Frequency-Tuned Porous Polyethylene Glycol Films Obtained in Atmospheric-Pressure Dielectric Barrier Discharge (DBD) Plasma
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials and Methods
2.2. Plasma Temperature Calculation
3. Results and Discussion
3.1. Plasma Characterization
3.2. Pp-PEG Thin Film Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vandenbossche, M.; Hegemann, D. Recent approaches to reduce aging phenomena in oxygen- and nitrogen-containing plasma polymer films: An overview. Curr. Opin. Solid State Mater. Sci. 2018, 22, 26–38. [Google Scholar] [CrossRef]
- Bitar, R.; Cools, P.; De Geyter, N.; Morent, R. Acrylic acid plasma polymerization for biomedical use. Appl. Surf. Sci. 2018, 448, 168–185. [Google Scholar] [CrossRef]
- Sainz-García, E.; López, M.; Múgica-Vidal, R.; Rojo-Bezares, B.; Lozano, C.; González-Marcos, A.; Toledano, P.; Muro-Fraguas, I.; Sainz-García, A.; Sáenz, Y.; et al. Promotion of biofilm production via atmospheric-pressure plasma-polymerization for biomedical applications. Appl. Surf. Sci. 2022, 581, 152350. [Google Scholar] [CrossRef]
- Chen, R.; Shi, C.; Xi, Y.; Zhao, P.; He, H. Fabrication of cationic polymer surface through plasma polymerization and layer-by-layer assembly. Mater. Manuf. Process. 2020, 35, 221–229. [Google Scholar] [CrossRef]
- Goossens, O.; Dekempeneer, E.; Vangeneugden, D.; Van de Leest, R.; Leys, C. Application of atmospheric pressure dielectric barrier discharges in deposition, cleaning and activation. Surf. Coat. Technol. 2001, 142, 474–481. [Google Scholar] [CrossRef]
- Moreno-Couranjou, M.; Guillot, J.; Audinot, J.; Bour, J.; Prouvé, E.; Durrieu, M.; Choquet, P.; Detrembleur, C. Atmospheric pulsed plasma copoly-merization of acrylic monomers: Kinetics, chemistry, and applications. Plasma Process. Polym. 2020, 17, e1900187. [Google Scholar] [CrossRef] [Green Version]
- Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S.; Gabriele, S.; Vilmin, T.; Raphaël, E. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 2005, 4, 754–758. [Google Scholar] [CrossRef]
- Dimitrakellis, P.; Gogolides, E. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Adv. Colloid Interface Sci. 2018, 254, 1–21. [Google Scholar] [CrossRef]
- Mix, R.; Friedrich, J.; Rau, A. Polymer Surface Modification by Aerosol Based DBD Treatment of Foils. Plasma Proc. Polym. 2009, 9, 566–574. [Google Scholar] [CrossRef]
- Corbella, C.; Große-Kreul, S.; von Keudell, A. Exploring the structure of the modified top layer of polypropylene during plasma treatment. Plasma Process. Polym. 2015, 12, 564–573. [Google Scholar] [CrossRef]
- Friedrich, J.F.; Mix, R.; Schulze, R.-D.; Meyer-Plath, A.; Joshi, R.; Wettmar-Shausen, S. New Plasma Techniques for Polymer Surface Modification with Monotype Functional Groups. Plasma Proc. Polym. 2008, 5, 407–423. [Google Scholar] [CrossRef]
- Yasuda, H. Glow discharge polymerization. J. Polym. Sci. Macromol. Rev. 1981, 16, 199–293. [Google Scholar] [CrossRef]
- Friedrich, J. Mechanisms of plasma polymerization—Reviewed from a chemical point of view. Plasma Process. Polym. 2011, 8, 783–802. [Google Scholar] [CrossRef]
- Yin, L.; Pang, Y.; Shan, L.; Gu, J. The In Vivo Pharmacokinetics of Block Copolymers Containing Polyethylene Glycol Used in Nanocarrier Drug Delivery Systems. Drug Metab. Dispos. 2022, 50, 827–836. [Google Scholar] [CrossRef]
- Chifen, A.N.; Knoll, W.; Förch, R. Fabrication of nano-porous silicon oxide layers by plasma polymerisation methods. Mater. Lett. 2007, 61, 1722–1724. [Google Scholar] [CrossRef]
- D’Souza, A.A.; Shegokar, R. Polyethylene glycol (PEG): A versatile polymer for pharmaceutical applications. Expert Opin. Drug Deliv. 2016, 13, 1257–1275. [Google Scholar] [CrossRef]
- Rolim, W.R.; Pieretti, J.C.; Renó, D.L.S.; Lima, B.A.; Nascimento, M.H.M.; Ambrosio, F.N.; Lombello, C.B.; Brocchi, M.; De Souza, A.C.S.; Seabra, A.B. Antimicrobial Activity and Cytotoxicity to Tumor Cells of Nitric Oxide Donor and Silver Nanoparticles Containing PVA/PEG Films for Topical Applications. ACS Appl. Mater. Interfaces 2019, 11, 6589. [Google Scholar] [CrossRef]
- Treglia, A.; Palumbo, F.; Gristina, R.; Calvano, C.D.; Cataldi, T.; Fracassi, F.; Favia, P. Novel aerosol assisted plasma deposition of PEG containing coatings for non-fouling application. Appl. Surf. Sci. 2020, 527, 146698. [Google Scholar] [CrossRef]
- Rusu, G.B.; Asandulesa, M.; Topala, I.; Pohoata, V.; Dumitrascu, N.; Barboiu, M. Atmospheric pressure plasma polymers for tuned QCM detection of protein adhesion. Biosens. Bioelectron. 2014, 53, 154. [Google Scholar] [CrossRef]
- Canal, C.; Khurana, K.; Gallinetti, S.; Bhatt, S.; Pulpytel, J.; Arefi-Khonsari, F.; Ginebra, M. Design of calcium phosphate scaffolds with controlled simvastatin release by plasma polymerization. Polymer 2016, 92, 170–178. [Google Scholar] [CrossRef]
- Rusu, B.-G.; Pohoata, V.; Ionita, C.; Schrittwieser, R.; Dumitrascu, N. Method of obtaining porous polymer structure using atmospheric pressure plasma. Rom. J. Phys. 2016, 61, 518–526. [Google Scholar]
- Rusu, B.G.; Pohoata, V.; Ionita, C.; Schrittwieser, R. Characterization of super hydrophilic films produced in DBD plasma at atmospheric pressure. Dig. J. Nanomater. Biostructures 2015, 10, 941–945. [Google Scholar]
- Chiper, A.S.; Rusu, B.G.; Nastuta, A.V.; Popa, G. On the discharge parameters of a glow-mode DBD at medium and atmospheric pressure. IEEE Trans. Plasma Sci. 2009, 37, 2098–2102. [Google Scholar] [CrossRef]
- Chiper, A.S.; Cazan, R.; Popa, G. On the secondary discharge of an atmospheric-pressure pulsed DBD in He with impurities. IEEE Trans. Plasma Sci. 2008, 36, 2824–2830. [Google Scholar] [CrossRef]
- Massines, F.; Ségur, P.; Gherardi, N.; Khamphan, C.; Ricard, A. Physics and chemistry in a glow dielectric barrier discharge at atmospheric pressure: Diagnostics and modelling. Surf. Coat. Technol. 2003, 174–175, 8–14. [Google Scholar] [CrossRef]
- Nastuta, A.V.; Topala, I.; Popa, G. ICCD imaging of atmospheric pressure plasma jet behavior in different electrode configurations. IEEE Trans. Plasma Sci. 2011, 39, 2310–2311. [Google Scholar] [CrossRef]
- Simek, M.; Ambrico, P.; Prukner, V. ICCD microscopic imaging of a single micro-discharge in surface coplanar DBD geometry: Determination of the luminous diameter of N2 and Ar streamers. Plasma Sources Sci. Technol. 2011, 20, 025010. [Google Scholar] [CrossRef]
- Takashima, K.; Zuzeek, Y.; Lempert, W.R.; Adamovich, I.V. Characterization of a surface dielectric barrier discharge plasma sustained by repetitive nanosecond pulses. Plasma Sources Sci. Technol. 2011, 20, 055009. [Google Scholar] [CrossRef]
- Chiper, A.S.; Anita, V.; Agheorghiesei, C.; Pohoata, V.; Anita, M.; Popa, G. Spectroscopic diagnostics for a DBD plasma in He/air and He/N2 gas mixtures. Plasma Process. Polym. 2004, 1, 57–62. [Google Scholar] [CrossRef]
- Lazarou, C.; Chiper, A.S.; Anastassiou, C.; Topala, I.; Mihaila, I.; Pohoata, V.; Georghiou, G.E. Numerical simulation of the effect of water admixtures on the evolution of a helium/dry air discharge. J. Phys. D Appl. Phys. 2019, 52, 195203. [Google Scholar] [CrossRef]
- Li, J.; Lei, B.; Wang, J.; Xu, B.; Ran, S.; Wang, Y.; Zhang, T.; Tang, J.; Zhao, W.; Duan, Y. Atmospheric diffuse plasma jet formation from positive-pseudo-streamer and negative pulseless glow discharges. Commun. Phys. 2021, 4, 64. [Google Scholar] [CrossRef]
- Yao, C.; Chen, S.; Wang, S.; Chang, Z.; Sun, A.; Mu, H.; Zhang, G.-J. Characteristics of atmospheric Ar/NH3 DBD and its comparison with He/N2 DBD. J. Phys. D Appl. Phys. 2018, 51, 225201. [Google Scholar] [CrossRef]
- Michelmore, A.; Steele, D.A.; Whittle, J.D.; Bradley, J.W.; Short, R.D. Nanoscale deposition of chemically functionalized films via plasma polymerization. RSC Adv. 2013, 3, 13540. [Google Scholar] [CrossRef]
- Chiper, A.; Nastuta, A.; Rusu, G.; Popa, G. On surface elementary processes and polymer surface modifications induced by double pulsed dielectric barrier discharge. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2009, 267, 313–316. [Google Scholar] [CrossRef]
- Fatima, H.; Ullah, M.U.; Ahmad, S.; Imran, M.; Sajjad, S.; Hussain, S.; Qayyum, A. Spectroscopic evaluation of vibrational temperature and electron density in reduced pressure radio frequency nitrogen plasma. SN Appl. Sci. 2021, 3, 646. [Google Scholar] [CrossRef]
- Ito, T.; Raddenzati, A.; Shams, A.; Hamaguchi, S. Reverse propagation of atmospheric pressure plasma jets. Jpn. J. Appl. Phys. 2010, 49, 0209. [Google Scholar] [CrossRef]
- Gazeli, K.; Doanh, L.T.; Held, B.; Clément, F. Electrical Thermal and Optical Parametric Study of Guided Ionization Waves Produced with a Compact µs-Pulsed DBD-Based Reactor. Plasma 2018, 1, 23–44. [Google Scholar] [CrossRef] [Green Version]
- Buda, I.G.; Irimiea, C.; Agheorghiesei, C.; Chiper, A.S. Pulsed Atmospheric-Pressure DBD Plasma Produced in Small-Diameter Tubes. IEEE Trans. Plasma Sci. 2015, 43, 572–579. [Google Scholar]
- Ricard, A.; Decomps, P.; Massines, F. Kinetics of radiative species in helium pulsed discharge at atmospheric pressure. Surf. Coat. Technol. 1999, 112, 1–4. [Google Scholar] [CrossRef]
- Wells, G.P.; Estrada-Raygoza, I.C.; Thamban, P.S.; Nelson, C.T.; Chung, C.W.; Overzet, L.J.; Goeckner, M.J. Understanding the Synthesis of Ethylene Glycol Pulsed Plasma Discharges. Plasma Process. Polym. 2013, 10, 119–135. [Google Scholar] [CrossRef]
- Chen, J.; Lu, X.; Wen, Q.; Jiang, F.; Lu, J.; Lei, D.; Pan, Y. Review on laser-induced etching processing technology for transparent hard and brittle materials. Int. J. Adv. Manuf. Technol. 2021, 117, 2545–2564. [Google Scholar] [CrossRef]
- Tavares, J.; Swanson, E.J.; Coulombe, S. Plasma Synthesis of Coated Metal Nanoparticles with Surface Properties Tailored for Dispersion. Plasma Process. Polym. 2008, 5, 759. [Google Scholar] [CrossRef]
- Dhillon, P.K.; Brown, P.S.; Bain, C.D.; Badyal, J.P.S.; Sarkar, S. Topographical length scales of hierarchical superhydrophobic surfaces. Appl. Surf. Sci. 2014, 317, 1068–1074. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, B.-G.; Ursu, C.; Olaru, M.; Barboiu, M. Frequency-Tuned Porous Polyethylene Glycol Films Obtained in Atmospheric-Pressure Dielectric Barrier Discharge (DBD) Plasma. Appl. Sci. 2023, 13, 1785. https://doi.org/10.3390/app13031785
Rusu B-G, Ursu C, Olaru M, Barboiu M. Frequency-Tuned Porous Polyethylene Glycol Films Obtained in Atmospheric-Pressure Dielectric Barrier Discharge (DBD) Plasma. Applied Sciences. 2023; 13(3):1785. https://doi.org/10.3390/app13031785
Chicago/Turabian StyleRusu, Bogdan-George, Cristian Ursu, Mihaela Olaru, and Mihail Barboiu. 2023. "Frequency-Tuned Porous Polyethylene Glycol Films Obtained in Atmospheric-Pressure Dielectric Barrier Discharge (DBD) Plasma" Applied Sciences 13, no. 3: 1785. https://doi.org/10.3390/app13031785
APA StyleRusu, B.-G., Ursu, C., Olaru, M., & Barboiu, M. (2023). Frequency-Tuned Porous Polyethylene Glycol Films Obtained in Atmospheric-Pressure Dielectric Barrier Discharge (DBD) Plasma. Applied Sciences, 13(3), 1785. https://doi.org/10.3390/app13031785