Properties and Functionality of Cereal Non-Starch Polysaccharides in Breadmaking
Abstract
:1. Introduction
2. Definition and Occurrence of Cereal NSPs
Non-Starch Polysaccharides | Source | Content [%] | References |
---|---|---|---|
Arabinoxylans | Wheat grain | 4.1–9 | [5] |
Endosperm of durum wheat grain | 1.5–1.8 | [14] | |
Endosperm of wheat grain | 0.8–0.9 | [10] | |
Whole wheat flour | 3–5 | [46] | |
Endosperm of barley grain | 1.2–1.3 | [10] | |
Barley bran | 10.5 | [8] | |
Barley flour | 2.9–4.8 | [11] | |
Whole rye grain | 7.6 | [3] | |
Whole rye grain | 8.6 | [7] | |
Whole rye grain | 7.1–12.2 | [9] | |
Endosperm of rye grain | 2.2–2.4 | [10] | |
Endosperm of oat grain | 1.2 | [4] | |
Oat bran | 5.2 | [4] | |
Whole oat grain | 11.6 | [13] | |
Corn grain | 4.8–5.6 | [6] | |
Rice grain | 2.97–6.84 | [12] | |
β-glucans | Endosperm of durum wheat grain | 0.12–0.16 | [14] |
Durum wheat bran | 0.71–0.8 | [14] | |
Wheat bran | 2.6 | [27] | |
Wheat grain | 1–2 | [16] | |
Wheat bran | 2.15–2.51 | [29] | |
Whole barley flour | 4.6 | [25] | |
Barley grain | 3.9–6.6 | [24] | |
Barley bran | 7.7–15.4 | [23] | |
Different varieties of barley | 3.43–6.11 | [18] | |
Barley grain | 3.9–5.9 | [26] | |
Rye grain | 2.3 | [3] | |
Rye grain | <1 | [16] | |
Oat grain | 3.4 | [13] | |
Oat bran | 4.5–8.5 | [23] | |
Oat grain | 4.4–6.1 | [24] | |
Rice grain | 0.4–0.9 | [28] | |
Corn grain | 0.5–1.3 | [28] | |
Cellulose | Wheat grain | 14.1 | [38] |
Wheat grain | 1.67–3.05 | [39] | |
Barley grain | 4.29 | [35] | |
Barley grain | 1.4–4.7 | [36] | |
Rye grain | 1.3 | [37] | |
Rye grain | 11.8 | [39] | |
Arabinogalactans | Wheat flour | 0.5–1 | [46] |
Wheat bran | 1–4.5 | [46] | |
Wheat flour | 0.27–0.38 | [45] | |
Hulled barley | 1.32–1.45 | [47] | |
Pectic polysaccharides | Quinoa grain | 4.68 | [54] |
Barley grain | 2.41 | [54] | |
Wheat meal | 0.25 | [53] | |
Wheat bran | 0.35 | [53] | |
Rice meal | 0.25 | [53] | |
Corn meal | 0.24 | [53] |
3. Properties of NSPs
3.1. Solubility
3.2. Water-Binding Capacity
3.3. Viscosity
3.4. Cross-Linking
3.5. Surface Tension
3.6. Molar Mass
3.7. Modifications of NSPs
4. The Role of NSPs in Bread Making
4.1. The Influence of NSPs on the Water Absorption of Flour
4.2. The Influence of NSPs on the Yield of Dough
4.3. The Influence of NSPs on Bread Volume
4.4. The Influence of NSPs on Bread Crumb Moisture
4.5. The Influence of NSPs on Bread Crumb Hardness
4.6. The Influence of NSPs on Bread Aging
4.7. The Influence of NSPs on Starch Digestibility
4.8. The Influence of NSPs on the Human Body
4.9. Negative Effects of NSPs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knudsen, K.E.B. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 1997, 67, 319–338. [Google Scholar] [CrossRef]
- Choct, M. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed. Milling Int. 1997, 191, 13–26. [Google Scholar]
- Bengtsson, S.; Aman, P. Isolation and chemical characterization of water-soluble arabinoxylans in rye grain. Carbohydr. Polym. 1990, 12, 267–277. [Google Scholar] [CrossRef]
- Westerlund, E.; Andersson, R.; Åman, P. Isolation and chemical characterization of water-soluble mixed-linked β-glucans and arabinoxylans in oat milling fractions. Carbohydr. Polym. 1993, 20, 115–123. [Google Scholar] [CrossRef]
- Martinant, J.P.; Billot, A.; Bouguennec, A.; Charmel, G.; Saulnier, L.; Branlard, G. Genetic and environmental variations in water-extractable arabinoxylans content and flour extract viscosity. J. Cereal Sci. 1999, 30, 45–48. [Google Scholar] [CrossRef]
- Yadav, M.P.; Moreau, R.A.; Hicks, K.B. Phenolic acids, lipids, and proteins associated with purified corn fiber arabinoxylans. J. Agric. Food Chem. 2007, 55, 943–947. [Google Scholar] [CrossRef]
- Andersson, R.; Fransson, G.; Tietjen, M.; Åman, P. Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J. Agric. Food Chem. 2009, 57, 2004–2008. [Google Scholar] [CrossRef]
- Zheng, X.; Li, L.; Wang, X. Molecular characterization of arabinoxylans from hull-less barley milling fractions. Molecules 2011, 16, 2743–2753. [Google Scholar] [CrossRef]
- Buksa, K.; Ziobro, R.; Nowotna, A.; Praznik, W.; Gambuś, H. Isolation, modification and characterization of soluble arabinoxylan fractions from rye grain. Eur. Food Res. Technol. 2012, 235, 385–395. [Google Scholar] [CrossRef]
- Comino, P.; Shelat, K.; Collins, H.; Lahnstein, J.; Gidley, M.J. Separation and purification of soluble polymers and cell wall fractions from wheat, rye and hull less barley endosperm flours for structure-nutrition studies. J. Agric. Food Chem. 2013, 61, 12111–12122. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, D.; Wu, F.; Zhang, G. Genotypic and environmental variations of arabinoxylan content and endoxylanase activity in barley grains. J. Integr. Agric. 2013, 12, 1489–1494. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, S.H.; Jang, G.Y.; Park, H.J.; Li, M.; Kim, S.; Lee, Y.R.; Noh, Y.H.; Lee, J.; Jeong, H.S. Effects of high hydrostatic pressure treatment on the enhancement of functional components of germinated rough rice (Oryza sativa L.). Food Chem. 2015, 166, 86–92. [Google Scholar] [CrossRef]
- Tian, L.; Gruppen, H.; Schols, H.A. Characterization of (Glucurono) arabinoxylans from oats using enzymatic fingerprinting. J. Agric. Food Chem. 2015, 63, 10822–10830. [Google Scholar] [CrossRef]
- Marcotuli, I.; Hsieh, Y.S.-Y.; Lahnstein, J.; Yap, K.; Burton, R.A.; Blanco, A.; Fincher, G.B.; Gadaleta, A. Structural variation and content of arabinoxylans in endosperm and bran of durum wheat (Triticum turgidum L.). J. Agric. Food Chem. 2016, 64, 2883–2892. [Google Scholar] [CrossRef]
- Saeed, F.; Arshad, M.U.; Pasha, I.; Suleria, H.A.R.; Arshad, M.S.; Qamar, A.; Ullah, A.; Sultan, S. Effect of arabinoxylan and arabinogalactan on textural attributes of bread: Arabinoxylan and arabinogalactan and textural study. J. Food Process. Preserv. 2015, 39, 1070–1088. [Google Scholar] [CrossRef]
- Cui, W.; Wood, P.J. Relationships between structural features, molecular weight and rheological properties of cereal β-D-glucans. In Hydrocolloids; Nishinari, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2000; pp. 159–168. [Google Scholar] [CrossRef]
- Manzi, P. Beta-glucans in edible mushrooms. Food Chem. 2000, 68, 315–318. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Jacobs, M.; Dexter, J.E. Distribution and structural variation of nonstarch polysaccharides in milling fractions of hull-less barley with variable amylose content. Cereal Chem. J. 2003, 80, 645–653. [Google Scholar] [CrossRef]
- Lee, Y.T.; Kim, Y.S. Water-solubility of β-Glucans in Various Edible Mushrooms—Research Note. Prev. Nutr. Food Sci. 2005, 10, 294–297. [Google Scholar] [CrossRef]
- Cui, S.W. Polysaccharide Gums from Agricultural Products. Processing, Structures and Functionality; CRC Press: Boca Raton, FL, USA, 2001; pp. 1–284. [Google Scholar]
- Burton, R.A.; Fincher, G.B. (1,3;1,4)-β-D-glucans in cell walls of the poaceae, lower plants, and fungi: A tale of two linkages. Mol. Plant 2009, 2, 873–882. [Google Scholar] [CrossRef]
- Pettolino, F.; Sasaki, I.; Turbic, A.; Wilson, S.M.; Bacic, A.; Hrmova, M.; Fincher, G.B. Hyphal cell walls from the plant pathogen Rhynchosporium secalis contain (1,3/1,6)-β-d-glucans, galacto- and rhamnomannans, (1,3;1,4)-β-d-glucans and chitin. FEBS J. 2009, 276, 3698–3709. [Google Scholar] [CrossRef]
- Bhatty, R.S. Laboratory and pilot plant extraction and purification of β-glucans from hull-less barley and oat brans. J. Cereal Sci. 1995, 22, 163–170. [Google Scholar] [CrossRef]
- Lee, C.J.; Horsley, R.D.; Manthey, F.A.; Schwarz, P.B. Comparisons of β-glucan content of barley and oat. Cereal Chem. J. 1997, 74, 571–575. [Google Scholar] [CrossRef]
- Cavallero, A.; Empilli, S.; Brighenti, F.; Stanca, A.M. High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. J. Cereal Sci. 2002, 36, 59–66. [Google Scholar] [CrossRef]
- Irakli, M.; Biliaderis, C.G.; Izydorczyk, M.S.; Papadoyannis, I.N. Isolation, structural features and rheological properties of water-extractable β-glucans from different Greek barley cultivars. J. Sci. Food Agric. 2004, 84, 1170–1178. [Google Scholar] [CrossRef]
- Cui, W.; Wood, P.J.; Blackwell, B.; Nikiforuk, J. Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-D-glucan—Comparison with other cereal β-D-glucans. Carbohydr. Polym. 2000, 41, 249–258. [Google Scholar] [CrossRef]
- Demirbas, A. B-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005, 90, 773–777. [Google Scholar] [CrossRef]
- Li, W.; Cui, S.; Kakuda, Y. Extraction, fractionation, structural and physical characterization of wheat β-d-glucans. Carbohydr. Polym. 2006, 63, 408–416. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Nikšić, M.; Vrvić, M.M.; Todorović, N.; Jakovljević, D.; Van Griensven, L.J.L.D. Antioxidative activities and chemical characterization of polysaccharide extracts from the widely used mushrooms Ganoderma applanatum, Ganoderma lucidum, Lentinus edodes and Trametes versicolor. J. Food Compos. Anal. 2012, 26, 144–153. [Google Scholar] [CrossRef]
- Kyanko, M.V.R.; Canel, S.; Ludemann, V.; Pose, G.; Wagner, J.R. β-Glucan content and hydration properties of filamentous fungi. Appl. Biochem. Microbiol. 2013, 49, 41–45. [Google Scholar] [CrossRef]
- Bak, W.C.; Park, J.H.; Park, Y.A.; Ka, K.H. Determination of glucan contents in the fruiting bodies and mycelia of Lentinula edodes cultivars. Mycobiology 2014, 42, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Sari, M.; Prange, A.; Lelley, J.L.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef]
- Mirończuk-Chodakowska, I.; Witkowska, A.M. Evaluation of Polish wild mushrooms as beta-glucan sources. Int. J. Environ. Res. Public. Health 2020, 17, 7299. [Google Scholar] [CrossRef]
- MacLeod, A.M.; Napier, J.P. Cellulose distribution in barley. J. Inst. Brew. 1959, 65, 188–196. [Google Scholar] [CrossRef]
- Andersson, A.A.; Elfverson, C.; Andersson, R.; Regner, S.; Aman, P. Chemical and physical characteristics of different barley samples. J. Sci. Food Agric. 1999, 79, 979–986. [Google Scholar] [CrossRef]
- Glitsø, L.V.; Bach Knudsen, K.E. Milling of whole grain rye to obtain fractions with different dietary fibre characteristics. J. Cereal Sci. 1999, 29, 89–97. [Google Scholar] [CrossRef]
- Gall, M.; Serena, A.; Jørgensen, H.; Theil, P.K.; Bach Knudsen, K.E. The role of whole-wheat grain and wheat and rye ingredients on the digestion and fermentation processes in the gut—A model experiment with pigs. Br. J. Nutr. 2009, 102, 1590. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Andersson, R.; Piironen, V.; Lampi, A.M.; Nyström, L.; Boros, D.; Fras, A.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; et al. Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen. Food Chem. 2013, 136, 1243–1248. [Google Scholar] [CrossRef]
- Kochhar, A.; Nagi, M.; Sachdeva, R. Proximate composition, available carbohydrates, dietary fibre and anti nutritional factors of selected traditional medicinal plants. J. Hum. Ecol. 2006, 19, 195–199. [Google Scholar] [CrossRef]
- Bouzouita, N.; Khaldi, A.; Zgoulli, S.; Chebil, L.; Chekki, R.; Chaabouni, M.; Thonart, P. The analysis of crude and purified locust bean gum: A comparison of samples from different carob tree populations in Tunisia. Food Chem. 2007, 101, 1508–1515. [Google Scholar] [CrossRef]
- Cerqueira, M.A.; Bourbon, A.I.; Pinheiro, A.C.; Martins, J.T.; Souza, B.W.S.; Teixeira, J.A.; Vicente, A.A. Galactomannans use in the development of edible films/coatings for food applications. Trends Food Sci. Technol. 2011, 22, 662–671. [Google Scholar] [CrossRef] [Green Version]
- Rathore, S.S.; Saxena, S.N.; Kakani, R.K.; Singh, B. Rapid and mass screening method for galactomannan content in fenugreek seeds. Int. J. Seed Spices 2013, 3, 91–93. [Google Scholar]
- Gresta, F.; Ceravolo, G.; Presti, V.L.; D’Agata, A.; Rao, R.; Chiofalo, B. Seed yield, galactomannan content and quality traits of different guar (Cyamopsis tetragonoloba L.) genotypes. Ind. Crops Prod. 2017, 107, 122–129. [Google Scholar] [CrossRef]
- Loosveld, A.M.A.; Grobet, P.J.; Delcour, J.A. Contents and structural features of water-extractable arabinogalactan in wheat flour fractions. J. Agric. Food Chem. 1997, 45, 1998–2002. [Google Scholar] [CrossRef]
- Saeed, F.; Pasha, I.; Anjum, F.M.; Sultan, J.I.; Arshad, M. Arabinoxylan and arabinogalactan content in different spring wheats. Int. J. Food Prop. 2014, 17, 713–721. [Google Scholar] [CrossRef]
- Acar, O.; Izydorczyk, M.S.; McMillan, T.; Yazici, M.A.; Ozdemir, B.; Cakmak, I.; Koksel, H. An investigation on minerals, arabinoxylans and other fibres of biofortified hull-less barley fractions obtained by two milling systems. J. Cereal Sci. 2020, 96, 103098. [Google Scholar] [CrossRef]
- Darvill, A.G.; McNeil, M.; Albersheim, P. Structure of plant cell walls: A new pectic polysaccharides. Plant Physiol. 1978, 62, 418–422. [Google Scholar] [CrossRef]
- Waldron, K.W.; Faulds, C.B. Cell Wall Polysaccharides: Composition and Structure. Compr. Glycosci. 2007, 181–201. [Google Scholar] [CrossRef]
- Lin, L.Y.; Ker, Y.-B.; Chang, C.-H.; Chen, K.-C.; Peng, R.Y. Arabinogalactan present in the mountain celery seed extract potentiated hypolipidemic bioactivity of coexisting polyphenols in hamsters. Pharm. Biol. 2011, 49, 319–326. [Google Scholar] [CrossRef]
- Lamothe, L.M.; Srichuwong, S.; Reuhs, B.L.; Hamaker, B.R. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem. 2015, 167, 490–496. [Google Scholar] [CrossRef]
- Piqué, N.; Gómez-Guillén, M.; Montero, M. Xyloglucan, a plant polymer with barrier protective properties over the mucous membranes: An overview. Int. J. Mol. Sci. 2018, 19, 673. [Google Scholar] [CrossRef]
- Bailoni, L.; Bonsembiante, M.; Schiavon, S.; Pagnin, G.; Tagliapietra, F. Estimation of the content of pectins in feeds: Fractional extraction and quantitative determination. Vet. Res. Commun. 2013, 27, 249–251. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, L.; Tan, D.; Zhang, W. Dietary fibre extracted from different types of whole grains and beans: A comparative study. Int. J. Food Sci. Technol. 2020, 55, 2188–2196. [Google Scholar] [CrossRef]
- Ptitchkina, N.M.; Danilova, I.A.; Doxastakis, G.; Kasapis, S.; Morris, E.R. Pumpkin pectin: Gel formation at unusually low concentration. Carbohydr. Polym. 1994, 23, 265–273. [Google Scholar] [CrossRef]
- Brejnholt, S.M. Pectin. In Food Stabilisers, Thickeners and Gelling Agents; Imeson, A., Ed.; Wiley-Blackwell: Chichester, UK, 2009; pp. 237–265. [Google Scholar]
- Abid, M.; Cheikhrouhou, S.; Renard, C.M.G.C.; Bureau, S.; Cuvelier, G.; Attia, H.; Ayadi, M.A. Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem. 2017, 215, 318–325. [Google Scholar] [CrossRef]
- De Cindio, B.; Gabriele, D.; Lupi, F.R. Pectin: Properties Determination and Uses. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 294–300. [Google Scholar] [CrossRef]
- Blaim, K. Substancje pektynowe i ich znaczenie biologiczne. Postępy Nauk Rolniczych. 1968, 2, 81–90. [Google Scholar]
- Bailoni, L.; Schiavon, S.; Pagnin, G.; Tagliapietra, F.; Bonsembiante, M. Quanti-qualitative evaluation of pectins in the dietary fibre of 24 foods. Ital. J. Anim. Sci. 2005, 4, 49–58. [Google Scholar] [CrossRef]
- Izydorczyk, M.; Biliaderis, C.G.; Bushuk, W. Physical properties of water-soluble pentosans from different wheat varieties. Cereal Chem. 1991, 68, 145–150. [Google Scholar]
- Bach Knudsen, K.E. The nutritional significance of “dietary fibre” analysis. Anim. Feed Sci. Technol. 2001, 90, 3–20. [Google Scholar] [CrossRef]
- Cleemput, G.; Roels, S.P.; Van Oort, M.; Grobet, P.J.; Delcour, J.A. Heterogeneity in the structure of water-soluble arabinoxylans in European wheat flours of variable bread-making quality. Cereal Chem. 1993, 70, 324–329. [Google Scholar]
- Jürgens, H.U.; Jansen, G.; Wegener, C.B. Characterization of several rye cultivars with respect to arabinoxylans and extract viscosity. J. Agric. Sci. 2012, 4, 1–12. [Google Scholar] [CrossRef]
- Izydorczyk, M.S.; Dexter, J.E. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–A review. Food Res. Int. 2008, 41, 850–868. [Google Scholar] [CrossRef]
- Lee, S.H.; Jang, G.Y.; Kim, M.Y.; Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Lee, M.J.; Kim, T.J.; Lee, J.; Jeong, H.S. Physicochemical and in vitro binding properties of barley β-glucan treated with hydrogen peroxide. Food Chem. 2016, 192, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Wood, P.J. Physiochemical characteristics and physiological properties of oat (1-3)(1-4)-ß-D-glucan in Oat Bran; Wood, P.J., Ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 1993; p. 83. [Google Scholar]
- Garcia-Ochoa, F.; Casas, J.A. Viscosity of locust bean (Ceratonia siliqua) gum solutions. J. Sci. Food Agric. 1992, 59, 97–100. [Google Scholar] [CrossRef]
- Bushuk, W. Distribution of water in dough and bread. Bak. Dig. 1966, 40, 38–40. [Google Scholar]
- Andrewartha, K.A.; Phillips, D.R.; Stone, B.A. Solution properties of wheat-flour arabinoxylans and enzymically modified arabinoxylans. Carbohydr. Res. 1979, 77, 191–204. [Google Scholar] [CrossRef]
- Buksa, K.; Ziobro, R.; Nowotna, A.; Adamczyk, G.; Sikora, M.; Zylewski, M. Water binding capacity of rye flours with the addition of native and modified arabinoxylan preparations. J. Agric. Sci. Technol. 2014, 16, 1083–1095. [Google Scholar]
- Bender, D.; Nemeth, R.; Cavazzi, G.; Turoczi, F.; Schall, E.; D’Amico, S.; Torok, K.; Lucisano, M.; Tomoskozi, S.; Schoenlechner, R. Characterization of rheological properties of rye arabinoxylans in buckwheat model systems. Food Hydrocoll. 2018, 80, 33–41. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, B.; Yadav, M.P.; Bhinder, S.; Singh, N. Isolation of arabinoxylan and cellulose-rich arabinoxylan from wheat bran of different varieties and their functionalities. Food Hydrocoll. 2021, 112, 1–10. [Google Scholar] [CrossRef]
- Ahmad, A.; Anjum, F.M.; Zahoor, T.; Nawaz, H.; Din, A. Physicochemical and functional properties of barley β-glucan as affected by different extraction procedures. Int. J. Food Sci. Technol. 2009, 44, 181–187. [Google Scholar] [CrossRef]
- Torio, M.A.O.; Saez, J.; Merca, F.E. Physicochemical characterization of galactomannan from sugar palm (Arenga saccharifera Labill.) endosperm at different stages of nut maturity. Philipp. J. Sci. 2006, 135, 19–30. [Google Scholar]
- Buksa, K.; Praznik, W.; Loeppert, R.; Nowotna, A. Characterization of water and alkali extractable arabinoxylan from wheat and rye under standardized conditions. J. Food Sci. Technol. 2016, 53, 1389–1398. [Google Scholar] [CrossRef]
- Gómez, C.; Navarro, A.; Manzanares, P.; Horta, A.; Carbonell, J.V. Physical and structural properties of barley (1 → 3),(1 → 4)-β-d-glucan. Part II. Viscosity, chain stiffness and macromolecular dimensions. Carbohydr. Polym. 1997, 32, 17–22. [Google Scholar] [CrossRef]
- Agbenorhevi, J.K.; Kontogiorgos, V.; Kirby, A.R.; Morris, V.J.; Tosh, S.M. Rheological and microstructural investigation of oat β-glucan isolates varying in molecular weight. Int. J. Biol. Macromol. 2011, 49, 369–377. [Google Scholar] [CrossRef]
- Azero, E.G.; Andrade, C.T. Testing procedures for galactomannan purification. Polym. Test. 2002, 21, 551–556. [Google Scholar] [CrossRef]
- Thombre, N.A.; Gide, P.S. Rheological characterization of galactomannans extracted from seeds of Caesalpinia pulcherrima. Carbohydr. Polym. 2013, 94, 547–554. [Google Scholar] [CrossRef]
- Muhidinov, Z.K.; Fishman, M.L.; Avloev, K.K.; Norova, M.T.; Nasriddinov, A.S.; Khalikov, K.D. Effect of temperature on the intrinsic viscosity and conformation of different pectins. Polym. Sci. Ser. A 2010, 52, 1257–1263. [Google Scholar] [CrossRef]
- Fishman, M.L.; Gillespie, D.T.; Sondney, S.M.; El-Atawy, Y.S. Intrinsic viscosity and molecular weight of pectin components. Carbohydr. Res. 1991, 215, 91–104. [Google Scholar] [CrossRef]
- Buksa, K.; Nowotna, A.; Ziobro, R. Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. Food Chem. 2016, 192, 991–996. [Google Scholar] [CrossRef]
- González-Estrada, R.; Calderón-Santoyo, M.; Carvajal-Millan, E.; Valle, F.; Ragazzo-Sánchez, J.; Brown-Bojorquez, F.; Rascón-Chu, A. Covalently cross-linked arabinoxylans films for Debaryomyces hansenii entrapment. Molecules 2015, 20, 11373–11386. [Google Scholar] [CrossRef]
- Li, X.; Chen, Q.; Liu, G.; Xu, H.; Zhang, X. Chemical elucidation of an arabinogalactan from rhizome of Polygonatum sibiricum with antioxidant activities. Int. J. Biol. Macromol. 2021, 190, 730–738. [Google Scholar] [CrossRef]
- Schooneveld-Bergmans, M.E.F.; Dignum, M.J.W.; Grabber, J.H.; Beldman, G.; Voragen, A.G.J. Studies on the oxidative cross-linking of feruloylated arabinoxylans from wheat flour and wheat bran. Carbohydr. Polym. 1999, 38, 309–317. [Google Scholar] [CrossRef]
- Yilmaz-Turan, S.; Lopez-Sanchez, P.; Jiménez-Quero, A.; Plivelic, T.S.; Vilaplana, F. Revealing the mechanisms of hydrogel formation by laccase crosslinking and regeneration of feruloylated arabinoxylan from wheat bran. Food Hydrocoll. 2022, 128, 107575. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Enomoto, Y.; Kimura, S.; Iwata, T. Highly deformable and recoverable cross-linked hydrogels of 1,3-α-d and 1,3-β-d-glucans. Carbohydr. Polym. 2021, 251, 116794. [Google Scholar] [CrossRef] [PubMed]
- Burkus, Z.; Temelli, F. Stabilization of emulsions and foams using barley β-glucan. Food Res. Int. 2000, 33, 27–33. [Google Scholar] [CrossRef]
- Youssef, M.K.; Wang, Q.; Cui, S.W.; Barbut, S. Purification and partial physicochemical characteristics of protein free fenugreek gums. Food Hydrocoll. 2009, 23, 2049–2053. [Google Scholar] [CrossRef]
- Syed, R.; Ding, H.H.; Hui, D.; Wu, Y. Physicochemical and functional properties of pigeon pea (Cajanus cajan) protein and non-starch polysaccharides. Bioact. Carbohydr. Diet. Fibre 2022, 28, 100317. [Google Scholar] [CrossRef]
- Ragaee, S.M.; Campbell, G.L.; Scoles, G.J.; McLeod, J.G.; Tyler, R.T. Studies on rye (Secale cereale L.) lines exhibiting a range of extract viscosities. 1. Composition, molecular weight distribution of water extracts, and biochemical characteristics of purified water-extractable arabinoxylan. J. Agric. Food Chem. 2001, 49, 2437–2445. [Google Scholar] [CrossRef]
- Storsley, J.M.; Izydorczyk, M.S.; You, S.; Biliaderis, C.G.; Rossnagel, B. Structure and physicochemical properties of β-glucans and arabinoxylans isolated from hull-less barley. Food Hydrocoll. 2003, 17, 831–844. [Google Scholar] [CrossRef]
- Sun, Y.; Cui, S.W.; Gu, X.; Zhang, J. Isolation and structural characterization of water unextractable arabinoxylans from Chinese black-grained wheat bran. Carbohydr. Polym. 2011, 85, 615–621. [Google Scholar] [CrossRef]
- Kale, M.S.; Yadav, M.P.; Chau, H.K.; Hotchkiss, A.T. Molecular and functional properties of a xylanase hydrolysate of corn bran arabinoxylan. Carbohydr. Polym. 2018, 181, 119–123. [Google Scholar] [CrossRef]
- Rao, R.S.P.; Muralikrishna, G. Structural characteristics of water-soluble feruloyl arabinoxylans from rice (Oryza sativa) and ragi (finger millet, Eleusine coracana): Variations upon malting. Food Chem. 2007, 104, 1160–1170. [Google Scholar] [CrossRef]
- Autio, K.; Myllymäki, O.; Suortti, T.; Saastamoinen, M.; Poutanen, K. Physical properties of (1→3),(1→4)-β-D-glucan preparates isolated from Finnish oat varieties. Food Hydrocoll. 1992, 5, 513–522. [Google Scholar] [CrossRef]
- Doublier, J.L.; Wood, P.J. Rheological Properties of Aqueous Solutions of (1 -*3)(1->4)-P-D-Glucan from Oats (Avena sativa L.). Cereal Chem. 1995, 72, 335–340. [Google Scholar]
- Beer, M.U.; Wood, P.J.; Weisz, J. Molecular weight distribution and (1→3)(1→4)-β- d -glucan content of consecutive extracts of various oat and barley cultivars. Cereal Chem. J. 1997, 74, 476–480. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G.; Izydorczyk, M.S. Molecular size effects on rheological properties of oat β-glucans in solution and gels. Food Hydrocoll. 2003, 17, 693–712. [Google Scholar] [CrossRef]
- Skendi, A.; Biliaderis, C.G.; Lazaridou, A.; Izydorczyk, M.S. Structure and rheological properties of water soluble β-glucans from oat cultivars of Avena sativa and Avena bysantina. J. Cereal Sci. 2003, 38, 15–31. [Google Scholar] [CrossRef]
- Lazaridou, A.; Biliaderis, C.G.; Micha-Screttas, M.; Steele, B.R. A comparative study on structure–function relations of mixed-linkage (1→3), (1→4) linear β-d-glucans. Food Hydrocoll. 2004, 18, 837–855. [Google Scholar] [CrossRef]
- Åman, P.; Rimsten, L.; Andersson, R. Molecular weight distribution of β-glucan in oat-based foods. Cereal Chem. J. 2004, 81, 356–360. [Google Scholar] [CrossRef]
- Knuckles, B.E.; Yokoyama, W.H.; Chiu, M.M. Molecular characterization of barley β-glucans by size-exclusion chromatography with multiple-angle laser light scattering and other detectors. Cereal Chem. J. 1997, 74, 599–604. [Google Scholar] [CrossRef]
- Vaikousi, H.; Biliaderis, C.G.; Izydorczyk, M.S. Solution flow behavior and gelling properties of water-soluble barley (1→3,1→4)-β-glucans varying in molecular size. J. Cereal Sci. 2004, 39, 119–137. [Google Scholar] [CrossRef]
- Mikkelsen, M.S.; Jespersen, B.M.; Larsen, F.H.; Blennow, A.; Engelsen, S.B. Molecular structure of large-scale extracted β-glucan from barley and oat: Identification of a significantly changed block structure in a high β-glucan barley mutant. Food Chem. 2013, 136, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Hu, X.; Guo, Q.; Cui, S.W.; Xian, Y.; You, S.; Chen, X.; Xu, C.; Gao, X. Physicochemical properties and regulatory effects on db/db diabetic mice of β-glucans extracted from oat, wheat and barley. Food Hydrocoll. 2014, 37, 60–68. [Google Scholar] [CrossRef]
- Brummer, Y.; Cui, W.; Wang, Q. Extraction, purification and physicochemical characterization of fenugreek gum. Food Hydrocoll. 2003, 17, 229–236. [Google Scholar] [CrossRef]
- Odonmažig, P.; Ebringerová, A.; Machová, E.; Alföldi, J. Structural and molecular properties of the arabinogalactan isolated from Mongolian larchwood (Larix dahurica L.). Carbohydr. Res. 1994, 252, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Rattan, O.; Izydorczyk, M.S.; Biliaderis, C.G. Structure and rheological behaviour of arabinoxylans from Canadian bread wheat flours. LWT—Food Sci. Technol. 1994, 27, 550–555. [Google Scholar] [CrossRef]
- Nishitani, K.; Tominaga, R. In vitro molecular weight increase in xyloglucans by an apoplastic enzyme preparation from epicotyls of Vigna angularis. Physiol. Plant. 1991, 82, 490–497. [Google Scholar] [CrossRef]
- Soga, K.; Wakabayashi, K.; Hoson, T.; Kamisaka, S. Hypergravity increases the molecular mass of xyloglucans by decreasing xyloglucan-degrading activity in Azuki bean epicotyls. Plant Cell Physiol. 1999, 40, 581–585. [Google Scholar] [CrossRef] [Green Version]
- Picout, D.R.; Ross-Murphy, S.B.; Errington, N.; Harding, S.E. Pressure cell assisted solubilization of xyloglucans: Tamarind seed polysaccharide and detarium gum. Biomacromolecules 2003, 4, 799–807. [Google Scholar] [CrossRef]
- Sayah, M.Y.; Chabir, R.; Benyahia, H.; Rodi Kandri, Y.; Ouazzani Chahdi, F.; Touzani, H.; Errachidi, F. Yield. Esterification degree and molecular weight evaluation of pectins isolated from orange and grapefruit peels under different conditions. PLoS ONE 2016, 11, 0161751. [Google Scholar] [CrossRef]
- Guo, M.Q.; Hu, X.; Wang, C.; Ai, L. Polysaccharides: Structure and solubility. In Solubility of Polysaccharides; Xu, Z., Ed.; InTech: Rijeka, Croatia, 2017; pp. 7–20. [Google Scholar] [CrossRef]
- Annison, G. The role of wheat non-starch polysaccharides in broiler nutrition. Aust. J. Agric. Res. 1993, 44, 405. [Google Scholar] [CrossRef]
- Courtin, C.M.; Delcour, J.A. Arabinoxylans and endoxylanases in wheat flour bread-making. J. Cereal Sci. 2002, 35, 225–243. [Google Scholar] [CrossRef]
- Iiyama, K.; Lam, T.B.T.; Stone, B.A. Covalent cross-links in the cell wall. Plant Physiol. 1994, 104, 315–320. [Google Scholar] [CrossRef]
- Mares, D.J.; Stone, B. Studies on wheat endosperm I. Chemical composition and ultrastructure of the cell walls. Aust. J. Biol. Sci. 1973, 26, 793. [Google Scholar] [CrossRef]
- Böhm, N.; Kulicke, W.M. Rheological studies of barley (1→3)(1→4)-β-glucan in concentrated solution: Mechanistic and kinetic investigation of the gel formation. Carbohydr. Res. 1999, 315, 302–311. [Google Scholar] [CrossRef]
- Tosh, S.M.; Brummer, Y.; Miller, S.S.; Regand, A.; Defelice, C.; Duss, R.; Wolever, T.M.S.; Wood, P.J. Processing affects the physicochemical properties of β-glucan in oat bran cereal. J. Agric. Food Chem. 2010, 58, 7723–7730. [Google Scholar] [CrossRef]
- Andersson, A.A.M.; Rüegg, N.; Åman, P. Molecular weight distribution and content of water-extractable β-glucan in rye crisp bread. J. Cereal Sci. 2008, 47, 399–406. [Google Scholar] [CrossRef]
- Beer, M.U.; Wood, P.J.; Weisz, J.; Fillion, N. Effect of cooking and storage on the amount and molecular weight of (1→3)(1→4)-β- d -glucan extracted from oat products by an in vitro digestion system. Cereal Chem. J. 1997, 74, 705–709. [Google Scholar] [CrossRef]
- Tosh, S.M.; Brummer, Y.; Wolever, T.M.S.; Wood, P.J. Glycemic response to oat bran muffins treated to vary molecular weight of β-glucan. Cereal Chem. J. 2008, 85, 211–217. [Google Scholar] [CrossRef]
- Regand, A.; Chowdhury, Z.; Tosh, S.M.; Wolever, T.M.S.; Wood, P. The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chem. 2011, 129, 297–304. [Google Scholar] [CrossRef]
- Srivastava, M.; Kapoor, V.P. Seed galactomannans: An overview. Chem. Biodivers. 2005, 2, 295–317. [Google Scholar] [CrossRef]
- Prajapati, V.D.; Jani, G.K.; Moradiya, N.G.; Randeria, N.P.; Nagar, B.J.; Naikwadi, N.N.; Variya, B.C. Galactomannan: A versatile biodegradable seed polysaccharide. Int. J. Biol. Macromol. 2013, 60, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Fincher, G.B.; Sawyer, W.H.; Stone, B.A. Chemical and physical properties of an arabinogalactan-peptide from wheat endosperm. Biochem. J. 1974, 139, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Simpson, B.K.; Egyankor, K.B.; Martin, A.M. Extraction, purification, and determination of pectin in tropical fruits. J. Food Process. Preserv. 1984, 8, 63–72. [Google Scholar] [CrossRef]
- Thakur, B.R.; Singh, R.K.; Handa, A.K.; Rao, M.A. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef] [PubMed]
- Demisu, D.G. Production of natural pectin from locally available fruit waste and its applications as commercially value-added product in pharmaceuticals, cosmetics and food processing industries. World News Nat. Sci. 2018, 20, 1–11. [Google Scholar]
- Chen, J.Y.; Piva, M.; Labuza, T.P. Evaluation of water binding capacity (WBC) of food fiber sources. J. Food Sci. 1984, 49, 59–63. [Google Scholar] [CrossRef]
- Căpriţă, R.; Căpriţă, A.; Julean, C. Biochemical aspects of non-starch polysaccharides. J. Anim. Sci. Biotechnol. 2010, 43, 368–374. [Google Scholar]
- Biliaderis, C.G.; Izydorczyk, M.S.; Rattan, O. Effect of arabinoxylans on bread-making quality of wheat flours. Food Chem. 1995, 53, 165–171. [Google Scholar] [CrossRef]
- Bengtsson, S.; Åman, P.; Andersson, R.E. Structural studies on water-soluble arabinoxylans in rye grain using enzymatic hydrolysis. Carbohydr. Polym. 1992, 17, 277–284. [Google Scholar] [CrossRef]
- Sittikijyothin, W.; Torres, D.; Gonçalves, M.P. Modelling the rheological behaviour of galactomannan aqueous solutions. Carbohydr. Polym. 2005, 59, 339–350. [Google Scholar] [CrossRef]
- Rao, D.G. Studies on viscosity-molecular weight relationship of chitosan solutions. J. Food Sci. Technol. 1993, 30, 66–67. [Google Scholar]
- Isobe, Y.; Endo, K.; Kawai, H. Properties of a highly viscous polysaccharide produced by a Bacillus strain isolated from soil. Biosci. Biotechnol. Biochem. 1992, 56, 636–639. [Google Scholar] [CrossRef]
- Sriamornsak, P. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn Univ. Int. J. 2003, 3, 206–228. [Google Scholar]
- Oakenfull, D.; Scott, A. Hydrophobic interaction in the gelation of high methoxyl pectins. J. Food Sci. 1984, 49, 1093–1098. [Google Scholar] [CrossRef]
- Yang, X.; Nisar, T.; Hou, Y.; Gou, X.; Sun, L.; Guo, Y. Pomegranate peel pectin can be used as an effective emulsifier. Food Hydrocoll. 2018, 85, 30–38. [Google Scholar] [CrossRef]
- Geissmann, T.; Neukom, H. On the composition of the water soluble wheat flour pentosans and their oxidative gelation. Lebens. Wiss. Technol. 1973, 6, 59–62. [Google Scholar]
- Figueroa-Espinoza, M.C.; Rouau, X. Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: Mechanism of linkage between feruloylated arabinoxylans. Cereal Chem. J. 1998, 75, 259–265. [Google Scholar] [CrossRef]
- Carvajal-Millan, E.; Landillon, V.; Morel, M.H.; Rouau, X.; Doublier, J.L.; Micard, V. Arabinoxylan gels: Impact of the feruloylation degree on their structure and properties. Biomacromolecules 2005, 6, 309–317. [Google Scholar] [CrossRef]
- Hartmann, G.; Piber, M.; Koehler, P. Isolation and chemical characterisation of water-extractable arabinoxylans from wheat and rye during breadmaking. Eur. Food Res. Technol. 2005, 221, 487–492. [Google Scholar] [CrossRef]
- Verwimp, T.; Van Craeyveld, V.; Courtin, C.M.; Delcour, J.A. Variability in the structure of rye flour alkali-extractable arabinoxylans. J. Agric. Food Chem. 2007, 55, 1985–1992. [Google Scholar] [CrossRef]
- Zhou, S.; Liu, X.; Guo, Y.; Wang, Q.; Peng, D.; Cao, L. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydr. Polym. 2010, 81, 784–789. [Google Scholar] [CrossRef]
- Yuwang, P.; Sulaeva, I.; Hell, J.; Henniges, U.; Böhmdorfer, S.; Rosenau, T.; Chitsomboon, B.; Tongta, S. Phenolic compounds and antioxidant properties of arabinoxylan hydrolysates from defatted rice bran: Phenolic and antioxidant properties of rice bran arabinoxylan hydrolyzates. J. Sci. Food Agric. 2018, 98, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Fadel, A.; Mahmoud, A.M.; Ashworth, J.J.; Li, W.; Ng, Y.L.; Plunkett, A. Health-related effects and improving extractability of cereal arabinoxylans. Int. J. Biol. Macromol. 2018, 109, 819–831. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Xu, Z.; Wu, S.; Li, X.; Li, J.; Hu, H.; Wu, Y.; Ai, L. Molecular properties and structural characterization of an alkaline extractable arabinoxylan from hull-less barley bran. Carbohydr. Polym. 2019, 218, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Vogel, B.; Gallaher, D.D.; Bunzel, M. Influence of cross-linked arabinoxylans on the postprandial blood glucose response in rats. J. Agric. Food Chem. 2012, 60, 3847–3852. [Google Scholar] [CrossRef] [PubMed]
- Aveyard, R.; Haydon, D.A. An Introduction to the Principles of Surface Chemistry; Cambridge University Press: Cambridge, UK, 1973. [Google Scholar]
- Adhikari, B.; Howes, T.; Shrestha, A.; Bhandari, B.R. Effect of surface tension and viscosity on the surface stickiness of carbohydrate and protein solutions. J. Food Eng. 2007, 79, 1136–1143. [Google Scholar] [CrossRef]
- Buksa, K.; Nowotna, A.; Ziobro, R.; Gambuś, H. Rye flour enriched with arabinoxylans in rye bread making. Food Sci. Technol. Int. 2015, 21, 45–54. [Google Scholar] [CrossRef]
- Ayala-Soto, F.E.; Serna-Saldívar, S.O.; Welti-Chanes, J. Effect of arabinoxylans and laccase on batter rheology and quality of yeast-leavened gluten-free breads. J. Cereal Sci. 2017, 73, 10–17. [Google Scholar] [CrossRef]
- Sørensen, H.R.; Meyer, A.S.; Pedersen, S. Enzymatic hydrolysis of water-soluble wheat arabinoxylan. 1. Synergy between α- L -arabinofuranosidases, endo-1,4-β-xylanases, and β-xylosidase activities: Enzymatic hydrolysis of wheat arabinoxylan. 1. Biotechnol. Bioeng. 2003, 81, 726–731. [Google Scholar] [CrossRef]
- Roubroeks, J.P.; Andersson, R.; Mastromauro, D.I.; Christensen, B.E.; Åman, P. Molecular weight, structure and shape of oat (1→3),(1→4)-β-d-glucan fractions obtained by enzymatic degradation with (1→4)-β-d-glucan 4-glucanohydrolase from Trichoderma reesei. Carbohydr. Polym. 2001, 46, 275–285. [Google Scholar] [CrossRef]
- Liu, R.; Li, J.; Wu, T.; Li, Q.; Meng, Y.; Zhang, M. Effects of ultrafine grinding and cellulase hydrolysis treatment on physicochemical and rheological properties of oat (Avena nuda L.) β-glucans. J. Cereal Sci. 2015, 65, 125–131. [Google Scholar] [CrossRef]
- Johansson, L.; Tuomainen, P.; Anttila, H.; Rita, H.; Virkki, L. Effect of processing on the extractability of oat β-glucan. Food Chem. 2007, 105, 1439–1445. [Google Scholar] [CrossRef]
- Kweon, M.; Slade, L.; Levine, H. Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding—A review. Cereal Chem. J. 2011, 88, 537–552. [Google Scholar] [CrossRef]
- Rao, M.V.S.S.T.S.; Manohar, R.S.; Muralikrishna, G. Functional characteristics of non-starch polysaccharides (NSP) obtained from native (n) and malted (m) finger millet (ragi, Eleusine coracana, indaf-15). Food Chem. 2004, 88, 453–460. [Google Scholar] [CrossRef]
- Li, W.; Hu, H.; Wang, Q.; Brennan, C. Molecular features of wheat endosperm arabinoxylan inclusion in functional bread. Foods 2013, 2, 225–237. [Google Scholar] [CrossRef]
- Buksa, K.; Nowotna, A.; Gambuś, H. Wpływ dodatku preparatu pentoza nowego na właściwości ciasta i chleba z mąki żytniej. Acta Agrophys. 2012, 19, 7–18. [Google Scholar]
- Skendi, A.; Biliaderis, C.G.; Papageorgiou, M.; Izydorczyk, M.S. Effects of two barley β-glucan isolates on wheat flour dough and bread properties. Food Chem. 2010, 119, 1159–1167. [Google Scholar] [CrossRef]
- Ahmed, J.; Thomas, L. Effect of β-glucan concentrate on the water uptake, rheological and textural properties of wheat flour dough. Int. J. Food Prop. 2015, 18, 1801–1816. [Google Scholar] [CrossRef]
- Mohebbi, Z.; Homayouni, A.; Azizi, M.H.; Hosseini, S.J. Effects of beta-glucan and resistant starch on wheat dough and prebiotic bread properties. J. Food Sci. Technol. 2018, 55, 101–110. [Google Scholar] [CrossRef]
- Loosveld, A.M.A.; Delcour, J.A. The significance of arabinogalactan-peptide for wheat flour bread-making. J. Cereal Sci. 2000, 32, 147–157. [Google Scholar] [CrossRef]
- Roberts, K.T.; Cui, S.W.; Chang, Y.H.; Ng, P.K.W.; Graham, T. The influence of fenugreek gum and extrusion modified fenugreek gum on bread. Food Hydrocoll. 2012, 26, 350–358. [Google Scholar] [CrossRef]
- Blibech, M.; Maktouf, S.; Chaari, F.; Zouari, S.; Neifar, M.; Besbes, S.; Ellouze-Ghorbel, R. Functionality of galactomannan extracted from Tunisian carob seed in bread dough. J. Food Sci. Technol. 2015, 52, 423–429. [Google Scholar] [CrossRef]
- Lazaridou, A.; Duta, D.; Papageorgiou, M.; Belc, N.; Biliaderis, C.G. Effects of hydrocolloids on dough rheology and bread quality parameters in gluten-free formulations. J. Food Eng. 2007, 79, 1033–1047. [Google Scholar] [CrossRef]
- Veraverbeke, S.W.; Delcour, J.A. Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality. Crit. Rev. Food Sci. Nutr. 2002, 42, 179–208. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Pasha, I.; Anjum, F.M.; Sultan, J.I. Water-extractable arabinoxylan content in milling fractions of spring wheats Contenido de arabinoxilano extraíble en agua en fracciones pulverizadas de trigos de primavera. CyTA—J. Food 2011, 9, 43–48. [Google Scholar] [CrossRef]
- Buksa, K. Effect of pentoses, hexoses, and hydrolyzed arabinoxylan on the most abundant sugar, organic acid, and alcohol contents during rye sourdough bread production. Cereal Chem. 2020, 97, 642–652. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, T.; Ziobro, R.; Juszczak, L. Linseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. Food Sci. Technol. 2015, 62, 257–264. [Google Scholar] [CrossRef]
- Symons, L.J.; Brennan, C.S. The influence of (1→3) (1→4)-β-D-glucan-rich fractions from barley on the physicochemical properties and in vitro reducing sugar release of white wheat breads. J. Food Sci. 2006, 69, 463–467. [Google Scholar] [CrossRef]
- Cleary, L.; Andersson, R.; Brennan, C. The behaviour and susceptibility to degradation of high and low molecular weight barley β-glucan in wheat bread during baking and in vitro digestion. Food Chem. 2007, 102, 889–897. [Google Scholar] [CrossRef]
- Molina, M.T.; Vaz, S.M.; Leiva, Á.; Bouchon, P. Rotary-moulded biscuits: Dough expansion, microstructure and sweetness perception as affected by sucrose:flour ratio and sucrose particle size. Food Struct. 2021, 29, 100199. [Google Scholar] [CrossRef]
- Ortiz de Erive, M.; He, F.; Wang, T.; Chen, G. Development of β-glucan enriched wheat bread using soluble oat fiber. J. Cereal Sci. 2020, 95, 103051. [Google Scholar] [CrossRef]
- Gudmundsson, M.; Eliasson, A.-C.; Bengtsson, S.; Aman, P. The effects of water soluble arabinoxylan on gelatinization and retrogradation of starch. Starch—Stärke 1991, 43, 5–10. [Google Scholar] [CrossRef]
- Bedford, M.R. Mechanism of action and potential environmental benefits from the use of feed enzymes. Anim. Feed Sci. Technol. 1995, 53, 145–155. [Google Scholar] [CrossRef]
- Liu, D.; Gao, H.; Tang, W.; Nie, S. Plant non-starch polysaccharides that inhibit key enzymes linked to type 2 diabetes mellitus: Polysaccharide inhibiting enzymes linked to T2DM. Ann. N. Y. Acad. Sci. 2017, 1401, 28–36. [Google Scholar] [CrossRef]
- Fincher, G.B.; Stone, B.A. Cell walls and their components in cereal grain technology. Adv. Cereal Sci. Technol. 1986, 8, 207–295. [Google Scholar]
- Dumitrescu, G.; Stef, L.; Drinceanu, D.; Julean, C.; Stef, D.; Ciochina, L.P.; Pandur, C. Control on the wheat non-starch polysaccharides (NSP). Anti-nutritional effect on intestinal wall, by introducing xylanase in broiler feed. J. Anim. Sci. Biotechnol. 2011, 44, 155–163. [Google Scholar]
- Raza, A.; Bashir, S.; Tabassum, R. An update on carbohydrases: Growth performance and intestinal health of poultry. Heliyon 2019, 5, 1437. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Kang, J.; Wang, N.; Xiao, M.; Li, Z.; Wang, C.; Guo, Q.; Hu, X. Arabinoxylan from wheat bran: Molecular degradation and functional investigation. Food Hydrocoll. 2020, 107, 105914. [Google Scholar] [CrossRef]
- Binou, P.; Yanni, A.E.; Stergiou, A.; Karavasilis, K.; Konstantopoulos, P.; Perrea, D.; Tentolouris, N.; Karathanos, V.T. Enrichment of bread with beta-glucans or resistant starch induces similar glucose, insulin and appetite hormone responses in healthy adults. Eur. J. Nutr. 2021, 60, 455–464. [Google Scholar] [CrossRef]
- Davidson, M.H.; McDonald, A. Fiber: Forms and functions. Nutr. Res. 1998, 18, 617–624. [Google Scholar] [CrossRef]
- Scott, K.P.; Duncan, S.H.; Flint, H.J. Dietary fibre and the gut microbiota. Nutr. Bull. 2008, 33, 201–211. [Google Scholar] [CrossRef]
- Kumar, V.; Sinha, A.K.; Makkar, H.P.S.; de Boeck, G.; Becker, K. Dietary roles of non-starch polysachharides in human nutrition: A review. Crit. Rev. Food Sci. Nutr. 2012, 52, 899–935. [Google Scholar] [CrossRef] [PubMed]
- Grootaert, C.; Delcour, J.A.; Courtin, C.M.; Broekaert, W.F.; Verstraete, W.; Van de Wiele, T. Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends Food Sci. Technol. 2007, 18, 64–71. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Tuncil, Y.E. A perspective on the complexity of dietary fiber structures and their potential effect on the gut microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef] [PubMed]
- Estrada, A.; Yun, C.-H.; Van Kessel, A.; Li, B.; Hauta, S.; Laarveld, B. Immunomodulatory activities of oat P-glucan in vitro and in vivo. Microbiol. Immunol. 1997, 41, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Cao, L.; Liu, X.; Qian, T.; Sun, G.; Guo, Y.; Chang, F.; Zhou, S.; Sun, X. Antitumor and immunomodulatory activity of arabinoxylans: A major constituent of wheat bran. Int. J. Biol. Macromol. 2011, 48, 160–164. [Google Scholar] [CrossRef]
- Akhtar, M.; Tariq, A.F.; Awais, M.M.; Iqbal, Z.; Muhammad, F.; Shahid, M.; Hiszczynska-Sawicka, E. Studies on wheat bran Arabinoxylan for its immunostimulatory and protective effects against avian coccidiosis. Carbohydr. Polym. 2012, 90, 333–339. [Google Scholar] [CrossRef]
- Savitha Prashanth, M.R.; Shruthi, R.R.; Muralikrishna, G. Immunomodulatory activity of purified arabinoxylans from finger millet (Eleusine coracana, v. Indaf 15) bran. J. Food Sci. Technol. 2015, 52, 6049–6054. [Google Scholar] [CrossRef]
- Hong, F.; Yan, J.; Baran, J.T.; Allendorf, D.J.; Hansen, R.D.; Ostroff, G.R.; Xing, P.X.; Cheung, N.-K.V.; Ross, G.D. Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 2004, 173, 797–806. [Google Scholar] [CrossRef]
- Gaullier, J.-M.; Sleboda, J.; Ofjord, E.S.; Ulvestad, E.; Nurminiemi, M.; Moe, C.; Albrektsen, T.; Gudmundsen, O. Supplementation with a soluble beta-glucan exported from shiitake medicinal mushroom, Lentinus edodes (Berk.) singer mycelium: A crossover, placebo-controlled study in healthy elderly. Int. J. Med. Mushrooms 2011, 13, 319–326. [Google Scholar] [CrossRef]
- Ahmad, M.F.; Ahmad, F.A.; Khan, M.I.; Alsayegh, A.A.; Wahab, S.; Alam, M.I.; Ahmed, F. Ganoderma lucidum: A potential source to surmount viral infections through β-glucans immunomodulatory and triterpenoids antiviral properties. Int. J. Biol. Macromol. 2021, 187, 769–779. [Google Scholar] [CrossRef]
- Garcia, A.L.; Otto, B.; Reich, S.-C.; Weickert, M.O.; Steiniger, J.; Machowetz, A.; Rudovich, N.N.; Mohlig, M.; Katz, N.; Speth, M.; et al. Arabinoxylan consumption decreases postprandial serum glucose, serum insulin and plasma total ghrelin response in subjects with impaired glucose tolerance. Eur. J. Clin. Nutr. 2007, 61, 334–341. [Google Scholar] [CrossRef]
- Hromádková, Z.; Paulsen, B.S.; Polovka, M.; Košťálová, Z.; Ebringerová, A. Structural features of two heteroxylan polysaccharide fractions from wheat bran with anti-complementary and antioxidant activities. Carbohydr. Polym. 2013, 93, 22–30. [Google Scholar] [CrossRef]
- Mpofu, A.; Sapirstein, H.D.; Beta, T. Genotype and environmental variation in phenolic content, phenolic acid composition, and antioxidant activity of hard spring wheat. J. Agric. Food Chem. 2006, 54, 1265–1270. [Google Scholar] [CrossRef]
- Brown, G.D.; Gordon, S. Fungal β-glucans and mammalian immunity. Immunity 2003, 19, 311–315. [Google Scholar] [CrossRef]
- Chen, J.; Seviour, R. Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol. Res. 2007, 111, 635–652. [Google Scholar] [CrossRef]
- Lu, Z.X.; Walker, K.Z.; Muir, J.G.; Mascara, T.; O’Dea, K. Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. Am. J. Clin. Nutr. 2000, 71, 1123–1128. [Google Scholar] [CrossRef]
- Möhlig, M.; Koebnick, C.; Weickert, M.O.; Lueder, W.; Otto, B.; Steiniger, J.; Twilfert, M.; Meuser, F.; Pfeiffer, A.F.H.; Zunft, H.J. Arabinoxylan-enriched meal increases serum ghrelin levels in healthy humans. Horm. Metab. Res. 2005, 37, 303–308. [Google Scholar] [CrossRef]
- Jenkins, D.J.; Kendall, C.W.; Augustin, L.S.; Franceschi, S.; Hamidi, M.; Marchie, A.; Jenkins, A.L.; Axelsen, M. Glycemic index: Overview of implications in health and disease. Am. J. Clin. Nutr. 2002, 76, 266–273. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Z.; Wang, D.; Xu, X.; Song, C.; Sun, L.; Mayo, K.H.; Zhao, Z.; Zhou, Y. Galactofuranose side chains in galactomannans from Penicillium spp. modulate galectin-8-mediated bioactivity. Carbohydr. Polym. 2022, 292, 1–10. [Google Scholar] [CrossRef]
- Kühn, M.C.; Grosch, W. Baking functionality of reconstituted rye flours having different nonstarchy polysaccharide and starch contents. Cereal Chem. 1989, 66, 149–154. [Google Scholar]
- Courtin, C.M.; Delcour, J.A. Physicochemical and Bread-Making Properties of Low Molecular Weight Wheat-Derived Arabinoxylans. J. Agric. Food Chem. 1998, 46, 4066–4073. [Google Scholar] [CrossRef]
Properties | Non-Starch Polysaccharides | Main Conditions of Determination | Result | References |
---|---|---|---|---|
Solubility | Arabinoxylans | H2O 15 min., 30 °C Deionized water 1 h, 20 °C | 30–40% | [63] |
18–23% | [64] | |||
[NA] | 10–18.5% | [65] | ||
β-glucans | Deionized water | 53.4–57.2% | [66] | |
[NA] | 27–78% | [67] | ||
Galactomannans | Deionized water | 62.7–82.7%, solubility increased with temperature 25–80 °C | [68] | |
Water-binding capacity | Arabinoxylans | [NA] | 15 g/g | [69] |
Measuring the amount of “defrosted” water at 30 °C | 0.38 g/g | [70] | ||
Farinograph | After adding 1%, AXs to rye flour type 1150 and 720, these flours bound 2.5% and 8% more water, respectively. After adding 2% of AX flour bound 7.6% and 18.8% more water, respectively. | [71] | ||
Centrifuge method | 1.58 g water/g AXs | [72] | ||
Centrifuge method | 13.3 g to 16.13 g of water/g cellulose-rich AX fraction | [73] | ||
β-glucans | Centrifuge method | 2.91 g/g d.b.—enzymatic extraction 3.10 g/g d.b.—acid extraction 3.28 g/g d.b.—alkaline extraction 3.79 g/g d.b.—extracted with water at 55 °C | [74] | |
6.14–6.74 g/g | [66] | |||
Galactomannans | Centrifuge method | Galactomannans bound 42.5–47% of water depending on the maturity of the sugar palm nut | [75] | |
Viscosity | Arabinoxylans | Ubbelohde capillary viscometer at temperature 25 °C | 2.81–4.23 dL/g | [61] |
Soluble AX 1.96–2.18 dL/g Insoluble AX 2.04–2.59 dL/g | [76] | |||
β-glucans | 0.28 dL/g to 5.2 dL/g | [77] | ||
1.7–7.2 dL/g | [78] | |||
Galactomannans | Viscosity measurements at 25 °C | 9.7–14.3 dL/g | [79] | |
Ubbelohde capillary viscometer at 25 °C | 12–12.5 dL/g at Mw of 2,720,000–2,790,000 g/mol | [80] | ||
Arabinogalactan | Ubbelohde capillary viscometer at 25 °C | 0.045 to 0.062 dL/g | [61] | |
Pectin | 0.64 to 1.07 dL/g | [81] | ||
0.75 to 5.9 dL/g | [82] | |||
Cross-linking | Arabinoxylans | Horseradish peroxidase + hydrogen peroxide | The Mw was 505,000 g/mol, and the viscosity was 2.90 dL/g | [83] |
Horseradish peroxidase + hydrogen peroxide | The initial Mw was 240,000–400,000 g/mol; after cross-linking, the Mw increased to 520,000–770,000 g/mol. | [9] | ||
Laccase | The Mw was 440,000 g/mol, and the viscosity was 3.6 dL/g | [84] | ||
Laccase, pH 5.5, 25 °C | The Mw was 508,000 g/mol | [85] | ||
1M sodium phosphate buffer (pH = 6) at 25 °C hydrogen peroxide and horseradish peroxidase | The Mw was 243,500 g/mol and 191,100 g/mol. The intrinsic viscosity was 2.3 dL/g and 1.6 dL/g. | [86] | ||
Laccase | Initial Mw was 128,000 g/mol, and after cross-linking, it was 159,000 g/mol. | [87] | ||
β-glucans | Ethylene glycol diglycidyl ether in the presence of 4% sodium hydroxide | Only elasticity was tested. | [88] | |
Surface Tension | Arabinoxylans | Alveolar tensiometer | Decrease in surface tension from 72 mN/m to about 52 mN/m, at concentration 0.6–1.5% | [61] |
β-glucans | Analysis of the profile of an axially symmetrical drop shape | Decrease in surface tension after 8 min <10 mN/m at a concentration of 1%. Decrease in surface tension in the presence of 0.5% β-glucans was less than 1 mN/m. | [89] | |
Galactomannans | The Du Nouy ring method | Decrease in surface tension from 72 mN/m to 61 mN/m at a concentration of 0.5%. | [90] | |
Pigeon pea polysaccharide (arabinogalacatan) Lemon pectin | The Du Nouy ring method with a tensiometer | Decrease in surface tension from 72 mN/m to approx. 50 mN/m at a concentration of 1.5% | [91] | |
Decrease in surface tension from 72 mN/m to 53 mN/at a concentration of 1.5% | [91] | |||
Molar mass (Mw) | Arabinoxylans | SEC a | 240,000–400,000 * | [9] |
SEC | 500,000 * | [92] | ||
SEC | 820,000–1,220,0000 ** | [93] | ||
SEC | 244,000–491,000 ***** | [6] | ||
SEC | 2,000,000 * | [7] | ||
SEC | 381,000 **** | [94] | ||
SEC | 276,000–877,000 ** | [8] | ||
SEC | 176,000–260,980 **** | [76] | ||
SEC | 197,800–294,640 * | [76] | ||
SEC | 253,000 ****** | [95] | ||
SEC | 24,400–232,000 ****** | [96] | ||
β-glucans | Based on viscosity | 1,500,000 *** | [97] | |
SEC | 1,200,000 *** | [98] | ||
SEC | 1,400,000–1,800,000 *** | [99] | ||
SEC | 1,160,000 *** | [20] | ||
SEC | 250,000 *** | [100] | ||
SEC | 270,000–780,000 *** | [101] | ||
SEC | 203,000 *** | [102] | ||
SEC | 2,060,000–2,300,00 0*** | [103] | ||
SEC | 440,000–2,340,000 ** | [104] | ||
SEC | 187,000–338,000 ** | [20] | ||
SEC | 450,000–1,320,000 ** | [26] | ||
SEC | 250,000 ** | [105] | ||
SEC | 200,000–300,000 ** | [106] | ||
SEC | 606,400–698,500 ** | [66] | ||
SEC | 487,000 **** | [29] | ||
SEC | 970,000 * | [7] | ||
SEC | 172,000 *** | [107] | ||
SEC | 743,000 ** | [107] | ||
SEC | 635,000 **** | [107] | ||
Galactomannans | SEC | 1,418,000 ^ | [108] | |
SEC | 1,490,000 ^ | [90] | ||
SEC | 1,170,000–1,810,000 ^ | [42] | ||
Arabinogalactans (Mongolian Larchwood) | Based on viscosity | 16,000 | [109] | |
Arabinogalactans (rhizome of Polygonatum sibiricum) | Based on viscosity | 141,000 | [110] | |
Xyloglucans (Azuki bean seeds) | Based on viscosity | 420,000 | [111] | |
SEC | 98,000 | [112] | ||
Xyloglucans from tamarind seeds | SEC | 450,000–830,000 | [113] | |
Xyloglucans from Detarium senegalense seeds | SEC | 630,000–1,660,000 | [82] | |
Pectins (obtained from various fruits and vegetables) | SEC | 61,000–182,000 | [114] | |
SEC | 153,800–247,100 | [114] |
Non-Starch Polysaccharides | Type of Bread | Addition to Dough [%] | Increase in the Water Addition to Dough [%] * | Increase in Bread Volume | Decrease in Crumb Hardness | Increase in Crumb Moisture | References |
---|---|---|---|---|---|---|---|
Arabinoxylans | Rye | 0.5 | 1–5 | up to 16% | up to 14% | up to 1% | [163] |
Rye | 1–2 | 2.5–19 | - | - | - | [71] | |
Wheat | 0.5–1.3 | 11–13 | positive effect | - | up to 29% | [134] | |
Wheat | 0.25–0.5 | - | positive effect | positive effect | positive effect | [15] | |
Gluten-free | 3–6 | up to 10 | up to 20.5% | - | up to 9% | [155] | |
Cross-linked arabinoxylans Hydrolyzed arabinoxylans Cross-linked, hydrolyzed, and unmodified arabinoxylans | Rye | 1–12 | 3–95 | up to 18% | up to 88% | up to 62% | [83] |
Rye | 1–15 | 0.2–22 | up to 55% | up to 92% | up to 33% | [83] | |
Rye | 1 | 5–18 | up to 34% | depends on modification | up to 4.5% | [154] | |
β-glucans | Wheat | 0.2–1.4 | 5–13 | up to 37% | - | up to 6.5% | [164] |
Wheat | 2.5–10 | 6–19 | - | - | - | [165] | |
Wheat | 0.8–1.2 | 9–1 | negative effect | - | up to 8% | [166] | |
Gluten-free | 1–2 | - | up to 16.5% | - | - | [170] | |
Galactomannans | Wheat | 5–10 | 18.5–35.5 | negative effect | up to 21% | - | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieniek, A.; Buksa, K. Properties and Functionality of Cereal Non-Starch Polysaccharides in Breadmaking. Appl. Sci. 2023, 13, 2282. https://doi.org/10.3390/app13042282
Bieniek A, Buksa K. Properties and Functionality of Cereal Non-Starch Polysaccharides in Breadmaking. Applied Sciences. 2023; 13(4):2282. https://doi.org/10.3390/app13042282
Chicago/Turabian StyleBieniek, Angelika, and Krzysztof Buksa. 2023. "Properties and Functionality of Cereal Non-Starch Polysaccharides in Breadmaking" Applied Sciences 13, no. 4: 2282. https://doi.org/10.3390/app13042282
APA StyleBieniek, A., & Buksa, K. (2023). Properties and Functionality of Cereal Non-Starch Polysaccharides in Breadmaking. Applied Sciences, 13(4), 2282. https://doi.org/10.3390/app13042282