Application of Smart Station Technology for Establish Control Network Points
Abstract
:1. Introduction
2. Materials and Methods
- (1)
- Checking the possibilities of replacing full static GNSS surveys using the single receiver measurement.
- (2)
- A multi-variant data acquisition for reference point stationing from surveys performed using smart station equipment.
- (3)
- Investigation of the used impact’s type of reference corrections on the real-time GNSS positioning of the control network points.
3. Results
3.1. Results of Static Surveys Using a Single Receiver from Smart Station Set
3.2. Results of Multi-Variant Surveys Performed Using Smart Station Equipment
3.3. Results of RTK/RTN Surveys
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scientific Assembly of the International Association of Geodesy (IAG). Abstract Book; IAG: Beijing, China, 2021. [Google Scholar]
- Lists of Geoportals. University of Texas Libraries. Available online: https://guides.lib.utexas.edu/gis/lists-of-gis-data-portals (accessed on 7 May 2022).
- Doskocz, A. The current state of the creation and modernization of national geodetic and cartographic resources in Poland. Open Geosci. 2016, 8, 579–592. [Google Scholar] [CrossRef]
- Lu, Z.; Qu, Y.; Qiao, S. Geodesy—Introduction to Geodetic Datum and Geodetic Systems; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Camacho-Lara, S. Current and Future GNSS and Their Augmentation Systems. In Handbook of Satellite Applications; Pelton, J.N., Madry, S., Camacho-Lara, S., Eds.; Springer: New York, NY, USA, 2013; pp. 617–654. [Google Scholar] [CrossRef]
- Montenbruck, O.; Steigenberger, P.; Hauschild, A. Multi-GNSS signal-in-space range error assessment—Methodology and results. Adv. Space Res. 2018, 61, 3020–3038. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.; Yu, Z.; Hu, C.; Liu, H.; Han, S. Modeling and performance assessment of precise point positioning with multi-frequency GNSS signals. Measurement 2022, 201, 111687. [Google Scholar] [CrossRef]
- Ashour, I.; El Tokhey, M.; Mogahed, Y.; Ragheb, A. Performance of global navigation satellite systems (GNSS) in absence of GPS observations. Ain Shams Eng. J. 2022, 13, 101589. [Google Scholar] [CrossRef]
- Oki, S. Control Point Surveying and Topographic Mapping. In Civil Engineering Vol. I; Kiyoshi Horikawa, K., Qizhong Guo, Q., Eds.; UNESCO, Encyclopedia of Life Support Systems: Paris, France, 2009; pp. 158–172. [Google Scholar]
- Sztubecki, J.; Topoliński, S.; Mrówczyńska, M.; Bagrıaçık, B.; Beycioglu, A. Experimental Research of the Structure Condition Using Geodetic Methods and Crackmeter. Appl. Sci. 2022, 12, 6754. [Google Scholar] [CrossRef]
- Otepka, J.; Ghuffar, S.; Waldhauser, C.; Hochreiter, R.; Pfeifer, N. Georeferenced Point Clouds: A Survey of Features and Point Cloud Management. ISPRS Int. J. Geo-Inf. 2013, 2, 1038–1065. [Google Scholar] [CrossRef]
- Oniga, V.-E.; Breaban, A.-I.; Pfeifer, N.; Chirila, C. Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution. Remote Sens. 2020, 12, 876. [Google Scholar] [CrossRef]
- What Is Geodata? A Guide to Geospatial Data. Available online: https://gisgeography.com/what-is-geodata-geospatial-data (accessed on 4 June 2022).
- Regulation of the Minister of Development, Labor and Technology of 6 July 2021 on Geodetic, Gravimetric and Magnetic Control Networks. Journal of Laws of 2021, Item 1341 (in Polish), with Information in English. Available online: https://www.geoportal.gov.pl/en/dane/osnowy-podstawowe (accessed on 18 January 2023).
- Pyka, K.; Wiącek, P.; Guzik, M. Surveying with Photogrammetric Unmanned Aerial Vehicles. Arch. Photogramm. Cartogr. Remote Sens. 2020, 32, 79–102. [Google Scholar] [CrossRef]
- Emam, S.M.; Khatibi, S.; Khalili, K. Improving the accuracy of laser scanning for 3D model reconstruction using dithering technique. Procedia Technol. 2014, 12, 353–358. [Google Scholar] [CrossRef]
- GPS, GNSS and Geodesy Concepts. North Group LTD. Available online: https://www.northsurveying.com/index.php/soporte/gnss-and-geodesy-concepts (accessed on 24 May 2022).
- Biasion, A.; Cina, A.; Pesenti, M.; Rinaudo, F. An integrated GPS and Total Station instrument for cultural heritage surveying: The Leica Smartstation example. In Proceedings of the CIPA XX International Symposium: International Cooperation to Save the World’s Cultural Heritage, Torino, Italy, 26 September–1 October 2005; CIPA Organising Committee: Torino, Italy, 2005; pp. 13–18. [Google Scholar]
- Brouwer, T.; Koeva, M.; van Oosterom, P.; Theunisse, I. Smart Surveyors: Developments and Trends from the FIG Working Week 2020. Available online: https://www.gim-international.com/content/article/smart-surveyors (accessed on 17 February 2022).
- Dąbrowski, W.; Dorzak, A. The perspectives for the development of reproducible network technology based on 12 years of experience. Sci. J. Agric. Univ. Wroc. 1997, 14, 99–112, (In Polish with English Summary). [Google Scholar]
- Gargula, T. Research on geometrical structure of modular networks. Geod. Cartogr. 2004, 53, 189–202. [Google Scholar]
- Bałandynowicz, J.; Dąbrowski, W.; Gąsowska, B. Restorable networks strengthened by GPS vectors. Geod. Cartogr. Vilnius Tech. 2000, XXVI, 116–122. [Google Scholar]
- Gargula, T. The conception of integrated survey networks composed of modular networks and GPS vectors. Surv. Rev. 2009, 41, 301–313. [Google Scholar] [CrossRef]
- Dąbrowski, J. Accuracy Standards of Tying the Horizontal and Vertical Control Network to the National Geodetic Control Network. Geomat. Environ. Eng. 2014, 8, 41–57. [Google Scholar] [CrossRef]
- Wolski, B.; Granek, G. Functionality and reliability of horizontal control net (Poland). Open Geosci. 2020, 12, 668–677. [Google Scholar] [CrossRef]
- Bossler, J.D. Standards and Specifications for Geodetic Control Networks; Federal Geodetic Control Committee: Silver Spring, MD, USA, 1984. [Google Scholar]
- Mehrabi, H.; Voosoghi, B. Optimal observational planning of local GPS networks: Assessing an analytical method. J. Geod. Sci. 2014, 4, 87–97. [Google Scholar] [CrossRef]
- Kurt, O.; Konak, H.; Ince, C.D. The design and evaluation stages of local GPS networks for monitoring crustal movements. In Proceedings of the Conference Papers of International Earthquake Symposium, Kocaeli, Turkey, 17–19 August 2009. [Google Scholar] [CrossRef]
- Wielgosz, P.; Paziewski, J.; Baryła, R. On Constraining Zenith Tropospheric Delays in Processing of Local GPS Networks with Bernese Software. Surv. Rev. 2011, 43, 472–483. [Google Scholar] [CrossRef]
- Januszewski, J. Sources of Error in Satellite Navigation Positioning. Int. J. Mar. Navig. Saf. Sea Transp. 2017, 11, 419–423. [Google Scholar] [CrossRef]
- Stasiak, P.A.; Szczepkowski, M. Geodetic Control Points Performer with Smart Station Technology. Master’s Thesis, University of Warmia and Mazury, Olsztyn, Poland, 2014. (In Polish). [Google Scholar]
- Services of the Multifunctional Precise Satellite Positioning System ASG-EUPOS Offered in Poland and a Compendium of Knowledge on the Practical Aspects of GNSS Measurements. Available online: http://www.asgeupos.pl/index.php?lng=EN (accessed on 24 August 2022).
- Information About C-GEO Software Offer by Softline. Available online: http://www.c-geo.com (accessed on 24 August 2022). (In English).
- Information About Kortowo Campus. Available online: http://www.uwm.edu.pl/en/study-at-uwm/kortowo-campus (accessed on 24 May 2022).
- Doskocz, A.; Uradziński, M. Determination of control network points by Smart Station technology using correction from ASG-EUPOS service. In Proceedings of the Conference of Sections the Control Networks and the Earth’s Dynamic from Committee of Geodesy in Polish Academy of Sciences 2011. Poster sessions, Warsaw–Józefosław, Poland, 17–18 October 2011. (In Polish). [Google Scholar]
- Doskocz, A.; Uradziński, M. Position determination of control network points in the Smart Station technology using ASG-EUPOS system. Rep. Geod. 2012, 92, 155–162. [Google Scholar]
- Langley, R. The Mathematics of GPS. GPS World 1991, 2, 45–50. [Google Scholar]
- Langley, R. Dilution of Precision. GPS World 1999, 5, 52–59. [Google Scholar]
- Specht, M. Statistical Distribution Analysis of Navigation Positioning System Errors—Issue of the Empirical Sample Size. Sensors 2020, 20, 7144. [Google Scholar] [CrossRef] [PubMed]
- Manandhar, D. Interpreting GNSS Specifications. United Nations Office for Outer Space Affairs, Presentation 2021. Available online: https://www.unoosa.org/documents/pdf/icg/2021/Tokyo2021/ICG_CSISTokyo_2021_19.pdf (accessed on 30 November 2022).
- Han, S.; Rizos, C. Standarization of the variance-covariance matrix for GPS rapit static positioning. Geomat. Res. Australas. 1995, 62, 37–54. [Google Scholar]
- Specht, C.; Mania, M.; Skóra, M.; Specht, M. Accuracy of the GPS positioning system in the context of increasing the number of satellites in the constellation. Pol. Marit. Res. 2015, 22, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Specht, C.; Koc, W. Mobile satellite measurements in designing and exploitation of rail roads. Transp. Res. Procedia 2016, 14, 625–634. [Google Scholar] [CrossRef]
- Janssen, V. A comparison of the VRS and MAC principles for network RTK. In Proceedings of the International Global Navigation Satellite Systems Society IGNSS Symposium 2009, Surfers Paradise, QLD, Australia, 1–3 December 2009. [Google Scholar]
- Titouni, S.; Rouabah, K.; Atia, S.; Flissi, M.; Khababa, O. GNSS multipath reduction using GPS and DGPS in the real case. Positioning 2017, 8, 47–56. [Google Scholar] [CrossRef]
- Welsch, W.M. Problems of accuracies in combined terrestrial and satellite control networks. J. Geod. Former. Bull. Géodésique 1986, 60, 193–204. [Google Scholar] [CrossRef]
- Niemeier, W.; Tengen, D. Uncertainty assessment in geodetic network adjustment by combining GUM and Monte-Carlo-simulations. J. Appl. Geodesy 2017, 11, 67–76. [Google Scholar] [CrossRef]
- Gargula, T. Adjustment of an Integrated Geodetic Network Composed of GNSS Vectors and Classical Terrestrial Linear Pseudo-Observations. Appl. Sci. 2021, 11, 4352. [Google Scholar] [CrossRef]
- 100 Years Innovation HEERBRUGG. United States Patent for SmartStation Set Offer by Leica. p. 200. Available online: https://www.flipsnack.com/hexagongeo/100-years-innovation-heerbrugg-hexagon-anniversary-book/full-view.html (accessed on 17 February 2022).
- Cheng, H.; Xi, G.; Ke, F.; Zhen, L.; Wei, G.; Fei, Y. Application and Study of Smart Station for Special Environment and Real Time Localization. In IEEE Conference Publication, Proceedings of the 2010 International Conference on Multimedia Technology, Ningbo, China, 29–31 October 2010; IEEE: New York, NY, USA, 2010. [Google Scholar] [CrossRef]
Characteristics of the Results of Post-Processing | Value | Scenarios of Measurements | |
---|---|---|---|
HDOP | Minimal | 1.19 | 30 s G&GL |
Maximal | 1.95 | 15 s GL | |
VDOP | Minimal | 1.88 | 30 s G&GL |
Maximal | 3.17 | 15 s GL | |
PDOP | Minimal | 2.23 | 30 s G&GL |
Maximal | 3.74 | 15 s GL | |
RMS [m] | Minimal | 0.010 | 1 s GL |
Maximal | 0.021 | 30 s G |
Point | D [m] | Accuracy Assessing by Uncertainty [m] | |||
---|---|---|---|---|---|
u(Hz) | u(V) | U68(3D) | U99(3D) | ||
1000 | 1325.375 | 0.0037 | 0.0057 | 0.007 | 0.021 |
18970 | 1252.585 | 0.0036 | 0.0056 | 0.007 | 0.021 |
10010 | 1197.575 | 0.0036 | 0.0056 | 0.007 | 0.021 |
10020 | 1102.643 | 0.0036 | 0.0056 | 0.007 | 0.021 |
10030 | 1051.773 | 0.0035 | 0.0055 | 0.007 | 0.021 |
10040 | 963,924 | 0.0035 | 0.0055 | 0.007 | 0.021 |
18966 | 901.319 | 0.0035 | 0.0055 | 0.007 | 0.021 |
10070 | 739.494 | 0.0034 | 0.0054 | 0.006 | 0.018 |
10080 | 632.409 | 0.0033 | 0.0053 | 0.006 | 0.018 |
Point | Diff. | DX [m] | DY [m] | DZ [m] | |||
---|---|---|---|---|---|---|---|
10000 | Minimal | 0.002 | SRS | 0.006 | SRS | −0.004 | MAC & VRS |
Maximal | −0.012 | MAC | 0.012 | MAC & VRS | 0.012 | SRS | |
18970 | Minimal | 0.004 | SRS | −0.001 | VRS | −0.018 | SRS |
Maximal | −0.008 | MAC | −0.007 | SRS | −0.037 | VRS | |
10010 | Minimal | −0.005 | SRS | 0.001 | VRS | −0.014 | SRS |
Maximal | −0.012 | VRS | −0.004 | SRS | −0.036 | VRS | |
10020 | Minimal | −0.009 | MAC | 0.000 | SRS | 0.002 | SRS |
Maximal | −0.014 | VRS | 0.002 | MAC | −0.021 | VRS | |
10030 | Minimal | −0.006 | SRS | 0.000 | MAC | −0.001 | SRS |
Maximal | −0.018 | VRS | 0.001 | VRS | −0.027 | VRS | |
10040 | Minimal | −0.003 | MAC | 0.000 | SRS | −0.008 | SRS |
Maximal | −0.006 | SRS | 0.005 | VRS | −0.034 | VRS | |
18966 | Minimal | −0.005 | VRS | 0.000 | MAC | −0.003 | SRS |
Maximal | −0.009 | SRS | 0.002 | VRS | −0.027 | VRS | |
10070 | Minimal | −0.010 | MAC | 0.000 | MAC | 0.012 | SRS |
Maximal | −0.013 | SRS | −0.004 | SRS | −0.034 | VRS | |
10080 | Minimal | −0.004 | MAC | −0.009 | MAC | −0.014 | SRS |
Maximal | −0.009 | SRS | −0.013 | SRS | −0.038 | VRS |
Adjustment Report-Influence Factors and Their Parameters | |
Terrestrial measurements | Assumed errors a priori |
- horizontal angles | 0.0020 gon |
- vertical angles | 0.0010 gon |
- slope distances | 0.001 m + 5 ppm |
GNSS surveying | average error from variance-covariance matrix of surveying vectors |
- vectors (fast static procedure) | 0.017 m |
Adjustment results | Mean errors a posteriori |
- horizontal angles | 0.0018 gon |
- vertical angles | 0.0008 gon |
- slope distances | 0.003 m |
- vectors (fast static procedure) | 0.004 m |
Results of final rigorous adjustment | |
- m0 indicator a posteriori for horizontal angles | 1.53 |
- m0 indicator a posteriori for vertical angles | 1.07 |
- m0 indicator a posteriori for slope distances | 0.60 |
- m0 indicator a posteriori for GNSS vectors | 0.82 |
Global m0 indicator a posteriori (theoretical m0 = 1) | 1.06 |
Root mean square error in horizontal plane | 0.0033 m |
Root mean square error in vertical plane | 0.0029 m |
Point | Diff. | DX [m] | DY [m] | DZ [m] | |||
---|---|---|---|---|---|---|---|
10000 | Minimal | 0.006 | SRS | 0.006 | MAC | −0.007 | SRS |
Maximal | −0.014 | MAC | 0.011 | SRS & VRS | −0.011 | MAC | |
18970 | Minimal | 0.002 | SRS | −0.003 | SRS | −0.011 | VRS |
Maximal | −0.012 | MAC | 0.015 | MAC | −0.045 | MAC | |
10010 | Minimal | −0.003 | MAC & VRS | 0.002 | VRS | 0.010 | SRS |
Maximal | 0.004 | SRS | −0.009 | SRS | −0.059 | VRS | |
10020 | Minimal | −0.009 | VRS | −0.004 | VRS | −0.010 | SRS |
Maximal | −0.023 | SRS | −0.006 | MAC & VRS | −0.022 | VRS | |
10030 | Minimal | −0.005 | MAC | 0.000 | SRS | −0.005 | MAC |
Maximal | −0.031 | VRS | −0.005 | VRS | −0.051 | VRS | |
10040 | Minimal | −0.004 | MAC | 0.001 | MAC | 0.009 | SRS |
Maximal | 0.028 | VRS | 0.024 | VRS | 0.058 | VRS | |
18966 | Minimal | −0.002 | VRS | 0.002 | MAC | −0.007 | SRS |
Maximal | −0.011 | SRS | 0.009 | VRS | −0.044 | VRS | |
10070 | Minimal | −0.016 | MAC | 0.000 | VRS | 0.013 | VRS |
Maximal | −0.022 | VRS | −0.006 | SRS | −0.024 | SRS | |
10080 | Minimal | 0.002 | MAC & VRS | −0.011 | MAC | −0.007 | SRS |
Maximal | −0.008 | SRS | −0.013 | SRS | −0.053 | VRS |
Point | D [m] | Accuracy Assessing by Uncertainty [m] | |||
---|---|---|---|---|---|
u(Hz) | u(V) | U68(3D) | U99(3D) | ||
1000 | 1325.375 | 0.0093 | 0.0163 | 0.019 | 0.057 |
18970 | 1252.585 | 0.0093 | 0.0163 | 0.019 | 0.057 |
10010 | 1197.575 | 0.0092 | 0.0162 | 0.019 | 0.057 |
10020 | 1102.643 | 0.0091 | 0.0161 | 0.018 | 0.054 |
10030 | 1051.773 | 0.0091 | 0.0161 | 0.018 | 0.054 |
10040 | 963,924 | 0.0090 | 0.0160 | 0.018 | 0.054 |
18966 | 901.319 | 0.0089 | 0.0159 | 0.018 | 0.054 |
10070 | 739.494 | 0.0087 | 0.0157 | 0.018 | 0.054 |
10080 | 632.409 | 0.0086 | 0.0156 | 0.018 | 0.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doskocz, A. Application of Smart Station Technology for Establish Control Network Points. Appl. Sci. 2023, 13, 2178. https://doi.org/10.3390/app13042178
Doskocz A. Application of Smart Station Technology for Establish Control Network Points. Applied Sciences. 2023; 13(4):2178. https://doi.org/10.3390/app13042178
Chicago/Turabian StyleDoskocz, Adam. 2023. "Application of Smart Station Technology for Establish Control Network Points" Applied Sciences 13, no. 4: 2178. https://doi.org/10.3390/app13042178
APA StyleDoskocz, A. (2023). Application of Smart Station Technology for Establish Control Network Points. Applied Sciences, 13(4), 2178. https://doi.org/10.3390/app13042178