Labeled Hedonic Scale for the Evaluation of Sensory Perception and Acceptance of an Aromatic Myrtle Bitter Liqueur in Consumers with Chemosensory Deficits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Evaluation of Olfactory and Gustatory Functions
2.3. Production of the Aromatic Bitter Liqueur Mirtamaro
2.4. Determination of Odor and Taste Dimensions (Pleasantness, Intensity, and Familiarity) of the Aromatic Bitter Liqueur Mirtamaro
2.5. Statistical Analyses
3. Results
3.1. Assessment of Olfactory and Gustatory Function
3.2. Determination of Odor and Taste Dimensions (Pleasantness, Intensity, and Familiarity) of the Aromatic Bitter Liqueur Mirtamaro
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Civille, G.V. Food quality: Consumer acceptance and sensory attributes. J. Food. Qual. 1991, 14, 1–8. [Google Scholar] [CrossRef]
- McCrickerd, K.; Forde, C.G. Sensory influences on food intake control: Moving beyond palatability. Obes. Rev. 2016, 17, 18–29. [Google Scholar] [CrossRef]
- Costell, E.; Tárrega., A.; Bayarri., S. Food acceptance: The role of consumer perception and attitudes. Chemosens. Percept. 2010, 3, 42–50. [Google Scholar] [CrossRef]
- Spence, C. Multisensory flavor perception. Cell 2015, 161, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, S.Y.; Schmidt, S.J. Probing the sensory properties of food materials with nuclear magnetic resonance spectroscopy and imaging. In Modern Magnetic Resonance; Webb, G.A., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 1889–1894. [Google Scholar] [CrossRef]
- Kremer, S.; Holthuysen, N.; Boesveldt, S. The influence of olfactory impairment in vital, independently living older persons on their eating behaviour and food liking. Food Qual. Prefer. 2014, 38, 30–39. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, C.; Zhang, Y.; Xie, H.; Wei, Y. Gustatory event-related potential alterations in olfactory dysfunction patients. Neurol. Sci. 2022, 43, 2899–2908. [Google Scholar] [CrossRef]
- Aschenbrenner, K.; Hummel, C.; Teszmer, K.; Krone, F.; Ishimaru, T.; Seo, H.S.; Hummel, T. The influence of olfactory loss on dietary behaviors. Laryngoscope 2008, 118, 135–144. [Google Scholar] [CrossRef]
- Ferrulli, A.; Senesi, P.; Terruzzi, I.; Luzi, L. Eating habits and body weight changes induced by variation in smell and taste in patients with previous SARS-CoV-2 infection. Nutrients 2022, 14, 5068. [Google Scholar] [CrossRef]
- Passàli, G.C.; Ralli, M.; Galli, J.; Calò, L.; Paludetti, G. How relevant is the impairment of smell for the quality of life in allergic rhinitis? Curr. Opin. Allergy Clin. Immunol. 2008, 8, 238–242. [Google Scholar] [CrossRef]
- Zang, Y.; Han, P.; Burghardt, S.; Knaapila, A.; Schriever, V.; Hummel, T. Influence of olfactory dysfunction on the perception of food. Eur. Arch. Otorhinolaryngol. 2019, 276, 2811–2817. [Google Scholar] [CrossRef] [PubMed]
- Hummel, T.; Whitcroft, K.L.; Andrews, P.; Altundag, A.; Cinghi, C.; Costanzo, R.M.; Damm, M.; Frasnelli, J.; Gudziol, H.; Gupta, N.; et al. Position paper on olfactory dysfunction. Rhinology 2017, 54, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Croy, I.; Nordin, S.; Hummel, T. Olfactory disorders and quality of life–An updated review. Chem. Senses 2014, 39, 185–194. [Google Scholar] [CrossRef]
- Fjaeldstad, A.W.; Smith, B. The effects of olfactory loss and parosmia on food and cooking habits, sensory awareness, and quality of life—A possible avenue for regaining enjoyment of food. Foods 2022, 11, 1686. [Google Scholar] [CrossRef] [PubMed]
- Risso, D.; Drayna, D.; Morini, G. Alteration, reduction and taste loss: Main causes and potential implications on dietary habits. Nutrients 2020, 12, 3284. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moemin, A.R.; Regenstein, J.M.; Abdel-Rahman, M.K. New food products for sensory-compromised situations. Comprehensive reviews in food science and food safety. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1625–1639. [Google Scholar] [CrossRef] [PubMed]
- Koyama, S.; Kondo, K.; Ueha, R.; Kashiwadani, H.; Heinbockel, T. Possible use of phytochemicals for recovery from COVID-19-induced anosmia and ageusia. Int. J. Mol. Sci. 2021, 22, 8912. [Google Scholar] [CrossRef]
- Carvalho Costa, D.; Costa, H.S.; Gonçalves Albuquerque, T.; Ramos, F.; Castilho, M.C.; Sanches-Silva, A. Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends Food Sci. Technol. 2015, 45, 336–354. [Google Scholar] [CrossRef]
- Embuscado, M.E. Spices and herbs: Natural sources of antioxidants—A mini review. J. Funct. Foods 2015, 18, 811–819. [Google Scholar] [CrossRef]
- Dougkas, A.; Vannereux, M.; Giboreau, A. The impact of herbs and spices on increasing the appreciation and intake of low-salt legume-based meals. Nutrients 2019, 11, 2901. [Google Scholar] [CrossRef]
- Rosa, A.; Pinna, I.; Piras, A.; Porcedda, S.; Masala, C. Flavoring of sea salt with Mediterranean aromatic plants affects salty taste perception. J. Sci. Food Agric. 2022, 102, 6005–6013. [Google Scholar] [CrossRef]
- Peters, J.C.; Marker, R.; Pan, Z.; Breen, J.A.; Hill, J.O. The influence of adding spices to reduced sugar foods on overall liking. J. Food Sci. 2018, 83, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Ghawi, S.K.; Rowland, I.; Methven, L. Enhancing consumer liking of low salt tomato soup over repeated exposure by herb and spice seasonings. Appetite 2014, 81, 20–29. [Google Scholar] [CrossRef]
- Rosa, A.; Loy, F.; Pinna, I.; Masala, C. Role of aromatic herbs and spices in salty perception of patients with hyposmia. Nutrients 2022, 14, 4976. [Google Scholar] [CrossRef]
- Luo, Y.; Kong, L.; Xue, R.; Wang, W.; Xiam, X. Bitterness in alcoholic beverages: The profiles of perception, constituents, and contributors. Trends Food Sci. Technol. 2020, 96, 222–232. [Google Scholar] [CrossRef]
- Rosa, A.; Pinna, I.; Piras, A.; Porcedda, S.; Masala, C. Sex differences in the bitterness perception of an aromatic myrtle bitter liqueur and bitter compounds. Nutrients 2023, 15, 2030. [Google Scholar] [CrossRef] [PubMed]
- Petrović, M.; Vukosavljević, P.; Đurović, S.; Antić, M.; Gorjanović, S. New herbal bitter liqueur with high antioxidant activity and lower sugar content: Innovative approach to liqueurs formulations. J. Food Sci. Technol. 2019, 56, 4465–4473. [Google Scholar] [CrossRef] [PubMed]
- Motti, R.; Bonanomi, G.; de Falco, B. Wild and cultivated plants used in traditional alcoholic beverages in Italy: An ethnobotanical review. Eur. Food Res. Technol. 2022, 248, 1089–1106. [Google Scholar] [CrossRef]
- Alamprese, C.; Pompei, C.; Scaramuzzi, F. Characterization and antioxidant activity of nocino liqueur. Food Chem. 2005, 90, 495–502. [Google Scholar] [CrossRef]
- Giampieri, F.; Cianciosi, D.; Forbes-Hernández, T.Y. Myrtle (Myrtus communis L.) berries, seeds, leaves, and essential oils: New undiscovered sources of natural compounds with promising health benefits. Food Front. 2020, 1, 276–295. [Google Scholar] [CrossRef]
- Seo, H.S.; Pramudya, R.C.; Singh, A.; Hummel, T. Recent evidence for the impacts of olfactory disorders on food enjoyment and ingestive behavior. Curr. Opin. Food Sci. 2021, 42, 187–194. [Google Scholar] [CrossRef]
- Hummel, T.; Kobal, G.; Gudziol, H.; Mackay-Sim, A. Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: An upgrade based on a group of more than 3000 subjects. Eur. Arch. Otorhinolaryngol. 2007, 264, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Landis, B.N.; Welge-Luessen, A.; Brämerson, A.; Bende, M.; Mueller, C.A.; Nordin, S.; Hummel, T. “Taste strips”—A rapid, lateralized, gustatory bedside identification test based on impregnated filter papers. J. Neurol. 2009, 256, 242–248. [Google Scholar] [CrossRef]
- Rosa, A.; Isola, R.; Nieddu, M.; Masala, C. The Role of lipid composition in the sensory attributes and acceptability of the salted and dried mullet roes (Bottarga): A study in human and animal models. Nutrients 2020, 12, 3454. [Google Scholar] [CrossRef] [PubMed]
- Masala, C.; Saba, L.; Cecchini, M.P.; Solla, P.; Loy, F. Olfactory Function and Age: A Sniffin’ Sticks Extended Test Study Performed in Sardinia. Chemosens. Percept. 2018, 11, 19–26. [Google Scholar] [CrossRef]
- Masala, C.; Käehling, C.; Fall, F.; Hummel, T. Correlation between olfactory function. trigeminal sensitivity. and nasal anatomy in healthy subjects. Eur. Arch. Oto-Rhino-Laryngol. 2019, 276, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Oleszkiewicz, A.; Alizadeh, R.; Altundag, A.; Chen, B.; Corrai, A.; Fanari, R.; Farhadi, M.; Gupta, N.; Habel, R.; Hudson, R.; et al. Global study of variability in olfactory sensitivity. Behav. Neurosci. 2020, 134, 394–406. [Google Scholar] [CrossRef]
- Nørgaard, H.J.; Fjaeldstad, A.W. Differences in correlation between subjective and measured olfactory and gustatory dysfunctions after initial ear, nose and throat evaluation. Int. Arch. Otorhinolaryngol. 2021, 25, e563–e569. [Google Scholar] [CrossRef]
- Lim, J. Hedonic scaling: A review of methods and theory. Food Qual. Prefer. 2011, 22, 733–747. [Google Scholar] [CrossRef]
- Rai, S.; Wai, P.P.; Koirala, P.; Bromage, S.; Nirmal, N.P.; Pandiselvam, R.; Nor-Khaizura, M.A.R.; Mehta, N.K. Food product quality, environmental and personal characteristics affecting consumer perception toward food. Front. Sustain. Food Syst. 2023, 7, 1222760. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Rosa, A.; Bifulco, E.; Melis, M.P.; Atzeri, A.; Pirisi, F.M.; Dessì, M.A. Chemical composition and antioxidant activities of Myrtus communis L. berries extracts. Food Chem. 2010, 123, 1242–1251. [Google Scholar] [CrossRef]
- de Araujo, I.E.; Simon, S.A. The gustatory cortex and multisensory integration. Int. J. Obes. 2009, 33 (Suppl. S2), S34–S43. [Google Scholar] [CrossRef] [PubMed]
- Kershaw, J.C.; Mattes, R.D. Nutrition and taste and smell dysfunction. World J. Otorhinolaryngol. Head Neck Surg. 2018, 4, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, R.J.; Mahmut, M.K.; Horstmann, A.; Hummel, T. The aetiology of olfactory dysfunction and its relationship to diet quality. Brain Sci. 2020, 10, 769. [Google Scholar] [CrossRef] [PubMed]
- Fritts, J.R.; Fort, C.; Corr, A.Q.; Liang, Q.; Alla, L.; Cravener, T.; Hayes, J.E.; Rolls, B.J.; D’Adamo, C.; Keller, K.L. Herbs and spices increase liking and preference for vegetables among rural high school students. Food Qual. Prefer. 2018, 68, 125–134. [Google Scholar] [CrossRef]
- Schiffman, S.S. Intensification of sensory properties of foods for the elderly. J. Nutr. 2000, 130 (Suppl. S4), 927S–930S. [Google Scholar] [CrossRef] [PubMed]
- Delplanque, S.; Grandjean, D.; Chrea, C.; Aymard, L.; Cayeux, I.; Le Calvé, B.; Velazco, M.I.; Scherer, K.R.; Sander, D. Emotional processing of odors: Evidence for a nonlinear relation between pleasantness and familiarity evaluations. Chem. Senses 2008, 33, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Spence, C. What is the relationship between the presence of volatile organic compounds in food and drink products and multisensory flavour perception? Foods 2021, 10, 1570. [Google Scholar] [CrossRef]
Parameters | Controls (n = 158) | Hypos (n = 111) | Hypogeu (n = 34) |
---|---|---|---|
Age (years) | 33.0 ± 13.8 | 36.8 ± 16.5 | 37.3 ± 16.8 |
Sex | 106 Women/52 Men | 70 Women/41 Men | 13 Women/21 Men |
Weight (kg) | 63.8 ± 14.0 | 66.6 ± 15.7 | 71.1 ± 11.9 * |
Height (m) | 1.6 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 |
BMI | 23.5 ± 4.4 | 24.8 ± 7.9 | 25.8 ± 3.9 |
OThr | 9.6 ± 3.9 | 4.1 ± 2.6 *** | 6.1 ± 3.7 ***§ |
ODi | 12.8 ± 1.5 | 10.5 ± 2.4 *** | 11.3 ± 3.1 ** |
OId | 13.5 ± 1.2 | 11.9 ± 2.0 *** | 11.9 ± 2.8 *** |
TDI score | 35.9 ± 3.9 | 26.5 ± 4.3 *** | 29.3 ± 7.9 ***§§ |
Sweet | 3.5 ± 0.7 | 3.2 ± 1.1 * | 2.2 ± 1.2 ***§§§ |
Salty | 3.5 ± 0.7 | 3.3 ± 0.9 * | 2.3 ± 1.2 ***§§§ |
Sour | 2.8 ± 0.8 | 2.3 ± 1.1 *** | 1.3 ± 1.1 ***§§§ |
Bitter | 3.1 ± 1.0 | 2.9 ± 1.1 | 1.6 ± 1.2 ***§§§ |
TT score | 12.9 ± 1.6 | 11.7 ± 2.8 *** | 7.4 ± 1.7 ***§§§ |
Parameters | Controls (n = 68) | Hypos (n = 22) | Hypogeu (n = 21) |
---|---|---|---|
Age (years) | 32.4 ± 13.4 | 42.5 ± 22.1 * | 37.1 ± 18.8 |
Sex | 46 Women/22 Men | 13 Women/9 Men | 7 Women/14 Men |
Weight (kg) | 65.6 ± 13.9 | 68.7 ± 17.4 | 71.8 ± 12.5 |
Height (m) | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 |
BMI | 24.0 ± 4.7 | 25.2 ± 6.2 | 25.9 ± 4.4 |
Subjects | Sensory Input | Sensory Perceived Attributes |
---|---|---|
Ctrl | Odor | Liqueur; bitter liqueur; myrtle; herbs; alcohol; bitter; very bitter; chinotto; licorice; juniper; berries; orange; woody; spicy; nicotine; coffee; Sambuca; medication; pungent; natural essences; rum; coffee; balsamic herbs; orange; mint. |
Taste | Bitter liqueur; myrtle berries; myrtle; bitter; very bitter; spicy; alcohol; strong; bitter myrtle; wine; herbs note; Citrus note; sour; initially sweet, then very bitter; strong; chinotto aftertaste; slightly bitter; honeyed aftertaste; chinotto aftertaste; medication; mint aftertaste; quinine; Sambuca. | |
Hypos | Odor | Bitter liqueur; aromatic bitter liqueur; licorice; Sambuca; alcohol; Marsala; aromatic herbs; medication; spicy. |
Taste | Very bitter; bitter; very bitter with a sour note; bitter liqueur; whisky; propolis; rum; sweet; sweet with caramelized aftertaste; initially sweet, then bitter. | |
Hypogeu | Odor | Liqueur; myrtle; alcohol; bitter; bitter liqueur; spirit; aromatic herbs; natural essences; Marsala. |
Taste | Sweet; sweet with caramelized aftertaste; bitter; myrtle; alcohol; spirit; initially sweet, then bitter; liqueur. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosa, A.; Masala, C. Labeled Hedonic Scale for the Evaluation of Sensory Perception and Acceptance of an Aromatic Myrtle Bitter Liqueur in Consumers with Chemosensory Deficits. Appl. Sci. 2023, 13, 13083. https://doi.org/10.3390/app132413083
Rosa A, Masala C. Labeled Hedonic Scale for the Evaluation of Sensory Perception and Acceptance of an Aromatic Myrtle Bitter Liqueur in Consumers with Chemosensory Deficits. Applied Sciences. 2023; 13(24):13083. https://doi.org/10.3390/app132413083
Chicago/Turabian StyleRosa, Antonella, and Carla Masala. 2023. "Labeled Hedonic Scale for the Evaluation of Sensory Perception and Acceptance of an Aromatic Myrtle Bitter Liqueur in Consumers with Chemosensory Deficits" Applied Sciences 13, no. 24: 13083. https://doi.org/10.3390/app132413083
APA StyleRosa, A., & Masala, C. (2023). Labeled Hedonic Scale for the Evaluation of Sensory Perception and Acceptance of an Aromatic Myrtle Bitter Liqueur in Consumers with Chemosensory Deficits. Applied Sciences, 13(24), 13083. https://doi.org/10.3390/app132413083