Effect of Microwave and Conventional Heat Treatment on Total Phenolic Compounds, HPLC Phenolic Profile, and Antioxidant Activity of Leptadenia pyrotechnica (Forssk.) Decne Stem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Leptadenia pyrotechnica Sample Preparation
2.3. Sample Extraction
2.4. Total Phenolic Content (TPC)
2.5. Total Flavonoid Content (TFC)
2.6. DPPH Scavenging
2.7. Reducing Power
2.8. HPLC Analysis of Phenolic Compounds
2.9. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Content of Leptadenia pyrotechnica Stem
3.2. Total Flavonoid Content of Leptadenia pyrotechnica Stem
3.3. Antioxidant Activity of Leptadenia pyrotechnica Stem
3.4. Phenolic Compound Profile of Leptadenia pyrotechnica Stem
3.5. Multivariable Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ali, M.S.; Kausar, F.; Malik, A. Pyrotechnoic acid: A glycol-oleanolic acid conjugate from Leptadenia pyrotechnica (Asclepiadaceae). J. Chem. Soc. Pak. 2001, 23, 180–181. [Google Scholar]
- Preet, R.; Chand Gupta, R. Simultaneous Determination of Phenolic Compounds in Leptadenia pyrotechnica (Forssk.) Decne. By Using High-Performance Liquid Chromatography (HPLC-DAD-U V). Adv. Pharmacol. Sci. 2018, 2018, 9604972. [Google Scholar] [CrossRef]
- Khasawneh, M.A.; Elwy, H.M.; Hamza, A.A.; Fawzi, N.M.; Hassan, A.H. Antioxidant, Anti-Lipoxygenase and Cytotoxic Activity of Leptadenia pyrotechnica (Forssk.) Decne Polyphenolic Constituents. Molecules 2011, 16, 7510–7521. [Google Scholar] [CrossRef]
- Khalid, H.; Abdalla, W.E.; Abdelgadir, H.; Opatz, T.; Efferth, T. Gems from traditional north-African medicine: Medicinal and aromatic plants from Sudan. Nat. Prod. Bioprospect. 2012, 2, 92–103. [Google Scholar] [CrossRef]
- Rasheed, H.M.F.; Rasheed, F.; Qureshi, A.W.; Jabeen, Q. Immunostimulant Activities of the Aqueous Methanolic Extract of Leptadenia pyrotechnica, a Plant from Cholistan Desert. J. Ethnopharmacol. 2016, 186, 244–250. [Google Scholar] [CrossRef]
- Majidinia, M.; Bishayee, A.; Yousefi, B. Polyphenols: Major regulators of key components of DNA damage response in cancer. DNA Repair 2019, 82, 102679. [Google Scholar] [CrossRef]
- Jain, G.; Jhalani, S.; Agarwal, S.; Jain, K. Hypolipidemic and antiatherosclerotic effect of Leptadenia pyrotechnica extract in cholesterol fed rabbits. Asian J. Exp. Sci. 2007, 21, 115–122. [Google Scholar]
- Krinsky, N.I. Mechanism of Action of Biological Antioxidants. Exp. Biol. Med. 1992, 200, 248–254. [Google Scholar] [CrossRef]
- De Gonzalez, M.N.; Hafley, B.S.; Boleman, R.M.; Miller, R.K.; Rhee, K.S.; Keeton, J.T. Antioxidant properties of plum concentrates and powder in precooked roast beef to reduce lipid oxidation. Meat Sci. 2008, 80, 997–1004. [Google Scholar] [CrossRef]
- Zhang, X.; Li, D.; Meng, Q.; He, C.; Ren, L. Effect of mulberry leaf extracts on color, lipid oxidation, antioxidant enzyme activities and oxidative breakdown products of raw ground beef during refrigerated storage. J. Food Qual. 2016, 39, 159–170. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Anese, M.; Parpinel, M. Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci. Technol. 1999, 10, 94–100. [Google Scholar] [CrossRef]
- Pokorny, J.; Yanishlieva, N.; Gordon, M. (Eds.) Antioxidants in Food: Practical Applications; CRC Press: Boca Raton, FL, USA, 2001; p. 2. [Google Scholar]
- Chaaban, H.; Ioannou, I.; Chebil, L.; Slimane, M.; Gérardin, C.; Paris, C.; Charbonnel, C.; Chekir, L.; Ghoul, M. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. J. Food Process. Preserv. 2017, 41, e13203. [Google Scholar] [CrossRef]
- Ciou, J.Y.; Chen, H.C.; Chen, C.W.; Yang, K.M. Relationship between Antioxidant Components and Oxidative Stability of Peanut Oils as Affected by Roasting Temperatures. Agriculture 2021, 11, 300. [Google Scholar] [CrossRef]
- Sanga, E.; Mujumdar, A.S.; Raghavan, G.S.V. Principles and Applications of Microwave Drying. In Drying Technology in Agriculture and Food Sciences; Mujumdar, A.S., Ed.; Science Publisher: Enfield, NH, USA, 2000; pp. 253–289. [Google Scholar]
- Tulasidas, T.N.; Raghavan, G.S.V.; Mujumdar, A.S. Microwave drying of grapes in a single mode cavity at 2450 MHz—II. Quality and energy aspects. Dry. Technol. 1995, 13, 1973–1992. [Google Scholar] [CrossRef]
- Hayat, K.S.; Abbas, C.; Jia, S.; Xia; Zhang, X. Comparative study on phenolic compounds and antioxidant activity of Feutrell’s early and kinnow peel extracts. J. Food Biochem. 2011, 35, 454–471. [Google Scholar] [CrossRef]
- Noreen, H.; Semmar, N.; Farman, M.; McCullagh, J.S.O. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac. J. Trop. Med. 2011, 10, 792–801. [Google Scholar] [CrossRef]
- He, J.; Yin, T.; Chen, Y.; Cai, L.; Tai, Z.; Li, Z.; Liu, C.; Wang, Y.; Ding, Z. Phenolic compounds and antioxidant activities of edible flowers of Pyrus pashia. J. Funct. Foods 2015, 17, 371–379. [Google Scholar] [CrossRef]
- Hihat, S.; Remini, H.; Madani, K. Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves. Int. Food Res. J. 2017, 24, 503–509. [Google Scholar]
- Routray, W.; Orsat, V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind. Crops Prod. 2014, 58, 36–45. [Google Scholar] [CrossRef]
- Lasano, N.F.; Rahmat, A.; Ramli, N.S.; Abu Bakar, M.F. Effect of oven and microwave drying on polyphenols content and antioxidant capacity of herbal tea from Strobilanthes crispus leaves. Asian J. Pharm. Clin. Res. 2018, 11, 363–368. [Google Scholar] [CrossRef]
- Juhaimi, F.A.; Özcan, M.M.; Uslu, N. The effect of microwave and conventional drying on antioxidant activity, phenolic compounds and mineral profile of date fruit (Phoenix dactylifera L.) flesh. Food Meas. 2017, 11, 58–63. [Google Scholar] [CrossRef]
- Karabacak, A.Ö.; Suna, S.; Tamer, C.E.; Çopur, U. Effects of oven, microwave and vacuum drying on drying characteristics, colour, total phenolic content and antioxidant capacity of celery slices. Qual. Assur. Saf. Crops Foods 2018, 10, 193–205. [Google Scholar] [CrossRef]
- Wongsa, P.; Khampa, N.; Horadee, S.; Chaiwarith, J.; Rattanapanone, N. Quality and bioactive compounds of blends of Arabica and Robusta spray-dried coffee. Food Chem. 2019, 283, 579–587. [Google Scholar] [CrossRef]
- Hayat, K.; Zhang, X.; Chen, H.; Xia, S.; Jia, C.; Zhong, F. Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Sep. Purif. Technol. 2010, 73, 371–376. [Google Scholar] [CrossRef]
- Alkaltham, M.; Özcan, M.; Uslu, N.; Salamatullah, A.M.; Hayat, K. Effect of microwave and oven roasting methods on total phenol, antioxidant activity, phenolic compounds, and fatty acid compositions of coffee beans. J. Food Process. Preserv. 2020, 44, 14874. [Google Scholar] [CrossRef]
- Hayat, K.; Zhang, X.; Farooq, U.; Abbas, S.; Xia, S.; Jia, C.; Zhong, F.; Zhang, J. Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace. Food Chem. 2010, 123, 423–429. [Google Scholar] [CrossRef]
- Xu, G.; Ye, X.; Chen, J.; Liu, D. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 2007, 55, 330–335. [Google Scholar] [PubMed]
- Hossain, M.B.; Barry-Ryan, C.; Martin-Diana, A.B.; Brunton, N.P. Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem. 2010, 123, 85–91. [Google Scholar] [CrossRef]
- Zia, M.P.; Alibas, I. Influence of the drying methods on color, vitamin C, anthocyanin, phenolic compounds, antioxidant activity, and in vitro bioaccessibility of blueberry fruits. Food Biosci. 2021, 42, 101179. [Google Scholar] [CrossRef]
- Pastoriza, S.; Rufián-Henares, J.A. Contribution of melanoidins to the antioxidant capacity of the Spanish diet. Food Chem. 2014, 164, 438–445. [Google Scholar] [CrossRef]
- Wei, F.; Tanokura, M. Coffee in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2015; pp. 83–91. [Google Scholar]
- Saifullah, M.; McCullum, R.; McCluskey, A.; Vuong, Q. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon 2019, 5, e03044. [Google Scholar] [CrossRef]
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC determination of water-soluble vitamins in honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef]
- Munazir, M.; Qureshi, R.; Munir, M. Preliminary phytochemical screening of roots and aerial parts of Leptadenia pyrotechnica. Pak. J. Bot. 2015, 47, 659–664. [Google Scholar]
- Ferrit, M.; Del Valle, C.; Martínez, F. The influence of the structural characteristics of the substrate and the medium on the stability of triflusal and acetylsalicylic acid in micellar systems. J. Mol. Liq. 2008, 142, 64–71. [Google Scholar] [CrossRef]
- Fu, L.; Xu, B.T.; Xu, X.R.; Gan, R.Y.; Zhang, Y.; Xia, E.Q.; Li, H.B. Antioxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011, 129, 345–350. [Google Scholar] [CrossRef]
- Yan, W.; Frégeau-Reid, J. Breeding line selection based on multiple traits. Crop Sci. 2008, 48, 417–423. [Google Scholar] [CrossRef]
Treatment | Tannic Acid | Chlorogenic Acid | Caffeic Acid | Vanillin | Acetylsalicylic Acid | Salicylic Acid | |
---|---|---|---|---|---|---|---|
Control | ND | 8.32 ± 0.02 | ND. | 2.00 ± 0.01 | 43.95 ± 0.45 | 7.86 ± 1.57 | |
Microwave heating | 5 min | 40.92 ± 0.14 | 14.43 ± 0.07 | 7.85 ± 0.07 | 1.61 ± 0.05 | 119.08 ± 0.62 | 15.71 ± 0.05 |
8 min | 116.06 ± 0.37 | 11.30 ± 0.01 | 8.14 ± 0.04 | 1.65 ± 0.02 | 68.75 ± 0.52 | 8.75 ± 0.03 | |
10 min | 77.30 ± 0.01 | 10.57 ± 0.01 | 1.52 ± 0.01 | 2.13 ± 0.01 | ND. | 3.91 ± 0.04 | |
Hot-air heating | 60 min | 28.12 ± 0.23 | 12.18 ± 0.10 | 8.00 ± 0.47 | 1.06 ± 0.05 | ND. | 19.54 ± 0.02 |
120 min | 16.62 ± 0.45 | 16.29 ± 0.08 | 3.54 ± 0.02 | ND. | 25.82 ± 0.84 | 20.20 ± 0.06 | |
180 min | 41.98 ± 0.12 | 13.18 ± 0.01 | 8.18 ± 0.45 | 1.17 ± 0.02 | ND. | 14.54 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkaltham, M.S.; Hayat, K.; Salamatullah, A.M.; Ahmed, M.A.; Hassan, A.B. Effect of Microwave and Conventional Heat Treatment on Total Phenolic Compounds, HPLC Phenolic Profile, and Antioxidant Activity of Leptadenia pyrotechnica (Forssk.) Decne Stem. Appl. Sci. 2023, 13, 13222. https://doi.org/10.3390/app132413222
Alkaltham MS, Hayat K, Salamatullah AM, Ahmed MA, Hassan AB. Effect of Microwave and Conventional Heat Treatment on Total Phenolic Compounds, HPLC Phenolic Profile, and Antioxidant Activity of Leptadenia pyrotechnica (Forssk.) Decne Stem. Applied Sciences. 2023; 13(24):13222. https://doi.org/10.3390/app132413222
Chicago/Turabian StyleAlkaltham, Mohammed Saeed, Khizar Hayat, Ahmad Mohammad Salamatullah, Mohammed Asif Ahmed, and Amro B. Hassan. 2023. "Effect of Microwave and Conventional Heat Treatment on Total Phenolic Compounds, HPLC Phenolic Profile, and Antioxidant Activity of Leptadenia pyrotechnica (Forssk.) Decne Stem" Applied Sciences 13, no. 24: 13222. https://doi.org/10.3390/app132413222
APA StyleAlkaltham, M. S., Hayat, K., Salamatullah, A. M., Ahmed, M. A., & Hassan, A. B. (2023). Effect of Microwave and Conventional Heat Treatment on Total Phenolic Compounds, HPLC Phenolic Profile, and Antioxidant Activity of Leptadenia pyrotechnica (Forssk.) Decne Stem. Applied Sciences, 13(24), 13222. https://doi.org/10.3390/app132413222