Enriching Cured Meat Products with Bioactive Compounds Recovered from Rosa damascena and Rosmarinus officinalis L. Distillation By-Products: The Pursuit of Natural Antimicrobials to Reduce the Use of Nitrites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enrichment of Meat Products with Extracts
2.2. Shelf-Life Study
2.2.1. Experimental Design
2.2.2. Microbiological Analysis
2.2.3. Evaluation of Lipid Oxidation
2.2.4. Evaluation of the Color Change/Sensory Attributes of the Raw Meat Samples
2.3. Microbial Growth Modelling
3. Results and Discussion
3.1. Shelf-Life Study
3.1.1. Microbial Growth
3.1.2. Shelf-Life Estimation (tSL)
3.1.3. Chemical Indices—Lipid Oxidation
3.1.4. Other Indices—Color/pH/Sensory Attributes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
A(t) | Function that is described in [48] and [31], (-) |
a* | corresponds to the position of a color along the red-green axis in CIELAB system, (-) |
b* | corresponds to the position of a color along the red-green axis in CIELAB system, (-) |
Ea,μ | Energy inactivation of maximum specific growth rate, (J/mole) |
Ea,λ | Energy inactivation of lag phase, (J/mole) |
L* | Lightness or brightness of a color in CIELAB system, (-) |
R | Universal gas constant, (8.314 J/mole K) |
Trefμ | Temperature reference for maximum specific growth rate, (K) |
Trefλ | Temperature reference for lag phase, (K) |
t | time, (d) |
tSL | shelf-life, (d) |
yo | Decimal logarithm of initial microbial population, logCFU/g |
ymax | Decimal logarithm of maximum microbial population, logCFU/g |
CNT | Control bacon samples containing 150 ppm nitrites |
RN | Bacon samples with reduced nitrites (75 ppm) |
RSE | Bacon samples with reduced nitrites (75 ppm) enriched with rose extract (90 ppm phenolic compounds) |
RSE–RSME: | Bacon samples with reduced nitrites (75 ppm) enriched with rose extract (45 ppm phenolic compounds) and rosemary extract (45 ppm phenolic diterpenes) |
Greek letters | |
μmax | Maximum specific growth rate of investigated microorganism, (logCFU/g/(logCFU/g d)) |
μobs | Maximum specific growth rate of experimental measurements, (d−1) |
μmax,ref | Pre exponential factor for Equation (3), ((logCFU/g/(logCFU/g d)), estimated out of Equation (3) |
λ | Lag phase, (d) |
λref | Pre exponential factor, estimated out of Equation (4), (d) |
References
- Zhang, Y.; Zhang, Y.; Jia, J.; Peng, H.; Qian, Q.; Pan, Z.; Liu, D. Nitrite and Nitrate in Meat Processing: Functions and Alternatives. Curr. Res. Food Sci. 2023, 6, 100470. [Google Scholar] [CrossRef] [PubMed]
- Shakil, M.H.; Trisha, A.T.; Rahman, M.; Talukdar, S.; Kobun, R.; Huda, N.; Zzaman, W. Nitrites in Cured Meats, Health Risk Issues, Alternatives to Nitrites: A Review. Foods 2022, 11, 3355. [Google Scholar] [CrossRef] [PubMed]
- Majou, D.; Christieans, S. Mechanisms of the Bactericidal Effects of Nitrate and Nitrite in Cured Meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Stoica, M.; Antohi, V.M.; Alexe, P.; Ivan, A.S.; Stanciu, S.; Stoica, D.; Zlati, M.L.; Stuparu-Cretu, M. New Strategies for the Total/Partial Replacement of Conventional Sodium Nitrite in Meat Products: A Review. Food Bioprocess Technol. 2022, 15, 514–538. [Google Scholar] [CrossRef]
- Dietrich, M.; Block, G.; Pogoda, J.M.; Buffler, P.; Hecht, S.; Martin, S.P. A Review: Dietary and Endogenously Formed N-Nitroso Compounds and Risk of Childhood Brain Tumors. Cancer Causes Control 2005, 16, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.-O. The Use and Control of Nitrate and Nitrite for the Processing of Meat Products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef]
- Demeyer, D.; Honikel, K.; De Smet, S. The World Cancer Research Fund Report 2007: A Challenge for the Meat Processing Industry. Meat Sci. 2008, 80, 953–959. [Google Scholar] [CrossRef]
- Reg (EC) 1333/2008; Regulation on Food Additives of the European Parliament and Council. European Union: Brussels, Belgium, 2008.
- EC 231/2012; Regulation Laying Down Specifications for Food Additives Listed in Annexes II and III to Regulation (EC) No 1333/2008 of the European Parliament and of the Council. European Union: Brussels, Belgium, 2012.
- Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32023R2108 (accessed on 1 December 2023).
- Gavriil, A.; Zilelidou, E.; Papadopoulos, A.-E.; Siderakou, D.; Kasiotis, K.M.; Haroutounian, S.A.; Gardeli, C.; Giannenas, I.; Skandamis, P.N. Evaluation of Antimicrobial Activities of Plant Aqueous Extracts against Salmonella Typhimurium and Their Application to Improve Safety of Pork Meat. Sci. Rep. 2021, 11, 21971. [Google Scholar] [CrossRef]
- Ferysiuk, K.; Wójciak, K.M. Reduction of Nitrite in Meat Products through the Application of Various Plant-Based Ingredients. Antioxidants 2020, 9, 711. [Google Scholar] [CrossRef]
- Karwowska, M.; Munekata, P.E.S.; Lorenzo, J.M.; Tomasevic, I. Functional and Clean Label Dry Fermented Meat Products: Phytochemicals, Bioactive Peptides, and Conjugated Linoleic Acid. Appl. Sci. 2022, 12, 5559. [Google Scholar] [CrossRef]
- Riazi, F.; Zeynali, F.; Hoseini, E.; Behmadi, H.; Savadkoohi, S. Oxidation Phenomena and Color Properties of Grape Pomace on Nitrite-Reduced Meat Emulsion Systems. Meat Sci. 2016, 121, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Aliyari, P.; Kazaj, F.B.; Barzegar, M.; Gavlighi, H.A. Production of functional sausage using pomegranate peel and pistachio green hull extracts as natural preservatives. J. Agric. Sci. Technol. 2020, 22, 159–172. [Google Scholar]
- Manihuruk, F.M.; Suryati, T.; Arief, I.I. Effectiveness of the Red Dragon Fruit (Hylocereus polyrhizus) Peel Extract as the Colorant, Antioxidant, and Antimicrobial on Beef Sausage. Media Peternak. 2017, 40, 47–54. [Google Scholar] [CrossRef]
- Difonzo, G.; Totaro, M.P.; Caponio, F.; Pasqualone, A.; Summo, C. Olive Leaf Extract (OLE) Addition as Tool to Reduce Nitrate and Nitrite in Ripened Sausages. Foods 2022, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Mihalev, K.; Berardini, N.; Mollov, P.; Carle, R. Flavonol Glycosides from Distilled Petals of Rosa damascena Mill. Zeitschrift Naturforschung C 2005, 60, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef] [PubMed]
- Magar, R.T.; Sohng, J.K. A Review on Structure, Modifications and Structure-Activity Relation of Quercetin and Its Derivatives. J. Microbiol. Biotechnol. 2020, 30, 11–20. [Google Scholar] [CrossRef]
- Psarrou, I.; Oreopoulou, A.; Tsimogiannis, D.; Oreopoulou, V. Extraction kinetics of phenolic antioxidants from the hydro distillation residues of rosemary and effect of pretreatment and extraction parameters. Molecules 2020, 25, 4520. [Google Scholar] [CrossRef]
- Oreopoulou, A.; Papavassilopoulou, E.; Bardouki, H.; Vamvakias, M.; Bimpilas, A.; Oreopoulou, V. Antioxidant Recovery from Hydrodistillation Residues of Selected Lamiaceae Species by Alkaline Extraction. J. Appl. Res. Med. Aromat. Plants 2018, 8, 83–89. [Google Scholar] [CrossRef]
- Santana-Méridas, O.; Polissiou, M.; Izquierdo-Melero, M.E.; Astraka, K.; Tarantilis, P.A.; Herraiz-Peñalver, D.; Sánchez-Vioque, R. Polyphenol Composition, Antioxidant and Bioplaguicide Activities of the Solid Residue from Hydrodistillation of Rosmarinus officinalis L. Ind. Crops Prod. 2014, 59, 125–134. [Google Scholar] [CrossRef]
- Wollinger, A.; Perrin, É.; Chahboun, J.; Jeannot, V.; Touraud, D.; Kunz, W. Antioxidant Activity of Hydro Distillation Water Residues from Rosmarinus officinalis L. Leaves Determined by DPPH Assays. Comptes Rendus Chim. 2016, 19, 754–765. [Google Scholar] [CrossRef]
- Reg (EC) 1129/2011; Regulation amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by Establishing a Union List of Food Additives. European Union: Brussels, Belgium, 2011.
- Tsiaka, T.; Stavropoulou, N.A.; Giannakourou, M.C.; Strati, I.F.; Sinanoglou, V.J. Optimization of Ultrasound-Assisted Extraction and Characterization of the Phenolic Compounds in Rose Distillation Side Streams Using Spectrophotometric Assays and High-Throughput Analytical Techniques. Molecules 2023, 28, 7403. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.; Cardoso, C.; Pestana, C. Measurement of Malondialdehyde in Fish: A Comparison Study between HPLC Methods and the Traditional Spectrophotometric Test. Food Chem. 2009, 112, 1038–1045. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, G. Numerical Solution of a Microbial Growth Model Applied to Dynamic Environments. J. Microbiol. Methods 2015, 112, 76–82. [Google Scholar] [CrossRef] [PubMed]
- McMeekin, T.A.; Olley, J.N.; Ross, T.; Ratkowsky, D.A. Predictive Microbiology: Theory and Application, 1st ed.; Research Studies Press Ltd.: Taunton, UK, 1993. [Google Scholar]
- Zwietering, M.H.; Jongenburger, I.; Rombouts, F.M.; van’t Riet, K. Modeling of the Bacterial Growth Curve. Appl. Environ. Microbiol. 1990, 56, 1875–1881. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; Roberts, T.A. A Dynamic Approach to Predicting Bacterial Growth in Food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef]
- Mohan, C.O.; Carvajal-Millan, E.; Ravishankar, C.N.; Haghi, A.K. Food Process Engineering and Quality Assurance; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Ross, T.; McMeekin, T.A. Modeling Microbial Growth Within Food Safety Risk Assessments. Risk Anal. 2003, 23, 179–197. [Google Scholar] [CrossRef]
- van Impe, J.F.; Poschet, F.; Geeraerd, A.H.; Vereecken, K.M. Towards a novel class of predictive microbial growth models. Int. J. Food Microbiol. 2005, 100, 97–105. [Google Scholar] [CrossRef]
- Mataragas, M.; Drosinos, E.H.; Vaidanis, A.; Metaxopoulos, I. Development of a Predictive Model for Spoilage of Cooked Cured Meat Products and Its Validation Under Constant and Dynamic Temperature Storage Conditions. J. Food Sci. 2006, 71, 1875–1881. [Google Scholar] [CrossRef]
- Duda-Madej, A.; Stecko, J.; Sobieraj, J.; Szymańska, N.; Kozłowska, J. Naringenin and Its Derivatives—Health-Promoting Phytobiotic against Resistant Bacteria and Fungi in Humans. Antibiotics 2022, 11, 1628. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive Review of Antimicrobial Activities of Plant Flavonoids. Phytochem. Rev. 2018, 18, 241–272. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural Products as Antimicrobial Agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Periferakis, A.; Periferakis, K.; Badarau, I.A.; Petran, E.M.; Popa, D.C.; Caruntu, A.; Costache, R.S.; Scheau, C.; Caruntu, C.; Costache, D.O. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int. J. Mol. Sci. 2022, 23, 15054. [Google Scholar] [CrossRef] [PubMed]
- Katsouli, M.; Semenoglou, I.; Kotsiri, M.; Gogou, E.; Tsironi, T.; Taoukis, P. Active and Intelligent Packaging for Enhancing Modified Atmospheres and Monitoring Quality and Shelf Life of Packed Gilthead Seabream Fillets at Isothermal and Variable Temperature Conditions. Foods 2022, 11, 2245. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Ye, H.; Wang, Z.; Wu, X.; Han, Y.; Xu, B. Changes in the Microbial Communities in Vacuum-Packaged Smoked Bacon during Storage. Food Microbiol. 2019, 77, 26–37. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Tapian, A.M.; Goehring, B.L.; Unruh, J.A.; Gerlach, B.M.; McCoy, G.D.; DeRouchey, J.M.; Johnson, R.C.; Dritz, S.S.; Gonzales, J.M.; Matney, M.J.; et al. Influence of Carcass Fat Iodine Value and Packaging Type on Shelf-Life of Bacon Slices Packaged for Hotels, Restaurants, and Institutions (HRI). Kans. Agric. Exp. Stn. Res. Rep. 2015, 1, 42. [Google Scholar] [CrossRef]
- Lowe, B.K.; Bohrer, B.M.; Holmer, S.F.; Boler, D.D.; Dilger, A.C. Effects of Retail Style or Food Service Style Packaging Type and Storage Time on Sensory Characteristics of Bacon Manufactured from Commercially Sourced Pork Bellies. J. Food Sci. 2014, 79, S1197–S1204. [Google Scholar] [CrossRef]
- Deng, S.; Shi, S.; Xia, X. Effect of Plant Polyphenols on the Physicochemical Properties, Residual Nitrites, and N-Nitrosamine Formation in Dry-Fried Bacon. Meat Sci. 2022, 191, 108872. [Google Scholar] [CrossRef]
- Zhou, C.; Wu, X.; Pan, D.; Xia, Q.; Sun, Y.; Geng, F.; Cao, J. TMT-labeled quantitative proteomic reveals the mechanism of proteolysis and taste improvement of dry-cured bacon with Staphylococcus co-inoculation. Food Chem. 2024, 436, 137711. [Google Scholar] [CrossRef]
- Ruan, J.; Wu, Z.; Xu, J.; Yu, Y.; Tang, Y.; Xie, X.; Chen, T.; Wang, Z.; Zhang, D.; Tang, J.; et al. Effects of replacement partial sodium chloride on characteristic flavor substances of bacon during storage based on GC×GC-MS and non-targeted metabolomics analyses. Food Chem. 2023, 428, 136805. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, J.; McClure, P.J.; Sutherland, J.P.; Roberts, T.A. Modeling bacterial growth responses. J. Ind. Microbiol. 1993, 12, 190–194. [Google Scholar] [CrossRef]
Sample Code | Nitrites | Rose Phenolic Compounds | Rosemary Phenolic Diterpenes (Carnosol and Carnosic Acid) |
---|---|---|---|
CNT: Control samples | 150 ppm | - | - |
RN: Reduced-nitrite samples | 75 ppm | - | - |
RSE: Reduced-nitrite samples enriched with rose extract | 75 ppm | 90 ppm | - |
RSE–RSME: Reduced-nitrite samples enriched with rose and rosemary extract | 75 ppm | 45 ppm | 45 ppm |
Maximum Specific Growth Rate (μmax) | ||||
---|---|---|---|---|
Samples | Ea,μ (J/mole) | μref (d−1), at T = 4 °C | SSE | R2 |
CNT | 86,491.17 | 0.1426 | 0.0043 | 0.9091 |
RN | 70,648.81 | 0.2024 | 0.0090 | 0.8276 |
RSE | 105,976.05 | 0.1067 | 0.0033 | 0.9297 |
RSE–RSME | 76,777.55 | 0.1673 | 0.0031 | 0.9347 |
Lag phase (d) | ||||
Samples | Ea,λ (J/mole) | λref (d), at T = 4 °C | SSE | R2 |
CNT | −116,783.84 | 12.7 | 0.0253 | 0.9985 |
RN | −136,132.21 | 8.3 | 0.0385 | 0.9938 |
RSE | −124,309.74 | 16.0 | 0.0076 | 0.9997 |
RSE–RSME | −91,577.67 | 9.4 | 0.8724 | 0.9464 |
Maximum Specific Growth Rate (μmax) | ||||
---|---|---|---|---|
Samples | Ea,μ (J/mole) | μref (d−1), at T = 4 °C | SSE | R2 |
CNT | 103,225.90 | 0.1213 | 0.0033 | 0.9436 |
RN | 86,422.33 | 0.1578 | 0.0026 | 0.9574 |
RSE | 88,792.87 | 0.1305 | 0.0004 | 0.9922 |
RSE–RSME | 91,065.15 | 0.1366 | 0.0006 | 0.9907 |
Lag phase (λ) | ||||
Samples | Ea,λ (J/mole) | λref (d), at T = 4 °C | SSE | R2 |
CNT | −109,798.65 | 9.8 | 0.5782 | 0.9642 |
RN | −159,416.30 | 6.3 | 0.0394 | 0.9879 |
RSE | −117,055.14 | 10.5 | 0.7335 | 0.9589 |
RSE–RSME | −98,938.67 | 6.6 | 0.8305 | 0.9165 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konteles, S.J.; Stavropoulou, N.A.; Thanou, I.V.; Mouka, E.; Kousiaris, V.; Stoforos, G.N.; Gogou, E.; Giannakourou, M.C. Enriching Cured Meat Products with Bioactive Compounds Recovered from Rosa damascena and Rosmarinus officinalis L. Distillation By-Products: The Pursuit of Natural Antimicrobials to Reduce the Use of Nitrites. Appl. Sci. 2023, 13, 13085. https://doi.org/10.3390/app132413085
Konteles SJ, Stavropoulou NA, Thanou IV, Mouka E, Kousiaris V, Stoforos GN, Gogou E, Giannakourou MC. Enriching Cured Meat Products with Bioactive Compounds Recovered from Rosa damascena and Rosmarinus officinalis L. Distillation By-Products: The Pursuit of Natural Antimicrobials to Reduce the Use of Nitrites. Applied Sciences. 2023; 13(24):13085. https://doi.org/10.3390/app132413085
Chicago/Turabian StyleKonteles, Spyridon J., Natalia A. Stavropoulou, Ioanna V. Thanou, Elizabeth Mouka, Vasileios Kousiaris, George N. Stoforos, Eleni Gogou, and Maria C. Giannakourou. 2023. "Enriching Cured Meat Products with Bioactive Compounds Recovered from Rosa damascena and Rosmarinus officinalis L. Distillation By-Products: The Pursuit of Natural Antimicrobials to Reduce the Use of Nitrites" Applied Sciences 13, no. 24: 13085. https://doi.org/10.3390/app132413085
APA StyleKonteles, S. J., Stavropoulou, N. A., Thanou, I. V., Mouka, E., Kousiaris, V., Stoforos, G. N., Gogou, E., & Giannakourou, M. C. (2023). Enriching Cured Meat Products with Bioactive Compounds Recovered from Rosa damascena and Rosmarinus officinalis L. Distillation By-Products: The Pursuit of Natural Antimicrobials to Reduce the Use of Nitrites. Applied Sciences, 13(24), 13085. https://doi.org/10.3390/app132413085