Rosmarinic acid | TE671 A172 | TE671: 0.249 ± 1.09 mg/mL A172: 0.577 ± 0.98 mg/mL |
Branches and leaves of Datura suveolens and Verbena tenuisecta [51] | Methanol Nanoparticles | Flavonoids Phenols | RD | V. tenuisecta: 42.5 ± 0.6 μg/mL D. suaveolens leaves nanoparticles: 2.4 ± 0.9 μg/mL D. suaveolens branches: 7.8 ± 1.1 |
Branches, leaves, and fruit of Anacolosa clarkii [52] | Methanol | Anacolosin A–F (1–6) Corymbulosa: X and Y (7–8) Two more compounds: 9–10 | A-673 RH30 D283 Hep293TT | Compounds 7–10: RH30 0.3–0.8 μM Hep293TT: 0.2–0.6 μM Compounds 1–10: 0.2–4.1 μM in all cell lines |
Leaves of Macaranga barteri [15] | Methanol | 3,5-dicaffeoylquinic acid Acteoside Kaempferol Bastadin-11 | RD VERO PNT2 | RD: 0.22 µg/mL |
Roots and leaves of Calliandra portoricensi [15] | Methanol | Neurolenin B Nigrosporolide Transgeranic acid | RD VERO PNT2 | RD: 0.82 µg/mL |
Seed of Spondias mombin [53] | Methanol | Phenols Flavonoids | RD | 139.6 ± 0.54 µg/mL |
Aerial parts of Salvia verbenaca [35] | Ethanol 70% Hexane Ethyl acetate n-butanol | - | RD VERO | Hexane extract in RD: 474.62 ± 1.31 µg/mL The rest of the extracts in RD: >500 µg/mL Ethyl acetate extract in VERO: 223.63 ± 1.61 µg/mL The rest of the extracts in VERO: >500 µg/mL |
Leaves of Kunzea ericoides [54] | Distilled water Ethanol 60% | Polyphenols | RD HEP-2 L -cells | K. ericoides leaves extract with ethanol in RD: 3815.9 μg/mL K. ericoides leaves extract with water in a subcritical state at 210 °C in RD: 389 ± 0.8 μg/mL K. ericoides leaves extract with water in a subcritical state at 210 °C in L cells: 216.8 ± 3.4 μg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesas, C.; Segura, B.; Perazzoli, G.; Chico, M.A.; Moreno, J.; Doello, K.; Prados, J.; Melguizo, C. Plant-Derived Bioactive Compounds for Rhabdomyosarcoma Therapy In Vitro: A Systematic Review. Appl. Sci. 2023, 13, 12964. https://doi.org/10.3390/app132312964
Mesas C, Segura B, Perazzoli G, Chico MA, Moreno J, Doello K, Prados J, Melguizo C. Plant-Derived Bioactive Compounds for Rhabdomyosarcoma Therapy In Vitro: A Systematic Review. Applied Sciences. 2023; 13(23):12964. https://doi.org/10.3390/app132312964
Chicago/Turabian StyleMesas, Cristina, Beatriz Segura, Gloria Perazzoli, Maria Angeles Chico, Javier Moreno, Kevin Doello, Jose Prados, and Consolación Melguizo. 2023. "Plant-Derived Bioactive Compounds for Rhabdomyosarcoma Therapy In Vitro: A Systematic Review" Applied Sciences 13, no. 23: 12964. https://doi.org/10.3390/app132312964
APA StyleMesas, C., Segura, B., Perazzoli, G., Chico, M. A., Moreno, J., Doello, K., Prados, J., & Melguizo, C. (2023). Plant-Derived Bioactive Compounds for Rhabdomyosarcoma Therapy In Vitro: A Systematic Review. Applied Sciences, 13(23), 12964. https://doi.org/10.3390/app132312964